COMPATIBLE CONNECTIONS AND CURVATURE ON $Cl(X)$ -MODULES

Let W be a $Cl(X)$ -module: a complex vector bundle W (of C-fiber dimension N) with hermitian metric, endowed, at each point $x \in X$, with a Clifford multiplication $Cl(T_xX) \to \mathcal{L}_\mathbb{C}(W_x)$ depending smoothly on x. (Recall this Cliford action must itself satisfy a local triviality condition.) We denote by F_X the orthonormal frame bundle of X , a principal SO_n bundle.

Let $(s_a(x)),(e_i(x))$ be suitable local orthonormal frames for $W_{|U}, F_{X|U}$. The frames determine matrices of connection 1-forms for the Levi-Civita connection $\nabla^g = \nabla^{LC}$ on (X, g) and the compatible connection D on the Cl (X, g) -module $W,\,\omega^g=\omega^{LC}\in T^*X_{|U}\otimes \mathfrak{so}_n,\omega\in T^*X_{|U}\otimes \mathfrak{u}_N;$

$$
\nabla_v^g e_i = \sum_j \omega_{ji}(v) e_j, \quad D_v s_a = \sum_b \omega_{ba}(v) s_b,
$$

equivalently:

$$
\omega_{ji}^g(v) = \langle \nabla_v^g e_i, e_j \rangle, \quad \omega_{ba} = \langle D_v s_a, s_b \rangle.
$$

(Note the order of indices, the usual one for matrix elements when matrices multiply 'column vectors' on the left).

Note also the matrices ω are complex-valued, and skew-hermitian: $\omega^{\dagger} = -\omega$. We also represent (locally) the Clifford action of e_i on W, in the frame (s_a) , by a skew-hermitian matrix $C(e_i) \in \mathfrak{u}_N$, with entries defined by:

$$
C(e_i)s_a = \sum_b c_{ba}(e_i)s_b, \quad \text{or } c_{ba}(e_i) = \langle C(e_i)s_a, s_b \rangle.
$$

('Suitable frames' means, by definition, the matrix entries $c_{ab}(e_i)(x)$ are constant functions on U .)

Now compute, using the conditions defining compatibility:

$$
e_k(c_{ba}(e_i)) = \langle D_{e_k}(c(e_i)s_a), s_b \rangle + \langle C(e_i)s_a, D_{e_k}s_b \rangle
$$

\n
$$
= \langle c(\nabla_{e_k}^g e_i)s_a, s_b \rangle + \langle c(e_i)(D_{e_k}s_a), s_b \rangle + \langle C(e_i)s_a, D_{e_k}s_b \rangle
$$

\n
$$
= \langle \sum_j \omega_{ji}^g(e_k)C(e_j)s_a, s_b \rangle + \langle C(e_i) \sum_d \omega_{da}(e_k)s_d, s_b \rangle + \langle C(e_i)s_a, \sum_d \omega_{db}(e_k)s_d \rangle
$$

\n
$$
= \sum_i \omega_{ji}^g c_{ba}(e_j) + \sum_d \omega_{da}(e_k)c_{bd}(e_i) + \sum_d \bar{\omega}_{db}(e_k)c_{da}(e_i)
$$

\n
$$
= \sum_j \omega_{ji}^g(e_k)c_{ba}(e_j) + (c(e_i)\omega(e_k))_{ba} - (\omega(e_k)c(e_i))_{ba}
$$

\n
$$
= \sum_j \omega_{ji}^g(e_k)c_{ba}(e_j) - [\omega(e_k), c(e_i)]_{ba}
$$

Since the matrix coefficients $c_{ba}(e_i)$ are constant over U for suitable frames, we conclude the connection matrices for a compatible connection must satisfy the relation:

$$
\sum_{j} \omega_{ij}^{g}(e_k)C(e_j) + [\omega(e_k), C(e_i)] = 0, \quad \text{ for all } i, k.
$$

We claim that a *solution* to this system is given by the matrices:

$$
\omega^{s}(e_k) = \frac{1}{4} \sum_{l,m} \omega^{g}_{ml}(e_k) C(e_l) C(e_m).
$$

First, an easy calculation verifies these matrices are indeed skew-hermitian (exercise.)

