1. Clifford Algebras and the Clifford Bundle

Def. Let (V, g) be an *n*-dimensional vector space over R with a positive definite inner product g. The Clifford algebra $Cl(V, g)$ is the associative algebra with unit 1 generated by e_1, \ldots, e_n (an orthonormal basis of V) with the relations:

$$
e_i^2 = -1, \quad e_i e_j + e_j e_i = 0, \quad \forall i \neq j.
$$

Existence. In the tensor algebra $\mathcal{T}(V) = \mathbb{R} \oplus V \oplus (V \otimes V) \oplus \cdots$, let \mathcal{I}_g be the 2-sided ideal generated by elements of the form $v \otimes w + w \otimes v + 2g(v, w)$ for $v, w \in V$. Then we define:

$$
\mathrm{Cl}(V, g) = \mathcal{T}(V) / \mathcal{I}_g.
$$

Remark. This is isomorphic to the Clifford algebra of \mathbb{R}^n , denoted Cl_n , so we use both notations interchangeably.

1.1. Universal Property. Let A be an associative algebra with unit, and let $f: V \to \mathcal{A}$ be a linear map. Then f extends uniquely to an algebra homomorphism $\hat{f}: Cl(V) \to \mathcal{A}$, provided f satisfies:

$$
f(v) \cdot f(v) = -g(v, v) \cdot 1, \quad \forall v \in V.
$$

Remark. Note the linear map $\pi : V \to \mathrm{Cl}(V)$, composition of $V \to \mathcal{T}(V) \to \mathrm{Cl}(V)$ is injective since $\pi(v) \cdot \pi(v) = -g(v, v) \cdot 1$. So we identify V with its image in Cl(V).

1.2. Canonical Vector Space Isomorphism. There exists an isomorphism of vector spaces:

$$
\Lambda^* V \cong \mathrm{Cl}(V),
$$

where $\Lambda^* V$ is the exterior algebra. Note that $Cl(V)$ is generated by products $e_{i_1} \cdots e_{i_p}$, where $1 \leq i_1 < \cdots < i_p \leq n$ (as a vector space), together with 1. The set of products $(e_{i_1} \cdots e_{i_p})$ forms a vector space basis for Cl(V), and mapping $(e_{i_1}\cdots e_{i_p})\mapsto e_{i_1}\wedge\ldots\wedge e_{i_p}$ establishes a bijection between basis elements of Λ^*V and of $Cl(V)$. This defines the isomorphism. Both spaces have dimension 2^n as real vector spaces.

Remark. This is not an algebra homomorphism!

Lemma. Under this isomorphism:

$$
v \cdot \varphi \mapsto v \wedge \varphi - i(v)\varphi, \quad \forall v \in V, \, \varphi \in \text{Cl}(V) \approx \Lambda^* V.
$$

Proof. Let $\{e_i\}$ be an orthonormal basis for V with $v = e_1$. Then

$$
v \wedge \varphi = e_i \wedge e_1 \wedge \cdots \wedge e_{i_p}
$$

= $-e_{i_2} \cdots e_{i_p} \mapsto e_{i_2} \wedge \cdots \wedge_{i_p} = (ext(e_1) - int(e_1))\varphi, \quad \text{if } i_1 = 1$
= $e_1 \cdot e_{i_1} \cdots e_{i_p} \mapsto e_1 \wedge e_{i_1} \wedge \cdots \wedge e_{i_p} = (ext(e_1) - int(e_1))\varphi, \quad \text{if } i_1 > 1.$

1.3. Even/Odd Splitting. From the universal property, there exists a homomorphism α : Cl_n \rightarrow Cl_n extending $v \rightarrow -v$, which is an involution. This defines a splitting:

 $\text{Cl}_n = \text{Cl}_n^+ \oplus \text{Cl}_n^-$, (+1 resp. -1 eigenspaces of α). The isomorphism $\Lambda^* V \cong \mathrm{Cl}(V)$ maps $\Lambda^{\text{even}}(V)$ to Cl_n^+ isomorphically.

