
1. Clifford Algebras and the Clifford Bundle

Def. Let (V, g) be an n-dimensional vector space over R with a positive definite
inner product g. The Clifford algebra Cl(V, g) is the associative algebra with unit
1 generated by e1, . . . , en (an orthonormal basis of V ) with the relations:

e2i = −1, eiej + ejei = 0, ∀i ̸= j.

Existence. In the tensor algebra T (V ) = R ⊕ V ⊕ (V ⊗ V ) ⊕ · · ·, let Ig be the
2-sided ideal generated by elements of the form v⊗w+w⊗v+2g(v, w) for v, w ∈ V .
Then we define:

Cl(V, g) = T (V )/Ig.
Remark. This is isomorphic to the Clifford algebra of Rn, denoted Cln, so we use
both notations interchangeably.

1.1. Universal Property. Let A be an associative algebra with unit, and let
f : V → A be a linear map. Then f extends uniquely to an algebra homomorphism
f̃ : Cl(V ) → A, provided f satisfies:

f(v) · f(v) = −g(v, v) · 1, ∀v ∈ V.

Remark. Note the linear map π : V → Cl(V ), composition of V ↪→ T (V ) → Cl(V )
is injective since π(v) ·π(v) = −g(v, v) ·1. So we identify V with its image in Cl(V ).

1.2. Canonical Vector Space Isomorphism. There exists an isomorphism of
vector spaces:

Λ∗V ∼= Cl(V ),

where Λ∗V is the exterior algebra. Note that Cl(V ) is generated by products
ei1 · · · eip , where 1 ≤ i1 < · · · < ip ≤ n (as a vector space), together with 1.
The set of products(ei1 · · · eip) forms a vector space basis for Cl(V ), and mapping
(ei1 · · · eip) 7→ ei1 ∧ . . . ∧ eip establishes a bijection between basis elements of Λ∗V
and of Cl(V ). This defines the isomorphism. Both spaces have dimension 2n as
real vector spaces.
Remark. This is not an algebra homomorphism!
Lemma. Under this isomorphism:

v · φ 7→ v ∧ φ− i(v)φ, ∀v ∈ V, φ ∈ Cl(V ) ≈ Λ∗V.

Proof. Let {ei} be an orthonormal basis for V with v = e1. Then

v ∧ φ = ei ∧ e1 ∧ · · · ∧ eip
= −ei2 · . . . · eip 7→ ei2 ∧ . . .∧ip = (ext(e1)− int(e1))φ, if i1 = 1

= e1 · ei1 . . . · eip 7→ e1 ∧ ei1 ∧ . . . ∧ eip = (ext(e1)− int(e1))φ, if i1 > 1.

1.3. Even/Odd Splitting. From the universal property, there exists a homomor-
phism α : Cln → Cln extending v 7→ −v, which is an involution. This defines a
splitting:

Cln = Cl+n ⊕ Cl−n , (+1 resp. − 1 eigenspaces of α).

The isomorphism Λ∗V ∼= Cl(V ) maps Λeven(V ) to Cl+n isomorphically.
Note Cl+n · Cl+n ⊂ Cl+n : this is a subalgebra of Cln

Lemma. Cln ≈ Cl+n+1.

Proof. Define ψ : Cln → Cl+n+1 by:

ψ(a) = a+ + a− · en+1, where a = a+ + a− ∈ Cl+n ⊕ Cl−n .
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Clearly ψ(a) ∈ Cl+n+1, and one checks easily that this is an algebra isomorphism.
For instance:

ψ(a · b) = (a · b)+ + (a · b)− · en+1, while

ψ(a) · ψ(b) = (a+ + a− · en+1) · (b+ + b− · en+1)

= a+ · b+ + a− · b− + (a+ · b− − a− · b+) · en+1

and these coincide (as the reader may check).

1.4. Action of the Orthogonal Group. The orthogonal group On acts on Cln,
in various ways. This is induced by the action on the tensor algebra. For example,
the left action on v ⊗ w is given by A(v ⊗ w) = Av ⊗ Aw; it extends the standard
action of On on Rn by left multiplication of ‘column vectors’. To see this induces
an action on Cln, It suffices to check that this action preserves the ideal Ig:

A(v ⊗ w + w ⊗ v + 2g(v, w)1) = Av ⊗Aw +Aw ⊗Av + 2g(Av,Aw)1 ∈ Ig.

