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1 Introduction

In mathematics, one of the most fundamental concepts is that of a set. Most
rigorous fields of mathematics understand the objects they are studying as mem-
bers of some set, and when studying ideal properties of these objects, it is often
useful to consider the subset of objects which hold this property and analyze
this. Topology is a very useful tool for understanding how sets are structured,
and as a result it is very useful for understanding the behavior of such sets
of objects. In this paper, we will discuss a property of continuous functions;
in fact, we will show that nowhere differentiable functions are generic in the
space of continuous functions. Roughly speaking, this means that if you chose a
continuous function at random, you would be practically guaranteed to choose
one which is nowhere differentiable, which is a quite surprising result.

2 Necessary Concepts

In order to talk about a concept being generic, we first need to give a more
rigorous definition of what the term means. To do this, we need a few other
definitions. We will assume knowledge of definitions such as open sets and dense
sets.

Definition: Let X be a topological space. A subset G of X is called thick
if we can find a countable collection Gn of open, dense subsets of X such that

G = ∩Gn

We will say that a property is generic in a topological space X if the set
of objects which have the property is thick in X. But first, let us justify this
definition. Density seems like a clear choice for the definition, as we want this
property to be spread across the set in a dense way. Furthermore, openness
helps verify that the instances of this property are not isolated. That is, we
have some wiggle room around any point with the desired property where we
won’t lose that property. So open-dense sets are a natural choice for the idea of
a generic property. To justify the inclusion of sets which may not themselves be
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open-dense, but are the union of countably many open-dense sets, we introduce
a theorem.

Baire’s Theorem: Every thick subset of a complete metric space M is
dense.

We will use these concepts to prove that ”Nowhere Differentiable” is a generic
property of the space of continuous functions. Below we list some other theorems
and concepts we will use in the proof.

Lemma: Let X be a complete metric space. For A, B subsets of X, if
A ⊆ B and A is dense in X, then B is dense in X.

Weierstrass Approximation Theorem: The set of polynomials P is
dense in C0 (the space of continuous functions on R ).

Before we can begin our proof, we must take a moment to establish one more
tool we will need.

3 Sawtooth Functions

Define a sawtooth function σ0 : R→R by

σ0(x) =

{
x− 2n 2n ≤ x ≤ 2n+ 1
2n+ 2− x 2n+ 1 ≤ x ≤ 2n

Note that σ0(x+2m) = σ0(x) for all integers m, so σ0 is periodic with period
2. Also, note that 0 ≤ σ0(x) ≤ 1 for all x ∈ R.

Observe that given a desired ”size” ε and period π, we can supply a sawtooth
function which has that size and period. Namely...

σ(ε,π)(x) = εσ0(
2x

π
)

Note now the period of σ(ε,π) is π, and 0 ≤ σ(ε,π) ≤ ε for all x ∈ R. Being
able to construct these sawtooth function will be helpful in our proof, but first,
we can use it to construct our first example of a function which is nowhere
differentiable.

For each k ∈ {0, 1, 2...} define

σk(x) = (
3

4
)kσ0(4kx)

Note then that the ”size” of σk is ( 3
4 )k and the period is 2

4k . Since 0 ≤
σk(x) ≤ ( 3

4 )k for all x ∈ R, we have that
∑∞
k=1 σk(x) converges by the Weier-

strass M-Test, and it does so uniformly to some limit f. So we may define a
continuous function by

f(x) =

∞∑
k=1

σk(x)

Claim: f is nowhere differentiable.

2



Fix x ∈ R and define δn = 1
2∗4n for all n. Note that δn → 0 as n→∞, but

the difference quotient

∆f

∆x
=
f(x± δn)− f(x)

δn

does not converge to a limit. We will argue this below.
Note, we can rewrite our difference quotient as

∆f

∆x
=

∑∞
k=1 σk(x± δn)− σk(x)

δn

For k > n, δn is a multiple of the period of σk, so all of the summands for
k > n vanish. So we need only consider the finite sum up to n. Hence

∆f

∆x
=

∑n
k=1 σk(x± δn)− σk(x)

δn
(1)

Furthermore, σn is monotone on intervals of length 4−n, and [x−δn, x+δn] is of
length 4−n, so we may conclude that σn is monotone on either [x−δn, x]or[x, x+
δn] with slope equal to ±3n. So we may refine (1) to

∆f

∆x
= 3n +

∑n−1
k=1 σk(x± δn)− σk(x)

δn
(2)

Finally, we can estimate the terms where k < n as less than or equal to the
slopes of the monotone portions of σk, which are all equal to 3k. So the absolute
value of each of these different quotients is less than or equal to 3k, but for our
purposes, we can use only one side of the inequality to obtain that when k < n

σk(x+ δn)− σk(x)

δn
≥ 3k (3)

Combining (2) and (3), we obtain the following

∆f

∆x
≥ 3n − (3n−1 + 3n−2 + ...+ 1) = 3n − 3n−1

3− 1
=

1

2
(3n + 1) (4)

Of course, the right end of this inequality approaches zero, and so we con-
clude that ∆f

∆x does the same. Hence the derivative does not exist for any point
x ∈ R.

