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1 Introduction

In topology, many central problems are determining necessary and sufficient
conditions under which two spaces are homeomorphic. The real line R and its
closed subset [0, 1] are two of the most fundamental topological spaces, and
hence it makes sense to consider the characteristics of spaces which are homeo-
morphic to them. In this paper, we define characteristics of spaces which have
these properties.

2 Definitions and Notation

Definition 1 (Partition). Let X be a topological space. The pair of subsets
P,Q ( X are said to be a partition of the subset A ⊆ X if

(a) P ∩A and Q ∩A are open in A,

(b) P ∩Q = ∅,

(c) P ∪Q ⊇ A,

(d) P ∩A 6= ∅, and

(e) Q ∩A 6= ∅.

We write A = P | Q if the pair (P,Q) form a partition of A.

Definition 2 (Connectedness). Let X be a topological space. A subset A ⊆ X
is said to be disconnected if there exists a partition of A. Otherwise, A is said
to be connected.

Definition 3 (Component). Let X be a topological space and A ⊆ X be
a subset. A component of A is a subset B ⊆ A such that B is maximally
connected, that is, if ∃C such that B ⊆ C and C is connected, then B = C.

Definition 4 (Cut Point). A cut point of a connected set A is a point x ∈ A
such that A \ {x} is disconnected.
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Definition 5 (Exceptional Point). Any point which is not a cut point of a set
is an exceptional point.

Definition 6 (Continuum). A compact, connected set with at least two points
is called a continuum.

Definition 7 (Closed Arc). A set X is called a closed arc if X is homeomorphic
to the interval [0, 1].

Definition 8 (Open Arc). A set X is called a open arc if X is homeomorphic
to the interval (0, 1).

Definition 9 (Simple Closed Curve). A set X is called a simple closed curve
or Jordan curve if X is homeomorphic to the unit circle.

Definition 10 (Order). Let X be a topological space. An order on X is a
relation ≺ which has the following:

(a) @x ∈ X for which x ≺ x, and

(b) ∀x, y, z ∈ X if x ≺ y and y ≺ z, then x ≺ z.

We say x precedes y if x ≺ y, z is between x and y if x ≺ z ≺ y or y ≺ z ≺ x,
and y is the successor of x if x ≺ y.

Definition 11 (Total Order). Let X be a topological space and ≺ be an order
on X. We call ≺ a total ordering if the additional condition

(c) If x 6= y, then either x ≺ y or y ≺ x.

is satisfied. If ≺ is not a total order, then it is called a partial order.

Definition 12 (Section). Let X be a separable topological space with the total
ordering ≺ and E0 a countable dense subset. A subset Λ ⊆ E0 is called a section
if

(a) it has no last point, and

(b) if x ∈ Λ, for all y ∈ E0 such that y ≺ x, y ∈ Λ.

Example 1. LetX = [0, 1] and E0 = [0, 1]∩Q. If a ∈ [0, 1], the set Λ = [0, a)∩Q
is a section.

0 1a
)

Λ

Figure 1: The section [0, a) ∩Q of [0, 1].
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3 Characterization of the Segment and Line

Theorem 1. If A is connected, but A \ {x} has the partition U | V , then
U = U ∪ {x} and V = V ∪ {x}.

Proof. Since U is closed in A \ {x}, we have

U = U ∩ (A \ {x}) = U \ {x},

and therefore U ⊆ U ∪ {x}. Similarly V ⊆ V ∪ {x}. If U = U , U and V ∪ {x}
are two nonempty closed sets whose union is A and whose common part is

U ∩
(
V ∪ {x}

)
= U ∩ V ⊆ U ∩ (V ∪ {x}) = ∅,

contradicting the assumption that A is connected.

Theorem 2. If X is a continuum with two or fewer non-cut points, then X is
a closed arc.

Remark 1. The compactness condition given in continuum is used not only to
distinguish [0, 1] from (0, 1) and R, but also to exclude certain entirely different
spaces which satisfy the cut point condition of the previous theorem.

For example, consider the set A ⊂ R2 consisting of the curve sin
(
1
x

)
for

0 < x ≤ 1 and the interval [−1, 0] × {0}. This is a connected set and has two
non-cut points, but it is not locally connected, so it is not a closed arc.

x

y

Figure 2: The connected set A with two non-cut points.