(We define A1 = 1.) We can also use the action of On by right matrix multiplication
of ‘row vectors’, v 7→ vAt (we use At to turn it into a left action). This extends to
the tensor algebra of Rn, and induces a different action of On on Cln, ψ 7→ ψAt.

Combining the two, we define the ‘adjoint action’ of On on Cln:

Ad(A)ψ = AψAt, A ∈ On, ψ ∈ Cln.

(Note At = A−1, for A ∈ On.)

1.5. Classification and Complexification. It is easy to see the isomorphisms
(over R):

Cl1 ≈ C, Cl2 ≈ H (quaternions).

We also have the periodicity: Cln+8 ≈ Cln ⊗ Cl8.
The classification of complexified Clifford algebras is more regular. Define:

Cln = Cln ⊗R C = {ψ + iφ;ψ,φ ∈ Cln}.

Then we have (cp. Table 1, [L-M p. 28]):

Cl1 ∼= C⊕ C, Cl2 ∼= C(2) (2x2 complex matrices),

and in general:

Cl2k ∼= C(2k), Cl2k+1
∼= C(2k)⊕ C(2k).

(Check that the complex dimensions coincide.)
Also in the real case: Cln is isomorphic (over R) to a matrix algebra over R, C,

or H (quaternions), or to a direct sum of two such matrix algebras.
This leads to the classification of irreducible representations of Cln, since C(m)

has a unique irreducible representation (the usual one over Cm), while C(m)⊕C(m)
has two inequivalent ones.
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1.6. Representations: Clifford Modules. A complex representation of Cln is
an algebra homomorphism (over R):

ρ : Cln → L(W ),

where W is a finite-dimensional complex vector space (called a “Clifford module”
or Cln-module).
Thus Cln acts onW via linear transformations, denoted as “Clifford multiplication”
by φ ∈ Cln:

φ · w = ρ(φ)w ∀w ∈W.

W is reducible if W = W1 ⊕W2, with ρ(φ)W1 ⊆ W1 ∀φ and ρ(φ)W2 ⊆ W2 ∀φ.
Any such ρ induces a C-homomorphism ρc : Cln → L(W ) (complexification), and
we have: ρ irreducible implies ρc irreducible, but not conversely.
Theorem. The number of irreducible (inequivalent) complex representations of
Cln is 1, if n is even (of dimension 2k if n = 2k) and 2, if n is odd (both of complex
dimension 2k, if n = 2k + 1).
Example. It is possible to describe the complex irreducible representation of Cl2n
explicitly. The usual Hermitian inner product on Cn induces a contraction map
int(v) = i(v) : Λp(Cn) → Λp−1(Cn). Now define:

fv : Λ∗(Cn) → Λ∗(Cn), fv(ω) = v ∧ ω − i(v)ω.

Note that ext(v)ext(v) = 0, int(v)int(v) = 0, and (ext(v)int(v) + int(v)ext(v))φ =
−∥v∥2φ, so fv ◦ fv = −∥v∥2I on Λ∗(Cn).

Now write v ∈ Cn as v = v1 + iv2, where (v1, v2) ∈ R2n. It is easy to see that,
for the euclidean norm in R2n and the hermitian norm in Cn, we have ||(v1, v2)|| =
||v||. Thus the above conclusion may be written in the form f(v1,v2) ◦ f(v1,v2) =

−||(v1, v2)||2I, and therefore the map (v1, v2) 7→ f(v1,v2) extends to an algebra
homomorphism Cl2n → L(Λ∗(Cn)) (R-linear in φ ∈ Cl2n, C-linear in ω ∈ Λ∗(Cn)).
For dimensional reasons, this must be the unique (up to isomorphism) complex
irreducible representation of Cl2n.

