MORSE THEORY NOTES

PATRICK GILLESPIE

The main resource for this set of notes is Hirsch’s Differential Topology, with
only minor modifications made to several of the main proofs. Other resources used
include Milnor’s Morse Theory and Guillemin and Pollack’s Differential Topology.

1. MORSE FUNCTIONS

Recall that a point = € M is a regular point of a smooth map f: M — N if the
derivative of f at x, df, : Ty M — T}, N is surjective, i.e. f is a submersion at z.
Otherwise, x is said to be a critical point of f. A point y € N is a regular value of
fif every = € f~1(y) is a regular point. Otherwise, y is a critical value.

Note 1.1. For a real-valued smooth function f : M — R, p is a critical point of f if
and only if df), : T, M — Ty, R = R is the zero map. In terms of local coordinates
(z1,...,2,) for a neighborhood of p, this means that the partial derlvatlves all
vanish at p.

Definition 1.2. If p is a critical point of f : M — R and (x1,...,x,) is a coordinate
system for a neighborhood of p, the Hessian matriz of f at p with respect to the
coordinates (x1,...,x,) is the n X n matrix of second partial derivatives

1y(0) = (525 )).

Lemma 1.3. Let (z1,...,z,) and (y1,-..,Yn) be two coordinates systems for a
critical point p, and let Hy(p) and H} (p) be the Hessians of f with respect to these
coordinate systems respectively. If

10) = (50))

is the Jacobian matriz of the coordinate transformation from (y1,...,Yyn) to (x1,...,2,)
then

Hj(p) = J(p)" Hs(p)J (p).
Proof. By the chain rule, we have that

of ox;
ayh Z Ox; dyp,’

Hence

9% f "L 0%f Bazl Oz " 0 f Ox;
— —L(p)+
3yh6yk Z Ow;0x; 3% 3yh S 2 Z ox;  dynor ©
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However, by the assumption that p is a critical point of f, all of the terms in the
second sum vanish, i.e.

- 0%f 6% %
8yh8yk axlaxj 0yh ™

().

It follows that
Hj(p) = J(p)" Hy(p)J (p)-
O

Definition 1.4. A critical point p of f : M — R is non-degenerate if the Hessian
matrix of f at p is non-singular with respect to some coordinate system at p.

Remark 1.5. The previous definition is well-defined since if H¢(p) is non-singular
for some coordinate system, Lemma 1.3 implies that Hy(p) is non-singular with
respect to any coordinate system. This follows by the fact that coordinate trans-
formations are diffeomorphisms, hence det J(p) # 0 and so

det H} (p) = det (J ()" H(p)J (p) ) = det J (p) det Hy (p) det J (p)
is nonzero if and only if det Hy(p) is nonzero.

Example 1.6.

Definition 1.7. We say that f: M — R is a Morse function if every critical point
of f is non-degenerate.

Before we continue to study Morse functions, one should check that they in fact
always exist. This is true, and even better, Morse functions are generic. For any
finite dimensional manifold M, Whitney’s embedding theorem ensures that M can
be embedded in RY for N sufficiently large. Let (-,-) denote the standard inner
product on RY, and for any smooth function f : M — R and a € RY, define

fa: M = Rby fo(z) = f(2) + (2,a).

Proposition 1.8. For any smooth function f : M — R, f, is a Morse function
for almost every a € RV,

The proof of the above proposition involves using Sard’s theorem to show it
holds when M is an open subset of R™ and then extending the result to the general
case by taking a countable open cover of M by charts. Details can be found in
Differential Topology by Guillemin and Pollack on page 43.

Definition 1.9. The index of f : M — R at a non-degenerate critical point p is
the number of negative eigenvalues of H(p) and is denoted by Inds(p).
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Being defined in terms of the eigenvalues of the Hessian matrix, we should check
that the index of f at p does not depend on the choice of coordinates. This follows
from Lemma 1.3 and Sylvester’s Law. Recall that two n x n matrices A and B are
similar if there exists an invertible matrix P such that A = PTBP. Sylvester’s
Law states that similar matrices have the same number of negative and positive
eigenvalues. Lemma 1.3 shows that if H}(p) and H(p) are Hessian matrices of f at
p with respect to different coordinate systems, then H} (p) and Hy(p) are similar.
Thus the index of f at p is independent of the choice of coordinates.