4 Statement and Proof of Theorem

Theorem: A generic f ∈C0 = C0([a, b], R) is differentiable at no point of [a,b].
In fact, it is neither left nor right-differentiable at any point in [a,b].

Clearly, proving the latter statement will imply the first. To prove the second
statement, define the following two families of sets. For each n ∈ {1,2,3...}, define
two sets
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Rn = {f ∈ C0 : ∀x ∈ [a, b− 1/n]∃h > 0suchthat|∆f
h
| > n}

Ln = {f ∈ C0 : ∀x ∈ [a+ 1/n, b]∃h < 0suchthat|∆f
h
| > n}

Claim:
⋂∞
n=1Rn∩Ln is a set consisting only of nowhere differentiable functions.

Proof: Let f ∈
⋂∞
n=1Rn ∩ Ln. Then for each x ∈ [a,b] there are sequences

h+
n and h−n such that h−n < 0 < h+

n and

|f(x+ h−n )− f(x)

h−n
| > n |f(x+ h+

n )− f(x)

h+
n

| > n

f is continuous on a compact interval [a,b], so f is bounded. Hence the
numerators of these fractions are at most 2||f ||. We can use this estimate and
rearrange both of these difference quotients to achieve that

|h±n | ≤
2||f ||
n

∀n ∈ {1, 2, 3...}

Then we may conclude that both h+
n → 0and h−n → 0 as n→∞. But clearly

both of the difference quotients defining the derivative will diverge to infinity.
Hence f is not differentiable at x, and since x was an arbitrary point of [a,b], f
is not differentiable at any point of [a,b].

All that is left to prove then is that
⋂∞
n=1Rn∩Ln is thick in C0. Equivalently,

that both Rn and Ln are open and dense in C0 for all n ∈ {1, 2, 3...}.
To check the denseness, we can use the lemma listed in the necessary concepts

section, and so it suffices to show that the closures of Rn and Ln contain the
set P of polynomials (which is dense in C0 by the Weierstrass Approximation
Theorem).

Fix n, fix a p ∈ P and let ε > 0. Consider a sawtooth function σ as defined
above which has a period smaller than 1/n and size smaller than ε, and also
satisfying that

min
x
{|slopex|} > n+ max

x
{slopex(P )}

(We can do this by starting with, σ = ε
2σ0(4nx)), and compressing the function

into a smaller period until the slope is larger than the max slope of p, for
example).

Now, the slopes of σ are far greater than those of p, so the slopes of f = p+σ
alternate in sign, and their period is less than 1/2n. At any x ∈ [a,b], we have
that f has a rightward slope either larger than n or smaller than -n. Thus we
conclude that f ∈ Rn. Similarly, f ∈ Ln, and so we have found that for any
ε > 0,∃f ∈ Rn ∩ Lnwith||f − p|| < ε. So p ∈ Rnandp ∈ Ln. This is true for all
p ∈ P, so we find that P ⊆ Rn and P ⊆ Ln

Now we only need that Rn and Ln are open. Let f ∈ Rn. For each x in
[a,b], there is an h = h(x) > 0 such that

|f(x+ h)− f(x)

h
| > n.
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Since f is continuous, there is a neighborhood Tx of x in [a,b] and a constant
v = v(x) > 0 such that the same h will yield

|f(t+ h)− f(t)

h
| > n+ v

for all t ∈ Tx. Since [a,b-1/n] is compact, finitely many of the Tx cover it, say
Tx1

, ..., Txm
. By continuity of f, we can state that for all t ∈ T xi

we have

|f(t+ hi)− f(t)

h
| ≥ n+ vi,

where hi = h(xi) and vi = v(xi). Now, if we replace f by a function g with
d(f,g) small enough, these inequalities hold in a slightly weaker way, and we can
still conclude that

|g(t+ hi)− g(t)

hi
| > n

Hence g ∈ Rn and Rn is open in C0. By a very similar reasoning, we have
that Ln is open in C0. Therefore we have that the set of nowhere differentiable
functions can be written as a countable intersection of open-dense sets, therefore
nowhere differentiable functions are generic in the space of continuous functions.
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