Note $\text{Cl}_n^+ \cdot \text{Cl}_n^+ \subset \text{Cl}_n^+$: this is a subalgebra of Cl_n

Lemma. $\text{Cl}_n \approx \text{Cl}_{n+1}^+$. **Proof.** Define $\psi: Cl_n \to Cl_{n+1}^+$ by:

$$
\psi(a) = a^+ + a^- \cdot e_{n+1}
$$
, where $a = a^+ + a^- \in \mathrm{Cl}_n^+ \oplus \mathrm{Cl}_n^-$.

Clearly $\psi(a) \in \mathrm{Cl}_{n+1}^+$, and one checks easily that this is an algebra isomorphism. For instance:

$$
\psi(a \cdot b) = (a \cdot b)^+ + (a \cdot b)^- \cdot e_{n+1}, \text{ while}
$$

$$
\psi(a) \cdot \psi(b) = (a^+ + a^- \cdot e_{n+1}) \cdot (b^+ + b^- \cdot e_{n+1})
$$

$$
= a^+ \cdot b^+ + a^- \cdot b^- + (a^+ \cdot b^- - a^- \cdot b^+) \cdot e_{n+1}
$$

and these coincide (as the reader may check).

1.4. Action of the Orthogonal Group. The orthogonal group O_n acts on Cl_n , in various ways. This is induced by the action on the tensor algebra. For example, the left action on $v \otimes w$ is given by $A(v \otimes w) = Av \otimes Aw$; it extends the standard action of O_n on \mathbb{R}^n by left multiplication of 'column vectors'. To see this induces an action on Cl_n , It suffices to check that this action preserves the ideal \mathcal{I}_q :

$$
A(v \otimes w + w \otimes v + 2g(v, w)) = Av \otimes Aw + Aw \otimes Av + 2g(Av, Aw)1 \in \mathcal{I}_g.
$$

(We define $A1 = 1$.) We can also use the action of O_n by right matrix multiplication of 'row vectors', $v \mapsto vA^t$ (we use A^t to turn it into a left action). This extends to the tensor algebra of \mathbb{R}^n , and induces a different action of O_n on Cl_n , $\psi \mapsto \psi A^t$.

Combining the two, we define the 'adjoint action' of O_n on Cl_n :

$$
Ad(A)\psi = A\psi A^t, \quad A \in O_n, \psi \in \mathrm{Cl}_n.
$$

(Note $A^t = A^{-1}$, for $A \in O_n$.)

1.5. Classification and Complexification. It is easy to see the isomorphisms (over \mathbb{R}):

$$
Cl_1 \approx \mathbb{C}, \quad Cl_2 \approx \mathbb{H} \text{ (quaternions)}.
$$

We also have the periodicity: $\text{Cl}_{n+8} \approx \text{Cl}_n \otimes \text{Cl}_8$.

The classification of complexified Clifford algebras is more regular. Define:

$$
\mathbb{C}l_n = \mathrm{Cl}_n \otimes_{\mathbb{R}} \mathbb{C} = \{ \psi + i\varphi; \psi, \varphi \in Cl_n \}.
$$

Then we have (cp. Table 1, [L-M p. 28]):

$$
\mathbb{C}l_1 \cong \mathbb{C} \oplus \mathbb{C}, \quad \mathbb{C}l_2 \cong \mathbb{C}(2) \quad (2x2 \text{ complex matrices}),
$$

and in general:

$$
\mathbb{C}\mathbf{1}_{2k} \cong \mathbb{C}(2^k), \quad \mathbb{C}\mathbf{1}_{2k+1} \cong \mathbb{C}(2^k) \oplus \mathbb{C}(2^k).
$$

(Check that the complex dimensions coincide.)

Also in the real case: Cl_n is isomorphic (over \mathbb{R}) to a matrix algebra over $\mathbb{R}, \mathbb{C},$ or H (quaternions), or to a direct sum of two such matrix algebras.