Remark 1.10. If we we interpret a Morse function f : M — R as representing a
"height" function on M, then the index of f at a critical point p can be understood
as the number of independent directions for which M curves downward away from
p. Alternatively, this is the number of independent directions for which the sublevel
sets M ={xz € M : f(x) < a} approach the point p as a increases to f(p).

Example 1.11.

Lemma 1.12 (Morse’s Lemma). Let p € M be a non-degenerate critical point of
index k of a smooth function f : M — R. Then there exists a chart (¢,U) at p
such that

k n
Fo M a2, ) = F) =D i+ D vP
=1

i=k+1

Before we can prove Morse’s lemma, we first need the following linear algebra
lemma.

Lemma 1.13. Let A = diag{ay,...,a,} be a diagonal n x n matriz with diagonal
entries £1. Then there exists a neighborhood N of A in the vector space of sym-
metric n X n matrices, and a smooth map P : N — GL(n,R) such that P(A) =1
(the identity matriz) and if P(B) = Q, then QT BQ = A.

Proof. Let B = (b;;) be a symmetric matrix near enough to A so that by, is nonzero
and has the same sign as a;. Consider the linear change of coordinates defined by
x = Ty for which

T = ! (yl_zﬁ?ﬁ_'“_%yn)



4 PATRICK GILLESPIE

A calculation shows that

TTBT =

. B1

0

If B is near enough to A then the symmetric (n — 1) x (n — 1) matrix B; will be

close as desired to the diagonal matrix A; = diag{as, ..., a,}; in particular it will
be invertible. Note that T" and By are smooth functions of B in a neighborhood of
A. By induction on n, we assume there exists a matrix Q1 = P;(B;) € GL(n — 1)
depending analytically on Bi, such that QT B;Q, = A;. Define P(B) = Q by
Q =TS where

1 0 --- 0
0
S =
. Q1
0
Then QT BQ = ST(TTBT)S = A. O

Proof of Morse’s Lemma. By restricting to some chart at p, we may assume with-
out loss of generality that M is a convex open subset of R™ and that p = 0. By
replacing f with f — f(0) if needed, we may assume that f(0) = 0. Furthermore,
by a linear coordinate change, we may suppose that the matrix

A= (8223];]- (0))

is diagonal, with —1 as the first k& diagonal entries, and +1 for all others.
We first show that there exists a smooth map = — B, from M to the space of
symmetric n X n matrices such that if we write B, = (b;;(x)), then

Fl@) = bij(a)a;

4,j=1

and for which By = A. Note that by the fundamental theorem of calculus and the
fact that f(0) = 0, we have

Since p = 0 is a critical point of f, %(0) = 0 for all 4. Hence the same argument
shows that for all ¢ and all ¢ € [0, 1],

of N~y [t of

(stx) ds) zj.
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Thus

n 1
f(z) = ”2::1 (/0 /0 axing (stz)ds dt) Ti%j,

which we may write as
n

f(LL') = Z b”(x):vzxj
i,j=1
By construction, By = A and the b;;(x) are smooth functions of z, thus so too is
Tz — B,.