1.7. Invariant Inner Products. The following important property holds:

Proposition. Let Cln → L(W ) be a real representation. Then there exists
a positive definite inner product on W such that Clifford multiplication by unit
vectors e ∈ Rn is orthogonal. (If W is a complex Cln-module, the same conclusion
holds for Hermitian inner products.)
Proof. Let {e1, . . . , en} be an orthonormal basis of Rn, and consider the subgroup
Fn ⊆ Cl×n (the group of invertible elements of Cln ) generated by {e1, . . . , en} and
(−1), subject to the relations:

(−1) is central ; (−1)2 = Id; e2i = −1 eiej = (−1)ejei if i ̸= j.

Note this is a finite group! So given any inner product on W , we can construct a
second one invariant under Fn by averaging over this finite group.

Then if e ∈ Rn is a unit vector, e =
∑
xiei with xi ∈ R,

∑
x2i = 1, we have:

⟨e ·w, e ·w⟩ =
∑
j

x2j ⟨ej ·w, ej ·w⟩+
∑
i̸=j

xixj⟨ei ·w, ej ·w⟩ = (
∑
j

x2j )⟨w,w⟩ = ⟨w,w⟩,

noting that ⟨ej ·w, ej ·w⟩ = ⟨w,w⟩ (ej ∈ Fn) and the second sum vanishes (symmetric
times antisymmetric in i ̸= j):

⟨ei · w, ej · w⟩ = −⟨w, ei · ej · w⟩ = ⟨w, ej · ei · w⟩ = −⟨ej · w, ei · w⟩.
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(Here we already used the corollary below, applied to Fn.)

Remark: Since the ei generate Cln multiplicatively, a representation of Cln is
the same as a representation of Fn such that −1 7→ −I.

Corollary. If v ∈ Rn, Clifford multiplication by v is skew-symmetric in W (for
any invariant inner product):

⟨v · w,w′⟩ = −⟨w, v · w′⟩.

Proof. We may assume v ̸= 0, so:

⟨v · w,w′⟩ = ⟨ v

||v||
· v · w, v

||v||
· w′⟩ = 1

||v||2
⟨v · v · w, v · w′⟩ = −⟨w, v · w′⟩,

since v · v = −||v||21.

1.8. An application to Differential Topology. If RN+1 is a Cln-module, there
exist n vector fields on SN , linearly independent at each point (i.e., rank(Sn) ≥ n).

Proof. Choose an invariant inner product on RN+1, making Clifford multiplication
by unit vectors in Rn orthogonal maps. Then use Clifford multiplication to define,
for each v ∈ Rn and each x ∈ SN , the unit sphere in RN+1:

V (x) = v · x,

Note ⟨v ·x, x⟩ = 0 (since Clifford multiplication by v is skew-symmetric in RN+1),
so V (x) ∈ TxS

N . Thus we have defined a linear map from Rn to the space χ(SN )
of vector fields on the N -sphere. We claim that for each x ∈ SN , the linear map
v 7→ V (x) from Rn to TxS

N has trivial kernel, and therefore has rank n. Indeed:

V (x) = v · x = 0 ⇒ v · v · x = 0 ⇒ −||v||2x = 0,

so v = 0. This shows that, picking a basis {v1, . . . , vn} for Rn, we obtain n vector
fields on SN V1, . . . , Vn, linearly independent at each x ∈ SN .

Corollary. (See [L-M, p. 457]; follows from the representation theory of Cln)
Write N + 1 = 24a+b(2t + 1), with 0 ≤ b ≤ 3. Then the largest n such that RN+1

is a Cln-module is n = 8a + 2b − 1 (in particular n = 0 if N is even, since then
a = b = 0).

Remark. It is a famous theorem of J.F. Adams (1962) that this n gives indeed the
rank of Sn (largest number of vector fields linearly independent at each point). For
instance, rank(Seven) = 0, as expected. We confirm rank(S1) = 1, rank(S3) = 3,
rank(S7) = 7 (the only parallelizable spheres), and rank(S5) = 1 . (It is well
known, and follows from the embedding of S2k+1 as the unit sphere in Ck+1, that
rank(Sodd) ≥ 1: every odd-dimensional sphere admits a non-vanishing vector field.)