Proof. Let X be a continuum with two or fewer non-cut points and A ( X be
the set of exceptional points of X. By assumption, A has 0, 1, or 2 elements.
Let x0 ∈ X \A and P | Q a partition of X \{x0}. Since x0 is not an exceptional
point, it is a cut point. Then this means that this partition P | Q exists.

By the previous theorem, we have P = P ∪{x0} and Q = Q∪{x0}. Further
note that by definition of partition, P and Q are open.

Claim 1. P and Q are connected.
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Proof. Suppose that Q is disconnected. Then Q = H1 | H2 is a partition.
Assume that x0 ∈ H1. Then we have

H2 ∩ P = H2 ∩ (P ∪ {x0}) = H2 ∩ P = ∅

since P ∩H2 ⊆ P ∩Q = ∅. Then we have X = H2 | (H1 ∪ P ) since

H2 ∩ (H1 ∪ P ) = (H2 ∩H1) ∪ (H2 ∩ P ) = ∅
H2 ∪ (H1 ∪ P ) = Q ∪ P = X

H2 6= ∅
H1 ∪ P 6= ∅

and H2 and H1 ∪ P are open. This is a contradiction since we assumed that X
is connected. The proof that P is connected is similar.

Lemma 1. If A ( X is a connected set and X has the partition X = P | Q,
then A ⊆ P or A ⊆ Q.

Proof. Let A ( X be a connected set and X have the partition X = P | Q.
Assume that A is not strictly contained in either P or Q, that is, A intersects
both P and Q. Then we have

(P ∩A) ∪ (Q ∩A) = A ∩ (P ∪Q) = A ∩X = A

(P ∩A) ∩ (Q ∩A) = A ∩ (P ∩Q) = ∅
P ∩A 6= ∅
Q ∩A 6= ∅

where P ∩A and Q ∩A are open in A, giving us the partition

A = (P ∩A) | (Q ∩A),

a contradiction since A is assumed to be connected.

Claim 2. If y ∈ P and P1 | Q1 is any partition of X \ {y}, then either P1 ⊆ P
or Q1 ⊆ P .

Proof. The connected set Q is contained in X \ {y} since y ∈ P . Note that this
implies that Q is contained in either P1 or Q1 by Lemma 1. Then the other
part of the partition is contained in P = X \Q.

Claim 3. P contains at least one exceptional point.

Proof. Suppose that it does not. Then P = P∪{x0} also contains no exceptional
point since x0 is not an exceptional point. Since X is a compact metric space,
it is separable. So now we can find {x1, x2, . . .} a countable dense set of points
in P . By the previous claim, if we have the partition X \ {x1} = P1 | Q1, either

4



P1 ⊆ P or Q1 ⊆ P . Label the parts such that P1 ⊆ P . We now assume that for
k > 1, the set Pk has been defined such that

X \ {xnk
} = Pk | Qk

and Pk ⊆ P . By definition of partition, Pk 6= ∅, and hence contains at least one
point of our countable dense set. By the well-ordering principle of N, we choose
nk+1 to be the smallest such natural number with xnk+1

∈ Pk. Since Pk ⊆ P ,
xnk+1

is not an exceptional point by assumption. Therefore it is a cut point, so
X \ {xnk+1

} is disconnected. We have the partition X \ {xnk+1
} = Pk+1 | Qk+1

and label these parts such that Pk+1 ⊆ Pk and hence Pk+1 ⊆ P . Note that
since xnk+1

∈ Pk but xnk+1
/∈ Pk+1, we have Pk+1 ( Pk.

Now we have inductively defined the decreasing sequence {P, P1, P2, . . .}.
Note that since the closure of each of these sets is just the inclusion of the
corresponding point that renders X disconnected, we have that {P , P1, P2, . . .}
is a decreasing sequence of compact sets. By Cantor’s intersection theorem, we
have that

P∞ = P ∩
∞⋂
i=1

P i 6= ∅.

