The Inner Product on CI(V] g) and the Adjoint
Action

(a) The inner product g on V induces an inner product on A*(V'), defined
by declaring {e;}z, as an orthonormal basis of A?(V) if (e;) is an orthonormal
basis of V', and AP(V) L A9(V) for p # ¢. Via the vector space isomorphism
Cl(V)) =2 A*(V), this induces an inner product on CI(V').

Unit vectors e € V act as isometries of C1(V') under Clifford multiplication:

e dye-t) = (6,0) ifecV, =1 (say ¢,v € A"(V))
To see this, recall e - ¢ corresponds to e A ¢ — i.p € APTL 4 AP~1 Thus:

(e-¢,e-9) =(eNd,e NY) + (i), i)

= (d,ic(e A1) + (e A (ic®)) = (¢, %)

(b) The same is true under right Clifford multiplication:

(¢-ev-e)=(0,9) ifecV, |ef=1 (say ¢, € AP(V)).
Just recall e - ¢ corresponds to (—1)*(e A9 +i.1)) if ¢» € AP. Thus:

<¢'€,¢'€> = <€/\¢,€/\¢>+<ie¢7ie¢> = <¢aw>

(¢)Thus, the inner product (-, -} is also preserved by the adjoint action. Recall
the definition:

Let C1* (V) be the group of units in C1(V) — elements admitting two-sided
inverses (e.g., any nonzero v € V, since v~! = —#)

Define:

Ad(W)p =1 -¢- 97! (v eCUV), ¢ € CI(V)).
Then if e € V, |e| = 1, we have:

(Ad(e)o, Ad(e)y) = (epe™ " eppe™) = (¢,9)),
using (a) and (b) above.



Iterating, this is also true for the subgroup Pin(V) C C1”* (V) generated by
unit vectors e € V under Clifford multiplication.

(Ad(Y)p1, Ad()p2) = (b1, 92) Vo1,¢2 € CI(V), ¢ € Pin(V).

(d) Consider a smooth curve v(t) in CI*(V) such that 4 (0) = 1. Assume
Ad(¥(t)) acts as an isometry. Differentiating:

(Ad(y(t), Ad(p(t)C) = (¢,C)  Vt,

we find:

d

= %t:OW(t)-M(t)’l,w(t)-<~w(t)’1> = (' (0)-¢—¢-1'(0), {)+(e, ¥ (0)-¢—(-4'(0))

= ([/(0), ], ¢) + (¢, [¢(0),<])

The ‘little ad map’ ady, is defined as the derivation of C1(V') given by the algebra
commutator:

ady¢ = [, ] =1 - ¢ — ¢ - ¢ for 4, ¢ € CI(V).
It is easy to show from the definition that for ¢ € C1(V), ady acts on CL(V') by
algebra derivations:
adg (Y1 - ¥2) = (adpti) - Y2 + 91 - (adgip2)

We conclude that if ¢(t) is an isometry for all ¢ and ¢(0) = 1, then ad(¢'(0))
is skew-adjoint:
(adyr0y9, ) + (¢, ady y¢) =0
In particular, this is true if ¢ (¢) € Pin(V) for all ¢t and ¢(0) = 1.

Ezample: For (e;) an orthonormal basis of V' and i # j, consider the curve:
P(t) = (coste; +sinte;) - (—coste; +sinte;)

W(t) € Spin(V) = Pin(V) N CIT(V), since it is the Clifford product of two unit
vectors; ¥(0) = 1 and ¥'(0) = e; - (—e;j) + e -e; = 2-¢; - e;. Thus, ade,e; is
skew-adjoint on CI1(V).

(e) Lemma. Let v € V C Cl(V), v # 0 (assume |v]| = 1, so v~! = —v).
Then Ad, (V) =V. In fact:

—Ad,(w) =w —2{(v,w)v = R,(w), YweV

(R, (w) is the reflection of w on the hyperplane v)
Proof:
—Ady(w)=—v-w-v =v-w-v=—v-v-w—2v,wv=w—2{v,wv



(Note that, indeed, R, € O(V)).
Remark: In contrast, ad, does not preserve V if v £ 0: If v L w,

ady(w) =v-w—w-v=2v w,

which corresponds to 2(v A w — (v, w)) = 2v Aw € A%(V).

(f) Denote by so(V') the space of skew-adjoint transformations of V, that is,
the Lie algebra of SO(V). We have the important isomoprhism:

AV = 50(V),

made explicit by assigning to u A v € A%V the skew-symmetric endomorphism
of V:
(u A v)w = (u,whyv — (v, w)u.

(Note this maps u to v and v to —u, if u, v are orthogonal unit vectors in V.)
Example/exercise: Consider u(t),v(t) curves on the unit sphere of V:
(g) P ; P
u(t)|| = ||lv(t)|| =1 for all t. Assume u(0) = v(0) = p. Let:
[u@)[| = flv(®)]l P
Y(t) = Ady(r) © Ad(u(r)) = Ru) © Ruge)s

a composition of two reflections, hence in SO(V'). Note ¥(0) = Idy, so ¢'(0) €
Skewsymm (V') = so(V'), the Lie algebra of SO(V'). Prove that:

(0w = (pA (u'(0) = v'(0))w.

(h) In the example in (d) above, we saw that if (e;) is an orthonormal basis
of V and i # j, then ad,,., is an element of so(V'). The following important
lemma identifies the element of A2V corresponding to it under the isomorphism
described in (f):

Lemma. We have:
ade,e; (v) = 2(e; A ej),

as elements of so(V). (In particular, ade,., maps V to V.)
Proof: Let ve V.

adeiej(v):ei'ej'v_v'ei‘ej'

= —€; V- Gj — 2<U7 6j>61' — (762' U Bj — 2<’U, €i>6j)

=2((v,ei)ej — (v, e5)€;) = 2(ei A ej)(v)



Action of ade,., on AP(V') ((e;) orthonormal basis of V).

i€j
Since ade,, preserves V and acts as a derivation of CI(V), it also preserves
APV | for each p:

ade,e, (e, Av-Aei) = ey Ave-Aade,ne,(€3,) A Aey,
k

Note that e; Ae; € s0(V) takes e; — ej, e; — —e;, and all other e — 0.

Thus, adc,¢,(er) is nonzero only if exactly one of i, j is in the multi-index
Iel,

Using this, it’s not hard to show (exercise):

Lemma: If ad.,., (¢) = 0 for all 4, j (where ¢ € APV withp =1,2,...,n—1),
then ¢ = 0.

(The dimension restriction on ¢ is necessary.

Note, for instance, ade,¢; (e1 A--- Aey) = 0 for all 4, j).