1.9. Review of the Associated Vector Bundle Construction. Given any
principal G-bundle π : P → X (a manifold), where G is a Lie group, and a repre-
sentation ρ : G → GL(W ) (invertible linear transformations of a vector space W ),
we construct a vector bundle over X with typical fiber W , the associated bundle
P ×ρ W , as follows. Recall P admits a free right G-action, transitive on fibers.
Then define a left G-action on the product P ×W via:

g · (e, w) = (e · g−1, ρ(g)w).
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This action is free (since the action of G on P is), with disjoint orbits, and the
quotient space P ×ρW (the orbit space (P ×W )/G of this left G-action) is a well-
defined locally trivial vector bundle over X, with typical fiber W . In what follows
we describe the local trivializations and transition maps of this vector bundle, in
terms of those of P .

Let π̂ : P ×W → P ×ρ W be the quotient projection. This is also the quotient
projection of the equivalence relation on P ×W (“orbit equivalence”):

(e, w) ∼ (eg−1, ρ(g)w) if e′ = eg−1 and w′ = ρ(g)w.

Denote the local trivializations (with respect to an open cover U = {Uα} of X)
of the principal G-bundle P by:

ψα : π−1(Uα) → Uα ×G (diffeomorphisms),

ψα(e) = (π(e), ψG
α (e)), ψG

α : P |Uα
→ G,

satisfying equivariance: ψG
α (e · g) = ψG

α (e)g, ∀g ∈ G, e ∈ P |Uα
.

The transition diffeomorphisms ψα ◦ψ−1
β : Uα ∩Uβ ×G→ Uα ∩Uβ ×G have the

form:
ψα ◦ ψ−1

β (x, g) = (x, φαβ(x)g), φαβ : Uα ∩ Uβ → G (smooth).

Also P ×ρ W is a locally trivial vector bundle, with projection map:

p : P ×ρ W → X, p[e, w] = π(e).

(Clearly well-defined on the equivalence class [e, w] of (e, w) ∈ P ×W ). Its local
trivializations are given by:

ψ̂α : p−1(Uα) → Uα ×W, [e, w] 7→ (π(e), ρ(ψG
α (e))w).

It follows from the equivariance property of the ψG
α that this is well defined, since

if (e, w) ∼ (e′, w′):

ρ(ψG
α (e

′))w′ = ρ(ψG
α (eg

−1))ρ(g)w = ρ(ψG
α (e)g

−1)ρ(g)w = ρ(ψG
α (e))w,

using the fact ρ is a group homomorphism.

The following very natural lemma needs proof. Define transition maps for P ×ρW :

φ̂αβ : Uα ∩ Uβ → GL(W ) by ψ̂α ◦ ψ̂−1
β (x,w) = (x, φ̂αβ(x)w), x ∈ Uα ∩ Uβ

Lemma. φ̂αβ = ρ ◦ φαβ .
Proof.1

Let ψ̂−1
β (x,w) = [eβ , wβ ], x = π(eβ) ∈ Uα ∩ Uβ , wβ ∈W.

Thus (x,w) = ψ̂β([eβ , wβ ]) = (x, ρ(ψG
β (eβ))wβ), so:

ρ(ψG
β (eβ))wβ = w (1)

We need to show ψ̂α([eβ , wβ ]) = (x, ρ(φαβ(x))w), or:

ρ(ψG
α (eβ))wβ = ρ(φαβ(x))w.

Now, referring to the trivializations of P :

ψβ(eβ) = (x, ψG
β (eβ)), or eβ = ψ−1

β (x, gβ), gβ = ψG
β (eβ).

Then:
ψG
α (eβ) = φαβ(x)ψ

G
β (eβ) = φαβ(x)gβ (2)

1It is probably more fun to do it as an exercise than to read the proof.



6

Thus:

ρ(ψG
α (eβ))wβ = ρ(φαβ(x))ρ(ψ

G
β (eβ))wβ = ρ(φαβ(x))w,

as we wished to show. (The first equality follows from (2), the second from (1).)