Furthermore, since P k+1 = Pk+1 ∪ {xnk+1
} ⊆ Pk, we also have that

P∞ = P ∩
∞⋂
i=1

Pi.

Now let z ∈ P∞. Since z ∈ P , z is not an exceptional point. Thus we have
the partition X \ {z} = H1 | H2. By Claim 2, we have that either every Pn

contains H1 or every Pn contains H2. Label the one that is contained in every
Pn by H1. Then we have that since H1 ⊂ Pn for every n, H1 ⊂ P∞. Since
H1 is open and nonempty, it contains at least one point of our countable dense
set, say xi. Let nk+1 be the first integer of the {n2, n3, . . .} to exceed i. But
xi ∈ Pk, and so nk+1 is not the least integer m such that xm ∈ Pk, which is a
contradiction to how we defined the points xnk

and sets Pk. Therefore P must
contain an exceptional point.

The proof that Q must contain an exceptional point is similar.

Note now that since both P and Q have at least one exceptional point, and
P and Q are disjoint, the set X must have at least 2 exceptional points. We
denote these a and b.

Claim 4. If x is not an exceptional point, X \ {x} has two components, each
containing one of the two exceptional points.

Proof. Let x be a cut point of X. We have the partition X \ {x} = P | Q.
Assume that a ∈ P and b ∈ Q. We want to show that P and Q are connected.
Suppose that we have the partition P = H1 | H2 and that a ∈ H1. Since H2 is
clopen in P and P is clopen in X \ {x}, we have the partition

X \ {x} = H2 | ((X \ {x}) \H2) .
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Lx Rx

Figure 3: The sections of X that give an ordering.

But this is impossible since H2 contains neither a nor b, contradicting Claim 3.
The proof that Q is connected is similar.

The claims proved so far allows us to set up an order on X.
For each x ∈ X we define Lx to be the empty set if x = a and the component

of X \ {x} containing a if x 6= a. Rx is defined similarly, to be the empty set if
x = b and the component of X \ {x} containing b if x 6= b. Therefore for any x,
we have X = Lx ∪ {x} ∪Rx. Note that no Lx contains b and no Rx contains a.

Example 2. Let X = [0, 1], a = 0, b = 1, and define Lx and Rx as above.
Then we have:

Claim 5. The statements x ∈ Ly and Lx ( Ly are equivalent.

Proof. ( =⇒ ) Assume that x ∈ Ly. Since x /∈ Lx, we have Lx 6= Ly. The
point y 6= a since La = ∅, giving a contradiction. If y = b, we have Ly = Lb

which is defined to be the component of X \ {y} = X \ {b} which contains a,
which is all of X \ {b} since b is an exceptional point, so X \ {b} is connected.
That is, certainly Lx ⊆ Ly. If x = a, then Lx = ∅ ⊆ Ly. If x = b, we have a
contradiction since then b ∈ Ly, which is impossible.

Excluding these cases, it follows from Claim 2 that either we have Lx ⊆ Ly

or Rx ∪ {x} ⊆ Ly. Since Ly does not contain b, and Rx does, it must be that
Lx ( Ly.

( ⇐= ) Assume that Lx ( Ly. Excluding the edge cases from before, we
have

Lx ∪ {x} = Lx ⊆ Ly = Ly ∪ {y}.

Since x 6= y because Lx 6= Ly, we have x ∈ Ly.
Similarly x ∈ Ry and Rx ( Ry are equivalent.

For any x, y ∈ X, we define x ≺ y iff x ∈ Ly. Thus a ≺ x unless x = a and
x ≺ b unless x = b. Further, @x ∈ X such that x ≺ a or b ≺ x.

Claim 6. The relation ≺ is a total ordering.

Proof. (a) Assume there is x ∈ X such that x ≺ x. This means that x ∈ Lx,
that is, x is contained in the component of X \ {x} which contains a, which is
a contradiction.