Let P: N — GL(n,R) be the matrix valued function from the previous lemma
and set P(B;) = Q.. Define a smooth map ¢ : U — R" by ¢(z) = Q; 'z on a
neighborhood U of 0. A calculation shows that d¢y : R™ — R™ is the identity map,
hence by the inverse function theorem ¢ is a local diffeomorphism at 0. Indeed,
writing @, = (g;;(z)) we have that

o@) = (D an(@)a, Y qu(@)on )
k=1 k=1

Then

= Y (aqi%(x)mk+Qik(x)5kj)

where § is the Kronecker delta. Evaluating at = 0 we see that

G 0) = 4 (0)

Hence the Jacobian matrix of ¢ at 0 is simply Q,' = P(By)™' = P(A)~' =1
and so d¢yg is the identity. Thus we may take U to be small enough so that ¢ is a

diffeomorphism onto its image, in which case (¢, U) is a smooth chart at 0. Finally,
set y = ¢(x). Then

flz) = 2T By
= (wa)TBz(Qa:y)
=y" Ay

n

2

= g AiiY; -
=1

O

Corollary 1.14. Non-degenerate critical points of a smooth function f : M — R
are isolated from other critical points of f.

Proof. By Morse’s Lemma, there exists a chart (¢, U) at a critical point p such that

f(bil(xla"'axn) :f(p)fz"lf12+ Z ’JJ?
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Then the i-th partial derivative of f¢—! is simply 4+-2z;. Hence 0 € ¢(U) is the only
point for which the partial derivatives of f¢~! all vanish. Thus the only critical
point of fin U is p = ¢~1(0). O

Corollary 1.15. A Morse function on a compact manifold admits only finitely
many critical points.

Proof. All critical points of f are isolated by the previous corollary. If the set of
critical points of f is closed in M, then there exists an open cover of M so that each
element of the open cover contains at most one critical point of f. By compactness,
there exists a finite subcover, which implies the number of critical points is finite.
To see that the set of critical points of f is closed, note that the map p — df,
from M to the space of linear maps R™ — R is smooth and the set of critical points
of f is precisely the preimage of the zero map R® — R under p — df,. O

2. REGULAR INTERVAL THEOREM

With the local characterization of f at non-degenerate critical points given by
Morse’s Lemma, we now turn to analyzing how the topology of the sublevel sets M *
changes as a increases. This is accomplished in two main steps. First we show that
if an interval [a, b] contains no critical points, then M is a deformation retract of
M?P. Hence the two sublevel sets are homotopy equivalent. Second, we show that if
[a, b] contains a single critical value ¢ € (a,b) and f~!(c) consists of a single critical
point p of index k, then there exists a deformaton retraction of M? onto M® U e*,
where e is a k-cell. The proofs of both steps rely on integral curves of the gradient
vector field of f.

Definition 2.1. Let X : M — TM be a smooth vector field on M. An integral
curve (or solution curve) of X is a differentiable map n : J — M where J C R is
an interval and 7/ (t) = X (n(t)). Here 7/(t) denotes the image of the tangent vector
1 e R=T,J under dn; : Ty J — Ty M.

Remark 2.2. The existence and uniqueness of integral curves is locally guarenteed
by the Picard-Lindeldf theorem.

Definition 2.3. Given a vector field X on M, for each x € M, a trajectory (or
flowline) of X is a solution curve n* : J(x) — M where n*(0) = = and J(x) is the
maximal interval about 0 for which (n®)'(¢t) = X (n*(¢)).

Assume M has a smooth Riemannian metric, that is, the tangent space T, M
at each point p € M is equipped with an inner product g, : T,M x T,M — R
such that the map (p, X,Y) — ¢,(X,Y) defined on {(p, X,Y) e M x TM xTM :
X,Y € T,M} is smooth. Unless it causes confusion, we denote the inner product
on any T,M by (X,Y). The corresponding norm is | X| = (X, X)1/2.

For every linear map A : T,M — R there exists a unique tangent vector X, €
T, M, called the dual to A, satisfying A(Y) = (X, Y).

Definition 2.4. If f : M — R is smooth, define grad f(p) € T,M to be the dual
of df, : T,M — R. The vector field grad f : M — T'M is then naturally defined by

p — grad f(p).
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Example 2.5. If M is an open subset of R™ and the Riemannian metric is given
by the standard inner product on R"™, then

grad f(z) = (%(x), . a%i(x)).

Definition 2.6. A gradient line n: J — M of f : M — R is a solution curve of
the gradient vector field grad f.

