Prop 2.29, Thm 2B.5 in Hatcher

Betsy Downs

15th November 2021

Proposition 2.29: \mathbb{Z}_2 is the only nontrivial group that can act freely on S^n if n is even, [p. 135, Hatcher].

An action of a group G on a space X is a homomorphism from G to the group Homeo(X) of homeomorphisms $X \to X$, and the action is **free** if the homeomorphism corresponding to each nontrivial element of G has no fixed points. In the case of S^n , the antipodal map $x \mapsto -x$ generates a free action of \mathbb{Z}_2 on S^n .

For a map $f: S^n \to S^n$ with n > 0, the induced map $f_*: \tilde{H}_n(S^n) \to \tilde{H}_n(S^n)$ is a homeomorphism from an infinite cyclic group to itself and so must be of the form $f_*(\alpha) = d\alpha$, where α is the generator of $\tilde{H}_n(S^n)$, for some integer d depending only on f. The integer dis called the **degree** of f with notation deg f.

Some properties of the degree used in the proof:

- (a) deg 1 = 1 since $1_* = 1$, where 1 is the identity on S^n .
- (c) If $f \simeq g$, then deg $f = \deg g$ since $f_* = g_*$. The converse statement, that $f \simeq g$ if deg $f = \deg g$, is a fundamental theorem from Hopf (1925) proven in Corollary 4.25 (Hatcher).
- (d) deg fg = deg f deg g since $f_*g_* = (fg)_*$. As a consequence, deg $f = \pm 1$ if f is a homotopy equivalence since $fg = \mathbb{1}$ implies deg $f \text{ deg } g = \text{deg } \mathbb{1} = 1$.
- (e) deg f = -1 if f is a reflection of S^n fixing the points in a subsphere S^{n-1} and interchanging the two complementary hemispheres. For we can give S^n a Δ -complex structure with these two hemispheres as its two *n*-simplices Δ_1^n and Δ_2^n and the *n*-chain $\Delta_1^n \Delta_2^n$ represents a generator of $H_n(S^n)$ so the reflection interchanging Δ_1^n and Δ_2^n sends this generator to its negative.
- (f) The antipodal map $-1: S^n \to S^n, x \mapsto x$ has degree $(-1)^{n+1}$ since it is a composition of n+1 reflections, each changing the sign of one coordinate in \mathbb{R}^{n+1} .
- (g) If $f: S^n \to S^n$ has no fixed points, then deg $f = (-1)^{n+1}$ since for $f(x) \neq x$, the line segment from f(x) to -x defined by $t \mapsto (1-t)f(x) tx$ for $0 \leq t \leq 1$ does not pass through the origin, and so, if f has no fixed points, the formula

$$f_t(x) = \frac{(1-t)f(x) - tx}{|(1-t)f(x) - tx|}$$

defines a homotopy $f_t: S^n \times I \to S^n$ from f to the antipodal map.

Proof of Proposition 2.29: Since homeomorphisms have degree ± 1 by (d), an action of a group G on S^n determines a degree function $d: G \to {\pm 1}$. This is a homomorphism since $\deg(fg) = \deg f \deg g$.

If the action is free, each nontrivial element of G is sent to some homeomorphism $f: S^n \to S^n$ with no fixed points and so by (g), deg $f = (-1)^{n+1}$. Thus, when n is even, ker $d = \{1_G\}$, and so, $G = \mathbb{Z}_2$.

Theorem 2B.3: If a subspace X of \mathbb{R}^n is homeomorphic to an open set in \mathbb{R}^n , then X itself is open in \mathbb{R}^n , [p. 172, Hatcher].

Corollary 2B.4: If M is a compact n-manifold and N is a connected n-manifold, then an embedding $M \hookrightarrow N$ must be surjective, [p. 172, Hatcher].

Theorem 2B.5: \mathbb{R} and \mathbb{C} are the only finite dimensional division algebras over \mathbb{R} which are commutative and have an identity, [p. 173 Hatcher].

An **algebra** structure on \mathbb{R}^n is simply a bilinear multiplication map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $(a, b) \mapsto ab$. Thus the product satisfies left and right distributivity

$$a(b+c) = ab + ac, \quad (a+b)c = ac + bc,$$

and scalar associativity

$$\alpha(ab) = (\alpha a)b = a(\alpha b), \ \forall \alpha \in \mathbb{R}.$$

Commutativity, full associativity, and an identity element are not assumed.