This leads to the classification of irreducible representations of $\mathbb{C}l_n$, since $\mathbb{C}(m)$ has a unique irreducible representation (the usual one over \mathbb{C}^m), while $\mathbb{C}(m)\oplus \mathbb{C}(m)$ has two inequivalent ones.

1.6. Representations: Clifford Modules. A complex representation of Cl_n is an algebra homomorphism (over R):

$$
\rho: Cl_n \to \mathcal{L}(W),
$$

where W is a finite-dimensional complex vector space (called a "Clifford module" or Cl_n -module).

Thus Cl_n acts on W via linear transformations, denoted as "Clifford multiplication" by $\varphi \in \mathrm{Cl}_n$:

$$
\varphi \cdot w = \rho(\varphi)w \quad \forall w \in W.
$$

W is reducible if $W = W_1 \oplus W_2$, with $\rho(\varphi)W_1 \subseteq W_1 \ \forall \varphi$ and $\rho(\varphi)W_2 \subseteq W_2 \ \forall \varphi$. Any such ρ induces a C-homomorphism $\rho_c : \mathbb{C}^1_n \to \mathcal{L}(W)$ (complexification), and we have: ρ irreducible implies ρ_c irreducible, but not conversely.

Theorem. The number of irreducible (inequivalent) complex representations of Cl_n is 1, if n is even (of dimension 2^k if $n = 2k$) and 2, if n is odd (both of complex dimension 2^k , if $n = 2k + 1$).

Example. It is possible to describe the complex irreducible representation of Cl_{2n} explicitly. The usual Hermitian inner product on \mathbb{C}^n induces a contraction map $int(v) = i(v) : \Lambda^p(\mathbb{C}^n) \to \Lambda^{p-1}(\mathbb{C}^n)$. Now define:

$$
f_v: \Lambda^*(\mathbb{C}^n) \to \Lambda^*(\mathbb{C}^n), \quad f_v(\omega) = v \wedge \omega - i(v)\omega.
$$

Note that $ext(v)ext(v) = 0$, $int(v)int(v) = 0$, and $(ext(v)int(v) + int(v)ext(v))\varphi =$ $-\|v\|^2\varphi$, so $f_v \circ f_v = -\|v\|^2 \mathbb{I}$ on $\Lambda^*(\mathbb{C}^n)$.

Now write $v \in \mathbb{C}^n$ as $v = v_1 + iv_2$, where $(v_1, v_2) \in \mathbb{R}^{2n}$. It is easy to see that, for the euclidean norm in \mathbb{R}^{2n} and the hermitian norm in \mathbb{C}^n , we have $||(v_1, v_2)|| =$ ||v||. Thus the above conclusion may be written in the form $f_{(v_1,v_2)} \circ f_{(v_1,v_2)} =$ $-||(v_1, v_2)||^2$, and therefore the map $(v_1, v_2) \mapsto f_{(v_1, v_2)}$ extends to an algebra homomorphism $\text{Cl}_{2n} \to \mathcal{L}(\Lambda^*(\mathbb{C}^n))$ (R-linear in $\varphi \in \text{Cl}_{2n}$, C-linear in $\omega \in \Lambda^*(\mathbb{C}^n)$). For dimensional reasons, this must be the unique (up to isomorphism) complex irreducible representation of Cl_{2n} .

1.7. Invariant Inner Products. The following important property holds:

Proposition. Let $Cl_n \to \mathcal{L}(W)$ be a real representation. Then there exists a positive definite inner product on W such that Clifford multiplication by unit vectors $e \in \mathbb{R}^n$ is orthogonal. (If W is a complex Cl_n -module, the same conclusion holds for Hermitian inner products.)

Proof. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of \mathbb{R}^n , and consider the subgroup $F_n \subseteq \mathrm{Cl}_n^{\times}$ (the group of invertible elements of Cl_n) generated by $\{e_1, \ldots, e_n\}$ and (-1) , subject to the relations:

(-1) is central ;
$$
(-1)^2 = Id
$$
; $e_i^2 = -1$ $e_i e_j = (-1)e_j e_i$ if $i \neq j$.

Note this is a finite group! So given any inner product on W , we can construct a second one invariant under F_n by averaging over this finite group.