The following elementary observations about grad f follow immediately from the
definitions.

Proposition 2.7. A point p € M is a critical point of f if and only if grad f(p) = 0.

Proof. If p is a critical point of f : M — R, then df, is the zero map. Thus
dfp(Y) = (grad f(p),Y) =0 for all Y € T,,M. In particular

(grad f(p), grad f(p)) = 0,
implying that grad f(p) = 0. Conversely, if grad f(p) = 0, then df,(Y) = (0,Y) =0
for all Y € T, M, hence p is a critical point of f. U

Proposition 2.8. Let n: J — M be a gradient line of f. Then fn:J — R is
nondecreasing. Moreover, if n(J) contains no critical points of f, then fn is strictly
increasing and is thus transverse to the level sets f=1(f(n(t))).

Proof. To see that fn is nondecreasing, note that

@ F0(0) = dfy (' (1)
= (grad f(n(t), grad f(n(t))
= |grad f(n(t))]* > 0
If 5(J) contains no critical points of f, then grad f(n(t)) # 0 for all ¢ € J, and the

above work shows that f7 is strictly increasing. |

Theorem 2.9 (Regular Interval Theorem). Let f : M — [a,b] be a smooth map
on a compact manifold with boundary. Suppose that f has no critical points and
f(OM) = {a,b}. Then there is a diffeomorphism F : f~'(a) x [a,b] — M so that
the diagram

f i xa,b) —E—— M
\ lf
[a, b]
commutes. In particular, all the level surfaces of [ are diffeomorphic.
Proof. Give M a Riemannian metric. Define the vector field X : M — T'M by

d
Xy = BT
| grad f(z)|
Note that the solution curves of X are simply the solution curves of grad f but with
a different parameterization. If 7 : [to,t1] — M is a solution curve of X, then the
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derivative of f on is

% fon= (grad f(n(t)), X (n(t)))

~ oy (e ). £a(2)
=1.
Hence
(1) fn(t1)) = f(n(to)) = t1 — to.
Let z € f~1(s). Since M is compact, the set J(x) is closed. Hence by (1),
(2) J(x) =[a—s,b—s].

Since a is a regular value and f(OM) = {a,b}, f~1(a) is a union of boundary
components of M. Define a map F : f~*(a) x [a,b] = M by

F(xz,t) =n"(t — a).

We now show that F' is a diffeomorphism. If F(zq,t1) = F(z2,t2), uniqueness
of solution curves implies that x1 = zo. Since f increases along gradient lines,
it also increases along the trajectories of X, showing that t; < t; implies that
F(z,t1) < F(x,t2). Thus F is injective. Because gradient lines are tranverse to
level sets, F' is also an immersion. Hence F' is an embedding. Lastly, (2) implies
that F' is surjective. ([l

Example 2.10.

Example 2.11. To emphasize the role of compactness in the proof of the Regular
Interval Theorem, consider the following example of a manifold M which is not
compact but otherwise satisfies the conditions of the theorem. The function f :
M — R is the height function on M as depicted.
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3. PASSING CRITICAL LEVELS

Definition 3.1. A Morse function f : M — [a,b] is admissible if OM = f~1(a) U
f71(b) and both a and b are regular values of f.

Example 3.2.

Recall that a k-cell e* in M is the image of an embedding D¥ — M

Theorem 3.3. Let M be compact and f : M — [a,b] an admissible Morse function.
Suppose f has a unique critical point p, of index k. Then there exists a k-cell
ek © M — f71(b) such that e* N f~1(a) = Oe*, and there exists a deformation
retraction of M onto f~1(a)Uek.

Proof. Let f(p) = ¢, a < ¢ < b. To prove the theorem it suffices to prove it for
the restriction of f to f~1[a’, V'] for any o', b’ satisfying a < o’ < ¢ <V < b by
applying the Regular Interval Theorem to f~'[a,a’] and f~1[b,d’]. Moreover, we
can assume that ¢ = 0 by replacing f with f — ¢ otherwise.

