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Proposition 2.29: Z, is the only nontrivial group that can act freely on S™ if n is even,
[p. 135, Hatcher].

An action of a group G on a space X is a homomorphism from G to the group
Homeo(X) of homeomorphisms X — X, and the action is free if the homeomorphism corre-
sponding to each nontrivial element of G has no fixed points. In the case of S™, the antipodal
map x — —x generates a free action of Zy on S™.

For a map f : S™ — S” with n > 0, the induced map f, : H,(S") — H,(S™) is a home-
omorphism from an infinite cyclic group to itself and so must be of the form f,(«a) = da,
where « is the generator of f[n(S”), for some integer d depending only on f. The integer d
is called the degree of f with notation deg f.

Some properties of the degree used in the proof:
(a) deg1 =1 since 1, = 1, where 1 is the identity on S™.

(c) If f ~ g, then deg f = degg since f. = g.. The converse statement, that f ~ g if
deg f = degg, is a fundamental theorem from Hopf (1925) proven in Corollary 4.25
(Hatcher).

(d) deg fg = deg fdegg since f.g. = (fg)s. As a consequence, deg f = +1 if f is a
homotopy equivalence since fg = 1 implies deg f degg = degl = 1.

(e) deg f = —1 if f is a reflection of S™ fixing the points in a subsphere S™~! and in-
terchanging the two complimentary hemispheres. For we can give S™ a A-complex
structure with these two hemispheres as its two n-simplices A} and A} and the n-
chain A} — Al represents a generator of H,(S™) so the reflection interchanging A and
Al sends this generator to its negative.

(f) The antipodal map —1 : S™ — S™ x + z has degree (—1)""! since it is a composition
of n + 1 reflections, each changing the sign of one coordinate in R"**.

(g) If f:S™ — S™ has no fixed points, then deg f = (—1)""! since for f(z) # z, the line
segment from f(x) to —x defined by ¢t — (1 —t)f(x) — tz for 0 < ¢ < 1 does not pass
through the origin, and so, if f has no fixed points, the formula

(1—0)f(x) — ta
(1= 0)f() - ta]

1

fi(x) =




defines a homotopy f; : S x I — S™ from f to the antipodal map.

Proof of Proposition 2.29: Since homeomorphisms have degree +1 by (d), an action of a
group G on S™ determines a degree function d : G — {#1}. This is a homomorphism since

deg(fg) = deg f degg.

If the action is free, each nontrivial element of GG is sent to some homeomorphism
f 8" — 8" with no fixed points and so by (g), degf = (—1)"*!. Thus, when n is
even, kerd = {15}, and so, G = Z,. O

Theorem 2B.3: If a subspace X of R™ is homeomorphic to an open set in R"™, then X
itself is open in R™, [p. 172, Hatcher].

Corollary 2B.4: If M is a compact n-manifold and N is a connected n-manifold, then an
embedding M — N must be surjective, [p. 172, Hatcher].

Theorem 2B.5: R and C are the only finite dimensional division algebras over R which
are commutative and have an identity, [p. 173 Hatcher].

An algebra structure on R” is simply a bilinear multiplication map R"™ x R* — R",
(a,b) — ab. Thus the product satisfies left and right distributivity

a(b+c¢)=ab+ac, (a+b)c=ac+ b,

and scalar associativity
al(ab) = (wa)b = a(abd), Yo € R.

Commutativity, full associativity, and an identity element are not assumed.

An algebra is a division algebra if the equations ax = b and xa = b are always solvable
whenever a # 0. These are linear maps R" — R" so surjectivity is equivalent to having
trivial kernel, meaning there are no (nonzero) zero-divisors.

The four classical examples are R, C, the quaternions H, and the octonions Q. Frobenius
(1877) proved that R, C, and H are the only finite dimensional associative division algebras
over R, and Hurwitz (1898) proved that R, C, H, and O are the only finite dimensional di-
vison algebras over R with a product satisfying |ab| = |a|[b], i.e. the only finite dimensional
normed division algebras over R.

Proof of Theorem 2B.5: Suppose R"™ has a commutative division algebra structure. Let
2
f St — S™! be defined by f(z) = =
x
that 22 # 0 in a division algebra. This map is continuous since the multiplication map
R™ x R" — R" is bilinear (hence continuous). Since f(—z) = f(z) for all x, f induces a
quotient map f : RP"™' — g1,

This is well-defined since x # 0 implies



[y
Thus, 22 — o?y? = 0 and (2 + ay)(z — ay) = 0 using commutativity and the fact that o
is a real scalar (scalar associativity).

1/2
ZCQ
For z, y € 5", f(z) = f(y) implies 2? = a®y” for o = (l |> > 0.

Since there are no (nonzero) zero-divisors, © = +ay, and since z, y are unit vectors and
o is real, = +y. So, z and y determine the same point of RP" ! and so f is injective.

Since f is continuous injective and RP" !, S*~1 are compact Hausdorff spaces, f is a
closed continuous injective map and hence is a homeomorphism onto its image.

f must also be surjective if n > 1 by Corollary 2B.4. Thus, we have a homeomorphism
RP" ! = 871 and so n = 2 since otherwise RP" ™' and S™! have different fundamental
groups and different homology groups when n > 2.

If n =1, then RP? 22 S since RP' is th set of lines that pass through the origin in RO+,
which is only R itself, and S° = {1}.

Thus, the only finite dimensional commutative division algebras over R with identity are
either dimension 1 or 2.

It remains to show that a 2-dimensional commutative division algebra A with identity is
isomorphic to C, which only requires some elementary algebra. Let j € A such that j # al
for any o € R, 1 being the identity in A.

Then, j2 = a + bj for some a, b € R since A is 2-dimensional over R and 1, j are linearly
independent. Thus, (j — 3)2 =a+ % so by rechoosing j, we can assume j? = a € R. If
a >0, say a = c? for c € R. So,

PP==G+e)(j—c)=0=j==c

but this contradicts our choice of j such that j # al for all & € R. So, j2 = —¢?, and by
rescaling j, we may assume j2 = —1. So, A = C. O