(b) Let x, y, z ∈ X such that x ≺ y and y ≺ z. Then we have that x ∈ Ly

and y ∈ Lz. By Claim 5, we have equivalently that Lx ( Ly and Ly ( Lz, so
certainly Lx ( Lz. Then again by Claim 5, we have x ∈ Lz, so x ≺ z.
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(c) Let x, y ∈ X with x 6= y. Assume that x ⊀ y. That is, x /∈ Ly. If x /∈ Ly

and x 6= y, then x ∈ Ry. By Claim 5, we have Rx ( Ry. Taking complements,
we have Ly∪{y} ⊆ Lx∪{x}, and since y 6= x, we have y ∈ Lx. Therefore y ≺ x.

The proof of the opposite direction is similar.

The set given by {x ∈ X | x ≺ p} for any p ∈ X is Lp and therefore
an open set. Similarly, {x ∈ X | p ≺ x} = Rp for any p ∈ X. The set
{x ∈ X | p ≺ x ≺ q} is the intersection of two of these open sets, and is thus
open as well. We denote this set by ≺p, q�.

Claim 7. If p ≺ q, the set ≺p, q� 6= ∅.

Proof. Suppose that p ≺ q and ≺p, q�= ∅. That is, every point of X must be
in either Lp ∪ {p} or Rq ∪ {q}, so

(Lp ∪ {p}) ∪ (Rq ∪ {q}) = X.

We also have
(Lp ∪ {p}) ∩ (Rq ∪ {q}) = ∅

because
(Lp ∩Rq) ∪ (Lp ∩ {q}) ∪ ({p} ∩Rq) ∪ ({p} ∩ {q}) = ∅

since each set in the union is empty because p ≺ q. Then we have the partition

X = (Lp ∪ {p}) | (Rq ∪ {q}),

which is a contradiction since X is connected.

Let E0 be a countable dense set in X not containing a or b, say E0 =
{x1, x2, . . .}. If p ≺ q, the nonempty open set ≺ p, q � contains at least one
point of E0, and in particular there is a point of E0 between any two points of
E0 since ≺xi, xj� is nonempty and open.

Let {α1, α2, . . .} be any enumeration of the rational points of (0, 1). We
construct two sequences, {y1, y2, . . .} ⊆ E0 and {β1, β2, . . .} ⊆ (0, 1) ∩ Q as
follows:

Let y1 = x1 and β1 = α1. Suppose that yn and βn have been defined for
n ≤ k−1. If k is even, let yk = xm where m is the least index for which xm 6= yi
for i ≤ k−1. Let βk = αm for the least index m for which αm 6= yi for i ≤ k−1
and if yk−1 ≺ yk, then βk−1 < βk, or if yk ≺ yk−1, then βk < βk−1. (We do this
so that the map we create later is order-preserving). If k is odd, we reverse the
order in which we assign the values. That is, let βk = αm for the least index m
for which αm 6= βi for i ≤ k − 1. Let yk = xm for the least index m for which
xm 6= yi for i ≤ k − 1 and if βk−1 < βk, then yk−1 ≺ yk, or if βk < βk−1, then
yk ≺ yk−1. In this way, we define each new element of a sequence based on the
order of the element last added to the other sequence.
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Example 3. As described above, we let y1 = x1 and β1 = α1. Since 2 is even,
we follow the even definition of {yn} and {βn}. We let y2 = x2 since 2 is the
least index of {xn} which has not been assigned. Now we have two cases:

(Case 1) y1 ≺ y2. In this case, we choose m to be the least index of the {αn}
which hasn’t been assigned and has the relation α1 < αm and define β2 = αm.

(Case 2) y2 ≺ y1. In this case, we choose m to be the least index of the {αn}
which hasn’t been assigned and has the relation αm < α1 and define β2 = αm.

Since 3 is odd, we follow the odd definition of {yn} and {βn}. We let β3 = αi

where i = 3 or i = 2 depending on whether α2 has been used or not. Similar to
before, we have two cases:

(Case 1) β2 < β3. In this case, we choose m to be the least index of the {xn}
which hasn’t been assigned and has the relation x2 < xm and define y3 = xm.

(Case 2) β3 < β2. In this case, we choose m to be the least index of the {xn}
which hasn’t been assigned and has the relation xm < x2 and define y3 = xm.

We continue in this fashion to construct {yn} and {βn}.

