
The Inner Product on Cl(V, g) and the Adjoint

Action

(a) The inner product g on V induces an inner product on Λ∗(V ), defined
by declaring {eI}Ip

as an orthonormal basis of Λp(V ) if (ei) is an orthonormal
basis of V , and Λp(V ) ⊥ Λq(V ) for p ̸= q. Via the vector space isomorphism
Cl(V ) ∼= Λ∗(V ), this induces an inner product on Cl(V ).

Unit vectors e ∈ V act as isometries of Cl(V ) under Clifford multiplication:

⟨e · ϕ, e · ψ⟩ = ⟨ϕ, ψ⟩ if e ∈ V, |e|2 = 1 (say ϕ, ψ ∈ Λp(V ))

To see this, recall e · ϕ corresponds to e ∧ ϕ− ieϕ ∈ Λp+1 + Λp−1. Thus:

⟨e · ϕ, e · ψ⟩ = ⟨e ∧ ϕ, e ∧ ψ⟩+ ⟨ieϕ, ieψ⟩

= ⟨ϕ, ie(e ∧ ψ)⟩+ ⟨ψ, e ∧ (ieϕ)⟩ = ⟨ϕ, ψ⟩

(b) The same is true under right Clifford multiplication:

⟨ϕ · e, ψ · e⟩ = ⟨ϕ, ψ⟩ if e ∈ V, |e|2 = 1 (say ϕ, ψ ∈ Λp(V )).

Just recall e · ψ corresponds to (−1)k(e ∧ ψ + ieψ) if ψ ∈ Λp. Thus:

⟨ϕ · e, ψ · e⟩ = ⟨e ∧ ϕ, e ∧ ψ⟩+ ⟨ieϕ, ieψ⟩ = ⟨ϕ, ψ⟩

(c)Thus, the inner product ⟨·, ·⟩ is also preserved by the adjoint action. Recall
the definition:

Let Cl×(V ) be the group of units in Cl(V ) — elements admitting two-sided
inverses (e.g., any nonzero v ∈ V , since v−1 = − v

|v|2 ).

Define:

Ad(ψ)ϕ = ψ · ϕ · ψ−1 (ψ ∈ Cl(V ), ϕ ∈ Cl∗(V )).

Then if e ∈ V , |e| = 1, we have:

⟨Ad(e)ϕ,Ad(e)ψ⟩ = ⟨eϕe−1, eψe−1⟩ = ⟨ϕ, ψ⟩,

using (a) and (b) above.
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Iterating, this is also true for the subgroup Pin(V ) ⊂ Cl×(V ) generated by
unit vectors e ∈ V under Clifford multiplication.

⟨Ad(ψ)ϕ1,Ad(ψ)ϕ2⟩ = ⟨ϕ1, ϕ2⟩ ∀ϕ1, ϕ2 ∈ Cl(V ), ψ ∈ Pin(V ).

(d) Consider a smooth curve ψ(t) in Cl×(V ) such that ψ(0) = 1. Assume
Ad(ψ(t)) acts as an isometry. Differentiating:

⟨Ad(ψ(t)ϕ,Ad(ψ(t)ζ⟩ ≡ ⟨ϕ, ζ⟩ ∀t,

we find:

0 =
d

dt |t=0
⟨ψ(t)·ϕ·ψ(t)−1, ψ(t)·ζ·ψ(t)−1⟩ = ⟨ψ′(0)·ϕ−ϕ·ψ′(0), ζ⟩+⟨ϕ, ψ′(0)·ζ−ζ·ψ̇′(0)⟩

= ⟨[ψ′(0), ϕ], ζ⟩+ ⟨ϕ, [ψ′(0), ζ]⟩

The ‘little ad map’ adψ is defined as the derivation of Cl(V ) given by the algebra
commutator:

adψϕ = [ψ, ϕ] = ψ · ϕ− ϕ · ψ for ψ, ϕ ∈ Cl(V ).

It is easy to show from the definition that for ϕ ∈ Cl(V ), adϕ acts on Cl(V ) by
algebra derivations:

adϕ(ψ1 · ψ2) = (adϕψ1) · ψ2 + ψ1 · (adϕψ2)

We conclude that if ψ(t) is an isometry for all t and ψ(0) = 1, then ad(ψ′(0))
is skew-adjoint:

⟨adψ′(0)ϕ, ζ⟩+ ⟨ϕ, adψ′(0)ζ⟩ = 0

In particular, this is true if ψ(t) ∈ Pin(V ) for all t and ψ(0) = 1.

