Topology Homework 3

Elisha Brooks

November 20, 2020

17. Let $f_n : \mathbb{R} \to \mathbb{R}$ continuous. Suppose $f_n \to f$ pointwise on \mathbb{R} . Then f is continuous on an uncountably many points of \mathbb{R} .

Proof. We are given the following theorem: if X is a Baire space, Y a metric space, $f_n : X \to Y$ continuous, and $f_n \to f$ pointwise, then C_f , the set of points on which f is continuous, must be a dense G_{δ} set in X.

By the third part of the previous question, we know that in a separable Baire space without isolated points, no countable dense subset is a G_{δ} set. So, combining these, we can say that f must be continuous on a dense G_{δ} subset of \mathbb{R} , which can't be countable since it's a separable Biare space without any isolated points. Hence, f must be continuous at uncountably many points of \mathbb{R} .