1.10. The Clifford Algebra Bundle of a Riemannian Manifold (X, g). As
seen in §4 above, G = On (or SOn) acts on Cln by algebra homomorphisms (in
several ways), in particular by invertible linear transformations of Cln (regarded
as a real vector space). Any of these actions leads to an associated vector bundle
over X. It turns out that, if we want this vector bundle to have a Clifford algebra
structure (at each x ∈ X), we need to use the adjoint representation Ad : On →
GL(Cln), Ad(A)ψ = AψAt. Thus we consider:

Cl(X) = FX ×Ad Cln,

where FX is the orthonormal frame bundle of X (or orthonormal positive frame
bundle if X is oriented). That is, the orbit equivalence relation is:

(e, ψ) ∼ (eg−1, Ad(g)ψ); e ∈ FX , g ∈ On, ψ ∈ CLn

To see that this is not just a vector bundle, but a bundle over X of Clifford
algebras, isomorphic to Cln at each point x ∈ X, define the Clifford product on
Cl(X) by:

[e, φ] · [e′, ψ] = [e, φ ·Ad(g−1)ψ] = [e, φ · g−1ψg]

where e, e′ = eg−1 ∈ FX , φ, ψ ∈ Cl(Rn), g ∈ On.
(The idea is to first refer ψ to the same frame e, using (e′, ψ) ∼ (e′g,Ad(g−1)ψ) =

(e,Ad(g−1)ψ)) To see this is well-defined, we consider different representatives of
the equivalence classes:

(e, φ) ∼ (eA−1, AφA−1), (e′, ψ) ∼ (e′B−1, BψB−1), A,B ∈ On, φ, ψ ∈ Cln.

Note: e′B−1 = eg−1B−1 = eA−1Ag−1B−1 = eA−1(BgA−1)−1, so we must replace
g by BgA−1 when computing the product:

[eA−1, AφA−1]·[e′B−1, BψB−1] = [eA−1, AφA−1·Ad(BgA−1)−1(BψB−1)] = [eA−1, A(φ·g−1ψg)A−1]

and we see that (e, φ · g−1ψg) ∼ (eA−1, Ad(A)(φ · g−1ψg)), as desired.

Intuitively, one thinks of a section φ ∈ Γ(Cln(X)), locally, as a pair (e, φ0), where
e = (ei) is a local orthonormal frame and φ0 ∈ Cl(Rn), modulo the equivalence
relation defined by the adjoint action of On.

Exercise. (Instructive). Show this wouldn’t work if we tried to define Cl(X)
using the standard left representation of On on Cln.

Example. (Connection with elementary linear algebra.) In Linear Algebra, we
compute the expression of v ∈ Rn in two different (say orthonormal) bases e, e′ as
follows:

v =
∑
j

xjej =
∑
i

yie
′
i where ej =

∑
i

e′igij∑
j

xjej =
∑
i,j

xje
′
igij =

∑
i

(
∑
j

gijxj)e
′
i ⇒ yi =

∑
j

gijxj ,

which we may write as:

e′ = eG−1 ⇒ [v]e′ = G[v]e (matrices acting on ‘column vectors’).
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This suggests the equivalence relation of pairs (frame, coordinate) representing the
same vector:

(e, x) ∼ (eG−1, Gx).

In terms of associated vector bundles to the orthonormal frame bundle FX of a
Riemannian manifold X, this amounts to the isomorphism:

FX ×ρn Rn ≈ TX,

where ρn : On → L(Rn) is the standard action (matrices acting on ‘column vectors’
on the left.)

Now recall how the matrix expressions of a linear transformation behave under
a change of basis. The matrix [T ]e of a linear transformation T ∈ L(Rn) in the
basis e is defined by:

[Tv]e = [T ]e[v]e.

And from the above, if e′ = eG−1 is a second basis, we have:

[Tv]e′ = G[Tv]e = G[T ]e[v]e = G[T ]eG
−1[v]e′ ,

proving the classical formula: [T ]e′ = G[T ]eG
−1.

In other words, in terms of an equivalence relation on pairs (frame, square ma-
trix) representing the same linear transformation, this says:

(e,A) ∼ (eG−1, Ad(G)A).

Thus, matrices transform via the adjoint action, under a change of basis. For this
reason, the algebra of fiber-wise linear transformations of the tangent bundle TX
of a Riemannian manifold X can be constructed as the bundle associated to the
frame bundle FX by the adjoint representation of On on the space of real n × n
matrices:

L(TX) ≈ FX ×Ad Mn×n.

That this bundle has a well-defined algebra structure (under composition) is shown
just as above for the case of Cl(X).