Then if $e \in \mathbb{R}^n$ is a unit vector, $e = \sum x_i e_i$ with $x_i \in \mathbb{R}, \sum x_i^2 = 1$, we have:

$$
\langle e \cdot w, e \cdot w \rangle = \sum_j x_j^2 \langle e_j \cdot w, e_j \cdot w \rangle + \sum_{i \neq j} x_i x_j \langle e_i \cdot w, e_j \cdot w \rangle = (\sum_j x_j^2) \langle w, w \rangle = \langle w, w \rangle,
$$

noting that $\langle e_i \cdot w, e_i \cdot w \rangle = \langle w, w \rangle$ $(e_i \in F_n)$ and the second sum vanishes (symmetric times antisymmetric in $i \neq j$:

$$
\langle e_i \cdot w, e_j \cdot w \rangle = -\langle w, e_i \cdot e_j \cdot w \rangle = \langle w, e_j \cdot e_i \cdot w \rangle = -\langle e_j \cdot w, e_i \cdot w \rangle.
$$

(Here we already used the corollary below, applied to F_n .)

Remark: Since the e_i generate Cl_n multiplicatively, a representation of Cl_n is the same as a representation of F_n such that $-1 \mapsto -\mathbb{I}$.

Corollary. If $v \in \mathbb{R}^n$, Clifford multiplication by v is skew-symmetric in W (for any invariant inner product):

$$
\langle v \cdot w, w' \rangle = -\langle w, v \cdot w' \rangle.
$$

Proof. We may assume $v \neq 0$, so:

$$
\langle v \cdot w, w' \rangle = \langle \frac{v}{||v||} \cdot v \cdot w, \frac{v}{||v||} \cdot w' \rangle = \frac{1}{||v||^2} \langle v \cdot v \cdot w, v \cdot w' \rangle = -\langle w, v \cdot w' \rangle,
$$

since $v \cdot v = -||v||^2$ 1.

1.8. An application to Differential Topology. If \mathbb{R}^{N+1} is a Cl_n -module, there exist *n* vector fields on S^N , linearly independent at each point (i.e., rank $(S^n) \geq n$).

Proof. Choose an invariant inner product on \mathbb{R}^{N+1} , making Clifford multiplication by unit vectors in \mathbb{R}^n orthogonal maps. Then use Clifford multiplication to define, for each $v \in \mathbb{R}^n$ and each $x \in S^N$, the unit sphere in \mathbb{R}^{N+1} :

$$
V(x) = v \cdot x,
$$

Note $\langle v \cdot x, x \rangle = 0$ (since Clifford multiplication by v is skew-symmetric in \mathbb{R}^{N+1}), so $V(x) \in T_x S^N$. Thus we have defined a linear map from \mathbb{R}^n to the space $\chi(S^N)$ of vector fields on the N-sphere. We claim that for each $x \in S^N$, the linear map $v \mapsto V(x)$ from \mathbb{R}^n to $T_x S^N$ has trivial kernel, and therefore has rank n. Indeed:

$$
V(x) = v \cdot x = 0 \Rightarrow v \cdot v \cdot x = 0 \Rightarrow -||v||^2 x = 0,
$$

so $v = 0$. This shows that, picking a basis $\{v_1, \ldots, v_n\}$ for \mathbb{R}^n , we obtain n vector fields on S^N V_1, \ldots, V_n , linearly independent at each $x \in S^N$.

Corollary. (See [L-M, p. 457]; follows from the representation theory of Cl_n) Write $N+1=2^{4a+b}(2t+1)$, with $0 \le b \le 3$. Then the largest n such that \mathbb{R}^{N+1} is a Cl_n-module is $n = 8a + 2^b - 1$ (in particular $n = 0$ if N is even, since then $a = b = 0$).