Let (¢,U) be a chart at p as in Morse’s lemma. Write R” = RF x R"*, Then
¢ maps U diffeomorphically onto an open set V C R*¥ x R*~* and

foo  ay) =~z + [y,

where (z,y) € V. Note that ¢(p) = (0,0). For ease of notation, set g = f o ¢~ L.
Choose 0 < § < 1 so that V contains the set ' = DF(§) x D"7%(§) where

D'(§) C R? denotes the closed ball centered at 0 of radius 6. Give M a Riemannian
metric which agrees in ¢~!(I') with the metric induced by ¢ from the standard
inner product on R™. That is, if u € ¢~ }(T') and X,Y € T, M, then define an inner
product on T;,M by

(X,Y) = (dpu(X),ddu(Y))
where the inner product on the right is the standard inner product on R™. If
¢(u) =v €T, then

do, (grad f(u)) = grad g(v).
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Choose € > 0 so that v/4e < 4. Set

B* = D*(\/2) x 0 c RF x Rk
={(z,0) € R* x R" " : |2|> < ¢}.

and let e¥ = ¢~1(B*). A deformation of f~![—¢,¢] to f~!(—¢) Ue* is made by
patching together two deformations. First consider the set

Iy = D*(Ve) x D" *(/2¢).

The set T'; was chosen so that the level set g~1(e) intersects 'y in a particular
manner, as shown in the below figure. Indeed, if (x,y) € T'; satisfies |z| =/ and

ly| = v2¢ , then

g(z,y) = —|z]? + ly? = —e+ 2 =¢.

Note that in I'y, g(z,y) = —|z]?+ |y|*> > e+ |y|* > —¢. Also, since |z| < ein Iy,
we have that (x,0) € B* for all z € ;.

In 'y Ng~—t[—¢, €], a deformation is obtained by moving a point (z,y) at constant
speed along the interval joining (x,y) with (z,0) € B* by (x, (1 — t)y). Note that
these intervals are the closures of the solution curves of the vector field

X(.’B’ y) = <Oa _29)
Conjugating this deformation, say H, by ¢ then induces a deformation
H/(:L‘, t) = ¢71(H(¢(1‘)7 t))

of f~—e,e] N¢~1(Ty) onto e*
Let

Iy = D¥(V/2e) x D" *(v/3¢).

On f~l[—¢,e] — ¢~ 1(I'2) our deformation moves each point at constant speed along
the flow line of the vector field — grad f so that it reaches f~!(—¢) in unit time.
(The speed of each point is the length of its path under the deformation.) To see
that each flowline of —grad f starting outside of ¢~!(I's) will reach f~!(¢), note
that | grad f| has a positive lower bound in the compact set f~1[—¢,&]—Int ¢~ 1(T'z),
and f decreases along the flow lines of — grad f. Hence it suffices to show that any
flowline of — grad f may not enter ¢~*(I') N f~1[—¢,¢] from outside. This follows
from that fact that flowlines of —grad f in ¢=*(I') — ¢~1(I'y) are mapped by ¢ to
flowlines of —grad g in I' — I's and |z| increases along any such flowline.
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To extend this deformation to points of I'y — I'y, it suffices to find a vector field
which agrees with X in I'y, and with — grad g outside I';. Such a vector field is

Y(z,y) = 2(u(x, y)z, —y),

where p : RF x R"™% — [0, 1] is a smooth function which is 0 on T'y, and equals 1
outside I'y. Each flow line of Y beginning at a point of (I'y —I'1) N g~ [—¢, €] must
reach g~!(—e) since |z| is non-decreasing along flow lines.

The global deformation of f~![—¢,¢] into f~!(—¢) U e* is obtained by moving
each point of I at constand speed along the flow line of Y until it reaches g~1[—¢, €]U
B in unit time and transporting this motion to M via ¢. Each point of f~1[—¢,&]—
¢~ (') moves at constant speed along the flow line of —grad f until it reaches
f~(—¢) in unit time. Points on f~!(—¢) U e* stay fixed. O

Definition 3.4. The k-th type number of a Morse function f : M — R is the
number v = vi(f) of critical points of index k, where 0 < k < n = dim M. We
say that f has type (vo,...,Vn).

