
MORSE THEORY NOTES

PATRICK GILLESPIE

The main resource for this set of notes is Hirsch's Di�erential Topology, with
only minor modi�cations made to several of the main proofs. Other resources used
include Milnor's Morse Theory and Guillemin and Pollack's Di�erential Topology.

1. Morse Functions

Recall that a point x ∈M is a regular point of a smooth map f : M → N if the
derivative of f at x, dfx : TxM → Tf(x)N is surjective, i.e. f is a submersion at x.
Otherwise, x is said to be a critical point of f . A point y ∈ N is a regular value of
f if every x ∈ f−1(y) is a regular point. Otherwise, y is a critical value.

Note 1.1. For a real-valued smooth function f : M → R, p is a critical point of f if
and only if dfp : TxM → Tf(p)R ∼= R is the zero map. In terms of local coordinates

(x1, . . . , xn) for a neighborhood of p, this means that the partial derivatives ∂f
∂xi

all
vanish at p.

De�nition 1.2. If p is a critical point of f : M → R and (x1, . . . , xn) is a coordinate
system for a neighborhood of p, the Hessian matrix of f at p with respect to the
coordinates (x1, . . . , xn) is the n× n matrix of second partial derivatives

Hf (p) =
( ∂f

∂xi∂xj
(p)
)
.

Lemma 1.3. Let (x1, . . . , xn) and (y1, . . . , yn) be two coordinates systems for a
critical point p, and let Hf (p) and H ′f (p) be the Hessians of f with respect to these
coordinate systems respectively. If

J(p) =
(∂xi
∂yj

(p)
)

is the Jacobian matrix of the coordinate transformation from (y1, . . . , yn) to (x1, . . . , xn)
then

H ′f (p) = J(p)THf (p)J(p).

Proof. By the chain rule, we have that

∂f

∂yh
=

n∑
i=1

∂f

∂xi

∂xi
∂yh

.

Hence

∂2f

∂yh∂yk
(p) =

n∑
i,j=1

∂2f

∂xi∂xj
(p)

∂xi
∂yh

(p)
∂xj
∂yk

(p) +

n∑
i=1

∂f

∂xi
(p)

∂xi
∂yh∂yk

(p).
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However, by the assumption that p is a critical point of f , all of the terms in the
second sum vanish, i.e.

∂2f

∂yh∂yk
(p) =

n∑
i,j=1

∂2f

∂xi∂xj
(p)

∂xi
∂yh

(p)
∂xj
∂yk

(p).

It follows that
H ′f (p) = J(p)THf (p)J(p).

�

De�nition 1.4. A critical point p of f : M → R is non-degenerate if the Hessian
matrix of f at p is non-singular with respect to some coordinate system at p.

Remark 1.5. The previous de�nition is well-de�ned since if Hf (p) is non-singular
for some coordinate system, Lemma 1.3 implies that Hf (p) is non-singular with
respect to any coordinate system. This follows by the fact that coordinate trans-
formations are di�eomorphisms, hence det J(p) 6= 0 and so

detH ′f (p) = det
(
J(p)THf (p)J(p)

)
= det J(p) detHf (p) detJ(p)

is nonzero if and only if detHf (p) is nonzero.

Example 1.6.

De�nition 1.7. We say that f : M → R is a Morse function if every critical point
of f is non-degenerate.

Before we continue to study Morse functions, one should check that they in fact
always exist. This is true, and even better, Morse functions are generic. For any
�nite dimensional manifold M , Whitney's embedding theorem ensures that M can
be embedded in RN for N su�ciently large. Let 〈·, ·〉 denote the standard inner
product on RN , and for any smooth function f : M → R and a ∈ RN , de�ne
fa : M → R by fa(x) = f(x) + 〈x, a〉.

Proposition 1.8. For any smooth function f : M → R, fa is a Morse function
for almost every a ∈ RN .

The proof of the above proposition involves using Sard's theorem to show it
holds when M is an open subset of Rn and then extending the result to the general
case by taking a countable open cover of M by charts. Details can be found in
Di�erential Topology by Guillemin and Pollack on page 43.