Remark. It is a famous theorem of J.F. Adams (1962) that this n gives indeed the rank of $Sⁿ$ (largest number of vector fields linearly independent at each point). For instance, rank $(S^{\text{even}}) = 0$, as expected. We confirm $\text{rank}(S^1) = 1, \text{rank}(S^3) = 3$, rank $(S^7) = 7$ (the only parallelizable spheres), and rank $(S^5) = 1$. (It is well known, and follows from the embedding of S^{2k+1} as the unit sphere in \mathbb{C}^{k+1} , that rank $(S^{odd}) \geq 1$: every odd-dimensional sphere admits a non-vanishing vector field.)

1.9. Review of the Associated Vector Bundle Construction. Given any principal G-bundle $\pi : P \to X$ (a manifold), where G is a Lie group, and a representation $\rho: G \to GL(W)$ (invertible linear transformations of a vector space W), we construct a vector bundle over X with typical fiber W , the associated bundle $P \times_{\rho} W$, as follows. Recall P admits a free right G-action, transitive on fibers. Then define a left G-action on the product $P \times W$ via:

$$
g \cdot (e, w) = (e \cdot g^{-1}, \rho(g)w).
$$

4

This action is free (since the action of G on P is), with disjoint orbits, and the quotient space $P \times_{\rho} W$ (the orbit space $(P \times W)/G$ of this left G-action) is a welldefined locally trivial vector bundle over X , with typical fiber W . In what follows we describe the local trivializations and transition maps of this vector bundle, in terms of those of P.

Let $\hat{\pi}: P \times W \to P \times_{\rho} W$ be the quotient projection. This is also the quotient projection of the equivalence relation on $P \times W$ ("orbit equivalence"):

$$
(e, w) \sim (eg^{-1}, \rho(g)w)
$$
 if $e' = eg^{-1}$ and $w' = \rho(g)w$.

Denote the local trivializations (with respect to an open cover $\mathcal{U} = \{U_{\alpha}\}\$ of X) of the principal G -bundle P by:

$$
\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G
$$
 (diffeomorphisms),

$$
\psi_{\alpha}(e) = (\pi(e), \psi_{\alpha}^{G}(e)), \quad \psi_{\alpha}^{G}: P|_{U_{\alpha}} \to G,
$$

satisfying equivariance: $\psi_{\alpha}^{G}(e \cdot g) = \psi_{\alpha}^{G}(e)g, \forall g \in G, e \in P|_{U_{\alpha}}$.

The transition diffeomorphisms $\psi_\alpha \circ \psi_\beta^{-1} : U_\alpha \cap U_\beta \times G \to U_\alpha \cap U_\beta \times G$ have the form:

 $\psi_{\alpha} \circ \psi_{\beta}^{-1}(x,g) = (x, \varphi_{\alpha\beta}(x)g), \quad \varphi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G \text{ (smooth)}.$

Also $P \times_{\rho} W$ is a locally trivial vector bundle, with projection map:

$$
p: P \times_{\rho} W \to X, \quad p[e, w] = \pi(e).
$$

(Clearly well-defined on the equivalence class $[e, w]$ of $(e, w) \in P \times W$). Its local trivializations are given by:

$$
\hat{\psi}_{\alpha}: p^{-1}(U_{\alpha}) \to U_{\alpha} \times W, \quad [e, w] \mapsto (\pi(e), \rho(\psi_{\alpha}^G(e))w).
$$

It follows from the equivariance property of the ψ_{α}^{G} that this is well defined, since if (e, w) ∼ (e', w') :

$$
\rho(\psi_{\alpha}^G(e'))w' = \rho(\psi_{\alpha}^G(eg^{-1}))\rho(g)w = \rho(\psi_{\alpha}^G(e)g^{-1})\rho(g)w = \rho(\psi_{\alpha}^G(e))w,
$$

using the fact ρ is a group homomorphism.

