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Proposition 2.29: Z2 is the only nontrivial group that can act freely on Sn if n is even,
[p. 135, Hatcher].

An action of a group G on a space X is a homomorphism from G to the group
Homeo(X) of homeomorphisms X → X, and the action is free if the homeomorphism corre-
sponding to each nontrivial element of G has no fixed points. In the case of Sn, the antipodal
map x 7→ −x generates a free action of Z2 on Sn.

For a map f : Sn → Sn with n > 0, the induced map f∗ : H̃n(S
n) → H̃n(S

n) is a home-
omorphism from an infinite cyclic group to itself and so must be of the form f∗(α) = dα,
where α is the generator of H̃n(S

n), for some integer d depending only on f . The integer d
is called the degree of f with notation deg f .

Some properties of the degree used in the proof :

(a) deg 1 = 1 since 1∗ = 1, where 1 is the identity on Sn.

(c) If f ≃ g, then deg f = deg g since f∗ = g∗. The converse statement, that f ≃ g if
deg f = deg g, is a fundamental theorem from Hopf (1925) proven in Corollary 4.25
(Hatcher).

(d) deg fg = deg f deg g since f∗g∗ = (fg)∗. As a consequence, deg f = ±1 if f is a
homotopy equivalence since fg = 1 implies deg f deg g = deg 1 = 1.

(e) deg f = −1 if f is a reflection of Sn fixing the points in a subsphere Sn−1 and in-
terchanging the two complimentary hemispheres. For we can give Sn a ∆-complex
structure with these two hemispheres as its two n-simplices ∆n

1 and ∆n
2 and the n-

chain ∆n
1 −∆n

2 represents a generator of Hn(S
n) so the reflection interchanging ∆n

1 and
∆n

2 sends this generator to its negative.

(f) The antipodal map −1 : Sn → Sn, x 7→ x has degree (−1)n+1 since it is a composition
of n+ 1 reflections, each changing the sign of one coordinate in Rn+1.

(g) If f : Sn → Sn has no fixed points, then deg f = (−1)n+1 since for f(x) ̸= x, the line
segment from f(x) to −x defined by t 7→ (1− t)f(x)− tx for 0 ≤ t ≤ 1 does not pass
through the origin, and so, if f has no fixed points, the formula

ft(x) =
(1− t)f(x)− tx

|(1− t)f(x)− tx|
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defines a homotopy ft : S
n × I → Sn from f to the antipodal map.

Proof of Proposition 2.29: Since homeomorphisms have degree ±1 by (d), an action of a
group G on Sn determines a degree function d : G → {±1}. This is a homomorphism since
deg(fg) = deg f deg g.

If the action is free, each nontrivial element of G is sent to some homeomorphism
f : Sn → Sn with no fixed points and so by (g), deg f = (−1)n+1. Thus, when n is
even, ker d = {1G}, and so, G = Z2.

Theorem 2B.3: If a subspace X of Rn is homeomorphic to an open set in Rn, then X
itself is open in Rn, [p. 172, Hatcher].

Corollary 2B.4: If M is a compact n-manifold and N is a connected n-manifold, then an
embedding M ↪→ N must be surjective, [p. 172, Hatcher].

Theorem 2B.5: R and C are the only finite dimensional division algebras over R which
are commutative and have an identity, [p. 173 Hatcher].

An algebra structure on Rn is simply a bilinear multiplication map Rn × Rn → Rn,
(a, b) 7→ ab. Thus the product satisfies left and right distributivity

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

and scalar associativity
α(ab) = (αa)b = a(αb), ∀α ∈ R.

Commutativity, full associativity, and an identity element are not assumed.

An algebra is a division algebra if the equations ax = b and xa = b are always solvable
whenever a ̸= 0. These are linear maps Rn → Rn so surjectivity is equivalent to having
trivial kernel, meaning there are no (nonzero) zero-divisors.

The four classical examples are R, C, the quaternions H, and the octonions O. Frobenius
(1877) proved that R, C, and H are the only finite dimensional associative division algebras
over R, and Hurwitz (1898) proved that R, C, H, and O are the only finite dimensional di-
vison algebras over R with a product satisfying |ab| = |a||b|, i.e. the only finite dimensional
normed division algebras over R.

Proof of Theorem 2B.5: Suppose Rn has a commutative division algebra structure. Let

f : Sn−1 → Sn−1 be defined by f(x) =
x2

|x2|
. This is well-defined since x ̸= 0 implies

that x2 ̸= 0 in a division algebra. This map is continuous since the multiplication map
Rn × Rn → Rn is bilinear (hence continuous). Since f(−x) = f(x) for all x, f induces a
quotient map f̄ : RPn−1 → Sn−1.
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For x, y ∈ Sn−1, f(x) = f(y) implies x2 = α2y2 for α =

(
|x2|
|y2|

)1/2

> 0.

Thus, x2 − α2y2 = 0 and (x+ αy)(x− αy) = 0 using commutativity and the fact that α
is a real scalar (scalar associativity).

Since there are no (nonzero) zero-divisors, x = ±αy, and since x, y are unit vectors and
α is real, x = ±y. So, x and y determine the same point of RPn−1 and so f̄ is injective.

Since f̄ is continuous injective and RPn−1, Sn−1 are compact Hausdorff spaces, f̄ is a
closed continuous injective map and hence is a homeomorphism onto its image.

f̄ must also be surjective if n > 1 by Corollary 2B.4. Thus, we have a homeomorphism
RPn−1 ∼= Sn−1, and so n = 2 since otherwise RPn−1 and Sn−1 have different fundamental
groups and different homology groups when n > 2.

If n = 1, then RP0 ∼= S0 since RP0 is th set of lines that pass through the origin in R0+1,
which is only R itself, and S0 = {1}.

Thus, the only finite dimensional commutative division algebras over R with identity are
either dimension 1 or 2.

It remains to show that a 2-dimensional commutative division algebra A with identity is
isomorphic to C, which only requires some elementary algebra. Let j ∈ A such that j ̸= α1
for any α ∈ R, 1 being the identity in A.

Then, j2 = a+ bj for some a, b ∈ R since A is 2-dimensional over R and 1, j are linearly

independent. Thus,
(
j − b

2

)2
= a + b2

4
so by rechoosing j, we can assume j2 = a ∈ R. If

a ≥ 0, say a = c2 for c ∈ R. So,

j2 = c2 ⇒ (j + c)(j − c) = 0 ⇒ j = ±c,

but this contradicts our choice of j such that j ̸= α1 for all α ∈ R. So, j2 = −c2, and by
rescaling j, we may assume j2 = −1. So, A ∼= C.
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