Certainly we have that each xi appears as a yj once and only once because
of the definition of the sequence {y1, y2, . . .} and similarly for αi appearing once
and only once as a βj . Another consequence of the way we defined this sequence
is that if we define the map f by f(yi) = βi, then this map is order preserving.
Thus f is a one-to-one, order preserving map from E0 to the rational points of
(0, 1).

We now proceed in a fashion similar to Dedekind’s construction of the real
numbers.

Claim 8. Let Λ be a section of E0, and K the set of points of X not followed
by any point of Λ. Then K has a first point.

Proof. K cannot be empty because it contains b (recall that ∀x ∈ X with
x 6= b, x ≺ b). If K = X, then we must have that a is the first point by a
similar reasoning. If we exclude these cases, we can consider X \K, which is an
open set since if we have x ∈ X \K, since Λ has no last element, we can find a
y ∈ Λ such that x ≺ y, the set ≺a, y� is an open neighborhood of x such that
≺a, y�⊆ X \K.

If K has no first element, then it is open as well since if x ∈ K, then there
is a point y ∈ K with y ≺ x and z ≺ y for all z ∈ Λ. Then ≺ y, b � is
an open neighborhood of x such that ≺ y, b �⊆ K. Then this implies that
X = K | (X \K) is a partition of X.

We have now shown that each section of E0 corresponds to a unique point
of X, which we call the point determined by the section.

Claim 9. The points determined by two different sections are different.

Proof. Let Λ1 and Λ2 be two sections of E0 with Λ1 6= Λ2, Λ1 determining the
point x1, and Λ2 determining the point x2. Clearly if x ∈ Λ1 and x /∈ Λ2,
then x ≺ x1, but x ⊀ x2, so x2 ≺ x and since ≺ is a total order, we have that
x2 ≺ x1, so x2 6= x1.
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Every point of x ∈ X is determined by at least one section, namely

Λ = {y ∈ E0 | y ≺ x}.

Therefore we have set up a one-to-one correspondence between the sections of
E0 and the points of X.

The map f : E0 → Q ∩ (0, 1) which we constructed earlier can now be
extended to all points of X in the following way: If x ∈ X and Λx is a section of
E0 determining it, then f(Λx) is the left subset of a Dedekind cut corresponding
to some real number y since f is order-preserving. Then we have x 7→ y. Note
that this agrees with the old definition of f since if yi ∈ E0, then

Λyi
= {z ∈ E0 | z ≺ yi}.

f(Λyi
) = (0, βi), so f(yi) = βi.

Further note that for x = a, we have Λa = ∅, and thus f(Λa) = ∅. Thus
f(a) = 0. Similarly, for x = b, we have f(b) = 1.

Claim 10. The mapping f is order-preserving, i.e. if x, y ∈ X with x ≺ y,
then f(x) < f(y).

Proof. If x, y ∈ E0, this follows from the original definition of f , which is still
valid. If x ∈ E0 but y /∈ E0, x ∈ Λy and thus f(x) ∈ f(Λy), the section of the
rationals determining f(y). Hence f(x) < f(y). If y ∈ E0 and x /∈ E0, we have
that y /∈ Λx, so f(y) /∈ f(Λx) so f(x) < f(y). If x, y /∈ E0, then ∃z ∈ E0 such
that x ≺ z ≺ y. By the above cases, we have f(x) < f(z) and f(z) < f(y), so
f(x) < f(y).

Claim 11. f is continuous.

To prove this, we show that if G is an open set in [0, 1], then f−1(G) is
open in X. It is sufficient to show that open intervals in [0, 1] (which are the
components of G) are mapped to by open sets in X. Let c, d ∈ X with f(c) = γ
and f(d) = δ. The typical open intervals in [0, 1] are [0, γ), (γ, δ), and (δ, 1].
These are mapped to from the sets ≺a, c�, ≺c, d�, and ≺d, b�, respectively,
all open in X.

Thus f is continuous, and since X is compact, f−1 is continuous. Therefore
we have a homeomorphism between X, a continuum with two or fewer cut-
points, and [0, 1].

Corollary 1. The open arc is then a space Y with the following properties:

(a) Y is separable,

(b) Y is connected and locally connected, and

(c) if x is any point, Y \ {x} has exactly two components.
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4 Characterization of the Circle

Theorem 3. A continuum whose connection is destroyed by the removal of two
arbitrary points is a simple closed curve.