The following very natural lemma needs proof. Define transition maps for $P \times_{\rho} W$:

 $\hat{\varphi}_{\alpha\beta}: U_{\alpha}\cap U_{\beta}\to \mathrm{GL}(W) \quad \text{by} \quad \hat{\psi}_{\alpha}\circ \hat{\psi}_{\beta}^{-1}(x,w)=(x,\hat{\varphi}_{\alpha\beta}(x)w), x\in U_{\alpha}\cap U_{\beta}$

Lemma. $\hat{\varphi}_{\alpha\beta} = \rho \circ \varphi_{\alpha\beta}$. $Proof.$ ¹

> Let $\hat{\psi}_{\beta}^{-1}(x,w) = [e_{\beta}, w_{\beta}], \quad x = \pi(e_{\beta}) \in U_{\alpha} \cap U_{\beta}, w_{\beta} \in W.$ Thus $(x, w) = \hat{\psi}_{\beta}([e_{\beta}, w_{\beta}]) = (x, \rho(\psi_{\beta}^{G}(e_{\beta}))w_{\beta}),$ so:

$$
\rho(\psi^G_{\beta}(e_{\beta}))w_{\beta} = w \qquad (1)
$$

We need to show $\hat{\psi}_{\alpha}([e_{\beta}, w_{\beta}]) = (x, \rho(\varphi_{\alpha\beta}(x))w)$, or:

$$
\rho(\psi_{\alpha}^G(e_{\beta}))w_{\beta} = \rho(\varphi_{\alpha\beta}(x))w.
$$

Now, referring to the trivializations of P :

$$
\psi_{\beta}(e_{\beta}) = (x, \psi_{\beta}^{G}(e_{\beta})), \text{ or } e_{\beta} = \psi_{\beta}^{-1}(x, g_{\beta}), g_{\beta} = \psi_{\beta}^{G}(e_{\beta}).
$$

Then:

$$
\psi_{\alpha}^{G}(e_{\beta}) = \varphi_{\alpha\beta}(x)\psi_{\beta}^{G}(e_{\beta}) = \varphi_{\alpha\beta}(x)g_{\beta} \qquad (2)
$$

¹It is probably more fun to do it as an exercise than to read the proof.

Thus:

6

$$
\rho(\psi_{\alpha}^{G}(e_{\beta}))w_{\beta} = \rho(\varphi_{\alpha\beta}(x))\rho(\psi_{\beta}^{G}(e_{\beta}))w_{\beta} = \rho(\varphi_{\alpha\beta}(x))w,
$$

as we wished to show. (The first equality follows from (2) , the second from (1) .)

1.10. The Clifford Algebra Bundle of a Riemannian Manifold (X, g) . As seen in §4 above, $G = O_n$ (or SO_n) acts on Cl_n by algebra homomorphisms (in several ways), in particular by invertible linear transformations of Cl_n (regarded as a real vector space). Any of these actions leads to an associated vector bundle over X . It turns out that, if we want this vector bundle to have a Clifford algebra structure (at each $x \in X$), we need to use the adjoint representation $Ad: O_n \to$ $GL(Cl_n)$, $Ad(A)\psi = A\psi A^t$. Thus we consider:

$$
\operatorname{Cl}(X) = F_X \times_{Ad} \operatorname{Cl}_n,
$$

where F_X is the orthonormal frame bundle of X (or orthonormal positive frame bundle if X is oriented). That is, the orbit equivalence relation is:

$$
(e, \psi) \sim (eg^{-1}, Ad(g)\psi); \quad e \in F_X, g \in O_n, \psi \in \mathrm{CL}_n
$$

To see that this is not just a vector bundle, but a bundle over X of Clifford algebras, isomorphic to Cl_n at each point $x \in X$, define the Clifford product on $Cl(X)$ by:

$$
[e, \varphi] \cdot [e', \psi] = [e, \varphi \cdot Ad(g^{-1})\psi] = [e, \varphi \cdot g^{-1}\psi g]
$$

where $e, e' = eg^{-1} \in F_X, \varphi, \psi \in \mathrm{Cl}(\mathbb{R}^n), g \in O_n$.