Example: For (ei) an orthonormal basis of V and i ̸= j, consider the curve:

ψ(t) = (cos t ei + sin t ej) · (− cos t ei + sin t ej)

Ψ(t) ∈ Spin(V ) = Pin(V ) ∩ Cl+(V ), since it is the Clifford product of two unit
vectors; ψ(0) = 1 and ψ′(0) = ei · (−ej) + ej · ei = 2 · ei · ej . Thus, adeiej is
skew-adjoint on Cl(V ).

(e) Lemma. Let v ∈ V ⊂ Cl(V ), v ̸= 0 (assume ∥v∥ = 1, so v−1 = −v).
Then Adv(V ) = V . In fact:

−Adv(w) = w − 2⟨v, w⟩v = Rv(w), ∀w ∈ V

(Rv(w) is the reflection of w on the hyperplane v⊥)
Proof:

−Adv(w) = −v · w · v−1 = v · w · v = −v · v · w − 2⟨v, w⟩v = w − 2⟨v, w⟩v
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(Note that, indeed, Rv ∈ O(V )).
Remark: In contrast, adv does not preserve V if v ̸= 0: If v ⊥ w,

adv(w) = v · w − w · v = 2v · w,

which corresponds to 2(v ∧ w − ⟨v, w⟩) = 2v ∧ w ∈ Λ2(V ).

(f) Denote by so(V ) the space of skew-adjoint transformations of V , that is,
the Lie algebra of SO(V ). We have the important isomoprhism:

Λ2V ∼= so(V ),

made explicit by assigning to u ∧ v ∈ Λ2V the skew-symmetric endomorphism
of V :

(u ∧ v)w = ⟨u,w⟩v − ⟨v, w⟩u.

(Note this maps u to v and v to −u, if u, v are orthogonal unit vectors in V .)

(g) Example/exercise: Consider u(t), v(t) curves on the unit sphere of V :
∥u(t)∥ = ∥v(t)∥ = 1 for all t. Assume u(0) = v(0) = p. Let:

ψ(t) = Adv(t) ◦Ad(u(t)) = Rv(t) ◦Ru(t),

a composition of two reflections, hence in SO(V ). Note ψ(0) = IdV , so ψ
′(0) ∈

Skewsymm(V ) = so(V ), the Lie algebra of SO(V ). Prove that:

ψ′(0)w = (p ∧ (u′(0)− v′(0)))w.

(h) In the example in (d) above, we saw that if (ei) is an orthonormal basis
of V and i ̸= j, then adeiej is an element of so(V ). The following important
lemma identifies the element of Λ2V corresponding to it under the isomorphism
described in (f):

Lemma. We have:
adeiej (v) = 2(ei ∧ ej),

as elements of so(V ). (In particular, adeiej maps V to V .)
Proof: Let v ∈ V .

adeiej (v) = ei · ej · v − v · ei · ej

= −ei · v · ej − 2⟨v, ej⟩ei − (−ei · v · ej − 2⟨v, ei⟩ej)

= 2 (⟨v, ei⟩ej − ⟨v, ej⟩ei) = 2(ei ∧ ej)(v)
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Action of adeiej on Λp(V ) ((ei) orthonormal basis of V ).

Since adeiej preserves V and acts as a derivation of Cl(V ), it also preserves
ΛpV , for each p:

adeiej (ei1 ∧ · · · ∧ eik) =
∑
k

ei1 ∧ · · · ∧ adei∧ej (eik) ∧ · · · ∧ eik

Note that ei ∧ ej ∈ so(V ) takes ei 7→ ej , ej 7→ −ei, and all other ek 7→ 0.
Thus, adeiej (eI) is nonzero only if exactly one of i, j is in the multi-index

I ∈ Ip.
Using this, it’s not hard to show (exercise):

Lemma: If adeiej (ϕ) = 0 for all i, j (where ϕ ∈ ΛpV with p = 1, 2, . . . , n−1),
then ϕ = 0.

(The dimension restriction on ϕ is necessary.
Note, for instance, adeiej (e1 ∧ · · · ∧ en) = 0 for all i, j).
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