Now compute, for $i \neq k$:

$$
\omega^{s}(e_{k})C(e_{i}) - C(e_{i})\omega^{s}(e_{k}) = \frac{1}{4} \sum_{l,m} \omega_{ml}^{g}(e_{k}) [C(e_{l})C(e_{m})C(e_{i}) - C(e_{i})C(e_{l})C(e_{m})]
$$

\n
$$
= \frac{1}{4} \sum_{l,m} \omega_{ml}^{g}(e_{k}) [-C(e_{l})C(e_{i})C(e_{m}) - 2\delta_{im}C(e_{l}) - (-C(e_{l})C(e_{i})C(e_{m}) - 2\delta_{il}C(e_{m}))]
$$

\n
$$
= \frac{1}{2} \sum_{l,m} \omega_{ml}^{g}(e_{k}) [-\delta_{im}C(e_{l}) + \delta_{il}C(e_{m})]
$$

\n
$$
= \frac{1}{2} (-\sum_{l} \omega_{il}^{g}(e_{k})C(e_{l}) + \sum_{m} \omega_{mi}^{g}(e_{k})C(e_{m})) = \sum_{i,l} \omega_{li}^{g}(e_{k})C(e_{l})
$$

Thus we see that, for all i, k :

$$
[\omega^s(e_k), C(e_i)] = \sum_{ij} \omega_{ij}^g(e_k) C(e_i).
$$

And therefore we indeed have:

$$
\sum_j \omega_{ij}^g(e_k)C(e_j) + [\omega(e_k), C(e_i)] = \sum_j (\omega_{ij}^g(e_k) + \omega_{ji}^g(e_k))C(e_j) = 0.
$$

Remark/exercise. Recall (from Riemannian geometry) that connection 1 forms ω_{ij} associated to local frames (as well as the associated curvature 2-forms Ω_{ij}) must satisfy a compatibility condition under change of frames, if they are to define connections on Riemannian vector bundles. For the Levi-Civita connection on TX :

$$
e_i = \sum_j e'_j g_{ji}, \quad g(x) = (g_{ij}(x)) \in SO_n \Rightarrow \omega^{LC} = g^t \omega'^{LC} g + g^t dg, \quad \Omega^{LC} = g^t \Omega'^{LC} g.
$$

And similarly for the hermitian complex vector bundle W:

$$
s_a = \sum_b \tilde{s}_b u_{ba}, \quad U(x) = (u_{ab}(x)) \in U_N \Rightarrow \omega = U^{\dagger} \tilde{\omega} U + U^{\dagger} dU, \quad \Omega = U^{\dagger} \tilde{\Omega} U.
$$

So, strictly speaking, we need to verify that the connection 1-forms ω^s defined above satisfy this compatibility condition under change of frames, given that the ω^{LC} do.

Perhaps this follows directly from the condition found at the outset, connecting the ω^{LC} and the ω^s . Also, observe that if both pairs of frames (e, s) and (e', \tilde{s}) are to be 'suitable' (as defined earlier), there should be a condition connecting the change of frame maps g and U . Can you find it?

Perhaps it is (check!):

$$
dU(e_k)C(e_l)U^{\dagger} + UC(e_l)dU^{\dagger}(e_k) + \sum_i (g^tdg)_{li}(e_k)UC(e_i)U^{\dagger} = 0 \quad \forall k,l.
$$

(There may be a geometric way to understand this constraint.)

Exercise. Use the constraint found above to establish that if the connection 1-forms $\omega = (\omega_{ab}) \in \Lambda_U^1 \otimes \mathfrak{u}_N$ (referring to suitable frames (e_i) , (s_a) for TX and W) satisfy the equation for compatibility of the connection, then changing to another set (e'_i) , (\tilde{s}_a) of suitable frames (as described above) yields new connection 1-forms $\tilde{\omega}$ which still satisfy the compatibility condition (with respect to the Levi-Civita connection on Cl(X), corresponding to 1-forms ω_{ij}^{LC} , ω'_{ij}^{LC} in the frames (e_i) , (e'_i) respectively.)