(The idea is to first refer ψ to the same frame e, using $(e', \psi) \sim (e'g, Ad(g^{-1})\psi)$) $(e, Ad(g^{-1})\psi)$ To see this is well-defined, we consider different representatives of the equivalence classes:

$$
(e,\varphi) \sim (eA^{-1}, A\varphi A^{-1}), \quad (e',\psi) \sim (e'B^{-1}, B\psi B^{-1}), \quad A, B \in O_n, \varphi, \psi \in \mathcal{Cl}_n.
$$

Note: $e'B^{-1} = eg^{-1}B^{-1} = eA^{-1}Ag^{-1}B^{-1} = eA^{-1}(BgA^{-1})^{-1}$, so we must replace g by BgA^{-1} when computing the product:

$$
[eA^{-1}, A\varphi A^{-1}] \cdot [e'B^{-1}, B\psi B^{-1}] = [eA^{-1}, A\varphi A^{-1} \cdot Ad(BgA^{-1})^{-1} (B\psi B^{-1})] = [eA^{-1}, A(\varphi \cdot g^{-1}\psi g)A^{-1}]
$$

and we see that $(e, \varphi \cdot g^{-1}\psi g) \sim (eA^{-1}, Ad(A)(\varphi \cdot g^{-1}\psi g))$, as desired.

Intuitively, one thinks of a section $\varphi \in \Gamma(\mathrm{Cl}_n(X))$, locally, as a pair (e, φ_0) , where $e = (e_i)$ is a local orthonormal frame and $\varphi_0 \in Cl(\mathbb{R}^n)$, modulo the equivalence relation defined by the adjoint action of O_n .

Exercise. (Instructive). Show this wouldn't work if we tried to define $Cl(X)$ using the standard left representation of O_n on Cl_n .

Example. (Connection with elementary linear algebra.) In Linear Algebra, we compute the expression of $v \in \mathbb{R}^n$ in two different (say orthonormal) bases e, e' as follows:

$$
v = \sum_{j} x_j e_j = \sum_{i} y_i e'_i \text{ where } e_j = \sum_{i} e'_i g_{ij}
$$

$$
\sum_{j} x_j e_j = \sum_{i,j} x_j e'_i g_{ij} = \sum_{i} (\sum_{j} g_{ij} x_j) e'_i \Rightarrow y_i = \sum_{j} g_{ij} x_j,
$$

which we may write as:

 $e' = eG^{-1} \Rightarrow [v]_{e'} = G[v]_e$ (matrices acting on 'column vectors').

This suggests the equivalence relation of pairs (frame, coordinate) representing the same vector:

$$
(e, x) \sim (eG^{-1}, Gx).
$$

In terms of associated vector bundles to the orthonormal frame bundle F_X of a Riemannian manifold X , this amounts to the isomorphism:

$$
F_X \times_{\rho_n} \mathbb{R}^n \approx TX,
$$

where $\rho_n: O_n \to \mathcal{L}(\mathbb{R}^n)$ is the standard action (matrices acting on 'column vectors' on the left.)

Now recall how the matrix expressions of a linear transformation behave under a change of basis. The matrix $[T]_e$ of a linear transformation $T \in \mathcal{L}(\mathbb{R}^n)$ in the basis e is defined by:

$$
[Tv]_e = [T]_e[v]_e.
$$

And from the above, if $e' = eG^{-1}$ is a second basis, we have:

$$
[Tv]_{e'} = G[Tv]_e = G[T]_e[v]_e = G[T]_e G^{-1}[v]_{e'},
$$

proving the classical formula: $[T]_{e'} = G[T]_e G^{-1}$.

In other words, in terms of an equivalence relation on pairs (frame, square matrix) representing the same linear transformation, this says:

$$
(e, A) \sim (eG^{-1}, Ad(G)A).
$$

Thus, matrices transform via the adjoint action, under a change of basis. For this reason, the algebra of fiber-wise linear transformations of the tangent bundle TX of a Riemannian manifold X can be constructed as the bundle associated to the frame bundle F_X by the adjoint representation of O_n on the space of real $n \times n$ matrices:

$$
\mathcal{L}(TX) \approx F_X \times_{Ad} M_{n \times n}.
$$

That this bundle has a well-defined algebra structure (under composition) is shown just as above for the case of $Cl(X)$.