Theorem 3.5. Let f : M — [a,b] be an admissible Morse function of type (v, ..., vp)
on a compact manifold. Suppose f has just one critical value ¢, a < ¢ < b. Then
there are disjoint k-cells e¥ < M — f=1(b), 1 < i < v, k = 0,...,n, such that

ek N f~1(a) = de¥, and there is a deformation retraction of M onto
f @) uJer
ik

The proof is the same as the proof of Theorem 3.3, except that one uses disjoint
Morse charts for each critical point.

4. CW COMPLEXES

The following facts about CW complexes and attaching maps can be found in
Milnor’s Morse Theory on page 21 (although in a slightly less general form). An-
other good reference is The Topology of CW Complexes by Lundell and Weingram.

Proposition 4.1. Let f : X — Y be a homotopy equivalence, let (A, B) be a CW
pair, and let ¢ : B — X be a map. Then XUgA is homotopy equivalent to Y Uyoq A.

Definition 4.2. A map f: X — Y between CW complexes is cellular if for all
n > 0, f maps the n-skeleton of X to the n-skeleton of Y, that is, f(X™) C Y™

Proposition 4.3. Let f : X — Y be a map of CW complexes. Then f is homotopic
to a cellular map.



12 PATRICK GILLESPIE

Proposition 4.4. Let (A, B) be a CW pair and let ¢, : B — X be two maps. If ¢
are ¢ are homotopic, then the adjunction spaces X Uy A and X Uy, A are homotopy
equivalent.

Proposition 4.5. Let X be a CW complez, let (A, B) be a CW pair, and let
f:B — X be a cellular map. Then the adjunction space X Uy A is a CW complex.

Theorem 4.6. Suppose X has the homotopy type of a CW complex and let (A, B)
be a CW pair. Then for any map ¢ : B — X, X Uy A has the homotopy type of a
CW complez.

Proof. By assumption there exists a CW complex Y and a homotopy equivalence
f:X — Y. Then by Proposition 4.1, X Uy A is homotopy equivalent to Y Us.4 A.
By Proposition 4.3, fo¢ is homotopic to a cellular map ¢ : B — Y and this induces
a homotopy equivalence between Y Uyog A and Y Uy A by Proposition 4.4. Finally,
Y Uy A is a CW complex by Proposition 4.5, proving the result. O

Theorem 4.7. Let M be a compact n-manifold and f: M — [a,b] and admissible
Morse function of type (vg,...,v,) such that OM = f=1(b). Then M has the
homotopy type of a finite CW complex having exactly vy cells of each dimension
k=0,...,n and no other cells.

Proof. The proof is by induction on the number of critical values of f. If ¢; is the
smallest critical value, then c¢; is the absolute minimum of f. This follows from
the fact that f attains an absolute minimum since M is compact, and if d < ¢;
is the absolute minimum, d is a regular value of f since ¢; was assumed to be the
smallest critical value. But by the local form of submersions, f maps onto an open
neighborhood of d, a contradiction.

So choose a; > ¢; so that ¢ is the only critical value in [a,a;]. Then f~1[a,a1]
has the homotopy type of a finite discrete set of points by Theorem 3.5, hence the
homotopy type of a CW complex. This starts the induction. Now assume that ¢,, €
(@n_1,ay,) is the only critical value in the interval [a,_1, a,], and that f~[a, a,_1]
has the homotopy type of a CW complex. By Theorem 3.5, f~*[a,_1, a,,] deforma-
tion retracts onto f~"(an—1) U, ,, €. By holding f~'[a, a,_1] fixed, this induces
a deformation retraction of f~'[a,a,] onto f~'[a,an—1] U, , €;*, which has the
homotopy type of a CW complex by Theorem 4.6. This finishes the inductive
step. [l