Proof. Let x, y be two points that are not cut points of the space S. Then we
have the partition S \ {x, y} = P1 | P2.

Claim 12. P1 = P1 ∪ {x, y} and P2 = P2 ∪ {x, y}.

Proof. The proof is similar to that given for Theorem 1. Since P1 is closed in
S \ {x, y}, we have

P1 = P1 ∩ (S \ {x, y}) = P1 \ {x, y}

thus P1 ⊆ P1 ∪ {x, y}. Similarly we have P2 ⊆ P2 ∪ {x, y}. Since S \ {x} is
connected and y is a cut point of it, by Theorem 1, we have that y ∈ P1 and
y ∈ P2. Similarly, we get that x ∈ P1 and x ∈ P2, so we have P1 = P1 ∪ {x, y}
and P2 = P2 ∪ {x, y}.

Lemma 2. If C is a connected set, then C is connected.

Proof. Assume that C is disconnected. Then we have the partition C = P | Q.
Then P and Q are both clopen sets in C, so C ∩ P and C ∩Q are clopen sets
in C. Since P ∩Q = ∅, we have

(C ∩ P ) ∩ (C ∩Q) = C ∩ (P ∩Q) = ∅.

Since P ∪Q = C, we have

(C ∩ P ) ∪ (C ∩Q) = C ∩ (P ∪Q) = C ∩ C = C.

Since P 6= ∅ and Q 6= ∅ are open sets in C and C is dense in C, we have that
C ∩ P 6= ∅ and C ∩Q 6= ∅. Thus we have the partition

C = (C ∩ P ) | (C ∩Q) ,

which contradicts the fact that C is assumed to be connected.

Claim 13. P1 and P2 are connected.

Proof. The proof is similar to that given for Claim 1. Suppose that P1 ∪ {x}
is disconnected. Then we have the partition P1 ∪ {x} = H1 | H2. Assume
without loss of generality that x ∈ H1. The sets P1 ∪ {x} = P1 \ {y} and
P2 ∪ {x} = P2 \ {y} are closed in S \ {y}, hence H1 and H2 are also closed in
S \ {y}. Then we have the partition

S \ {y} = H2 | (H1 ∪ (P2 ∪ {x})) ,

which contradicts the assumption that y is not a cut point of S. Thus P1 ∪ {x}
is connected, and by Lemma 2, its closure, P1 = P1 ∪ {x} is also connected.
The proof is similar to show that P2 is connected.
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Lemma 3. If C1 and C2 are two connected sets and C1 ∩C2 6= ∅, then C1 ∪C2

is connected.

Proof. Suppose that C1 ∪ C2 is disconnected. Then we have the partition

C1 ∪ C2 = P | Q.

Since C1 ∩ C2 6= ∅, we can take x ∈ C1 ∩ C2. By Lemma 1, we must have that
C1 ⊆ P or C1 ⊆ Q. Similarly, we have that C2 ⊆ P or C2 ⊆ Q. We have a few
cases:

(Case 1) C1 ⊆ P and C2 ⊆ P . Then C1∪C2 ⊆ P , so Q = ∅, a contradiction.
(Case 2) C1 ⊆ P and C2 ⊆ Q. Then C1 ∩ C2 ⊆ P ∩Q = ∅, a contradiction.
The other two cases are similar. Therefore in every case, we reach a contra-

diction, so we must have that C1 ∪ C2 is connected.

Claim 14. Every point in P1 is a cut point of P1 and every point in P2 is a
cut point of P2.

Proof. Suppose that u ∈ P1 and P1 \ {u} is connected. Then if v ∈ P2, P2 \ {v}
cannot be connected since otherwise(

P1 \ {u}
)
∪
(
P2 \ {v}

)
= S \ {u, v}

would be connected by Lemma 3. This is a contradiction since we assume that
the removal of any two points renders the set disconnected.

From Claims 12, 13, and 14, it follows that both P1 and P2 are closed
arcs with endpoints x and y. Hence S is the union of two arcs with the same
endpoints and no other common point, that is, a simple closed curve.
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