An algebra is a **division algebra** if the equations ax = b and xa = b are always solvable whenever $a \neq 0$. These are linear maps $\mathbb{R}^n \to \mathbb{R}^n$ so surjectivity is equivalent to having trivial kernel, meaning there are no (nonzero) zero-divisors.

The four classical examples are \mathbb{R} , \mathbb{C} , the quaternions \mathbb{H} , and the octonions \mathbb{O} . Frobenius (1877) proved that \mathbb{R} , \mathbb{C} , and \mathbb{H} are the only finite dimensional associative division algebras over \mathbb{R} , and Hurwitz (1898) proved that \mathbb{R} , \mathbb{C} , \mathbb{H} , and \mathbb{O} are the only finite dimensional division algebras over \mathbb{R} with a product satisfying |ab| = |a||b|, i.e. the only finite dimensional **normed** division algebras over \mathbb{R} .

Proof of Theorem 2B.5: Suppose \mathbb{R}^n has a commutative division algebra structure. Let $f: S^{n-1} \to S^{n-1}$ be defined by $f(x) = \frac{x^2}{|x^2|}$. This is well-defined since $x \neq 0$ implies that $x^2 \neq 0$ in a division algebra. This map is continuous since the multiplication map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is bilinear (hence continuous). Since f(-x) = f(x) for all x, f induces a quotient map $\overline{f}: \mathbb{RP}^{n-1} \to S^{n-1}$.

For
$$x, y \in S^{n-1}$$
, $f(x) = f(y)$ implies $x^2 = \alpha^2 y^2$ for $\alpha = \left(\frac{|x^2|}{|y^2|}\right)^{1/2} > 0$.

Thus, $x^2 - \alpha^2 y^2 = 0$ and $(x + \alpha y)(x - \alpha y) = 0$ using commutativity and the fact that α is a real scalar (scalar associativity).

Since there are no (nonzero) zero-divisors, $x = \pm \alpha y$, and since x, y are unit vectors and α is real, $x = \pm y$. So, x and y determine the same point of \mathbb{RP}^{n-1} and so \overline{f} is injective.

Since \bar{f} is continuous injective and \mathbb{RP}^{n-1} , S^{n-1} are compact Hausdorff spaces, \bar{f} is a closed continuous injective map and hence is a homeomorphism onto its image.

 \overline{f} must also be surjective if n > 1 by **Corollary 2B.4**. Thus, we have a homeomorphism $\mathbb{RP}^{n-1} \cong S^{n-1}$, and so n = 2 since otherwise \mathbb{RP}^{n-1} and S^{n-1} have different fundamental groups and different homology groups when n > 2.

If n = 1, then $\mathbb{RP}^0 \cong S^0$ since \mathbb{RP}^0 is the set of lines that pass through the origin in \mathbb{R}^{0+1} , which is only \mathbb{R} itself, and $S^0 = \{1\}$.

Thus, the only finite dimensional commutative division algebras over \mathbb{R} with identity are either dimension 1 or 2.

It remains to show that a 2-dimensional commutative division algebra A with identity is isomorphic to \mathbb{C} , which only requires some elementary algebra. Let $j \in A$ such that $j \neq \alpha 1$ for any $\alpha \in \mathbb{R}$, 1 being the identity in A.

Then, $j^2 = a + bj$ for some $a, b \in \mathbb{R}$ since A is 2-dimensional over \mathbb{R} and 1, j are linearly independent. Thus, $(j - \frac{b}{2})^2 = a + \frac{b^2}{4}$ so by rechoosing j, we can assume $j^2 = a \in \mathbb{R}$. If $a \ge 0$, say $a = c^2$ for $c \in \mathbb{R}$. So,

$$j^2 = c^2 \Rightarrow (j+c)(j-c) = 0 \Rightarrow j = \pm c,$$

but this contradicts our choice of j such that $j \neq \alpha 1$ for all $\alpha \in \mathbb{R}$. So, $j^2 = -c^2$, and by rescaling j, we may assume $j^2 = -1$. So, $A \cong \mathbb{C}$.