De�nition 1.9. The index of f : M → R at a non-degenerate critical point p is
the number of negative eigenvalues of Hf (p) and is denoted by Indf (p).
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Being de�ned in terms of the eigenvalues of the Hessian matrix, we should check
that the index of f at p does not depend on the choice of coordinates. This follows
from Lemma 1.3 and Sylvester's Law. Recall that two n× n matrices A and B are
similar if there exists an invertible matrix P such that A = PTBP . Sylvester's
Law states that similar matrices have the same number of negative and positive
eigenvalues. Lemma 1.3 shows that if H ′f (p) and Hf (p) are Hessian matrices of f at

p with respect to di�erent coordinate systems, then H ′f (p) and Hf (p) are similar.
Thus the index of f at p is independent of the choice of coordinates.

Remark 1.10. If we we interpret a Morse function f : M → R as representing a
"height" function onM , then the index of f at a critical point p can be understood
as the number of independent directions for which M curves downward away from
p. Alternatively, this is the number of independent directions for which the sublevel
sets Ma = {x ∈M : f(x) ≤ a} approach the point p as a increases to f(p).

Example 1.11.

Lemma 1.12 (Morse's Lemma). Let p ∈ M be a non-degenerate critical point of
index k of a smooth function f : M → R. Then there exists a chart (φ,U) at p
such that

fφ−1(y1, y2, . . . , yn) = f(p)−
k∑
i=1

y2i +

n∑
i=k+1

y2i .

Before we can prove Morse's lemma, we �rst need the following linear algebra
lemma.

Lemma 1.13. Let A = diag{a1, . . . , an} be a diagonal n× n matrix with diagonal
entries ±1. Then there exists a neighborhood N of A in the vector space of sym-
metric n × n matrices, and a smooth map P : N → GL(n,R) such that P (A) = I
(the identity matrix) and if P (B) = Q, then QTBQ = A.

Proof. Let B = (bij) be a symmetric matrix near enough to A so that b11 is nonzero
and has the same sign as a1. Consider the linear change of coordinates de�ned by
x = Ty for which

x1 =
1√
|b11|

(
y1 −

b12
b11

y2 − · · · −
b1n
b11

yn

)
xk = yk for k = 2, . . . , n.
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A calculation shows that

TTBT =


a1 0 · · · 0
0
... B1

0


If B is near enough to A then the symmetric (n− 1)× (n− 1) matrix B1 will be

close as desired to the diagonal matrix A1 = diag{a2, . . . , an}; in particular it will
be invertible. Note that T and B1 are smooth functions of B in a neighborhood of
A. By induction on n, we assume there exists a matrix Q1 = P1(B1) ∈ GL(n− 1)
depending analytically on B1, such that QT1 B1Q1 = A1. De�ne P (B) = Q by
Q = TS where

S =


1 0 · · · 0
0
... Q1

0

 .

Then QTBQ = ST (TTBT )S = A. �

Proof of Morse's Lemma. By restricting to some chart at p, we may assume with-
out loss of generality that M is a convex open subset of Rn and that p = 0. By
replacing f with f − f(0) if needed, we may assume that f(0) = 0. Furthermore,
by a linear coordinate change, we may suppose that the matrix

A =
( ∂2f

∂xi∂xj
(0)
)

is diagonal, with −1 as the �rst k diagonal entries, and +1 for all others.
We �rst show that there exists a smooth map x 7→ Bx from M to the space of

symmetric n× n matrices such that if we write Bx = (bij(x)), then

f(x) =

n∑
i,j=1

bij(x)xixj

and for which B0 = A. Note that by the fundamental theorem of calculus and the
fact that f(0) = 0, we have

f(x) = f(x)− f(0)

=

∫ 1

0

df(tx)

dt
dt

=

∫ 1

0

n∑
i=1

∂f

∂xi
(tx)xi dt

=

n∑
i=1

(∫ 1

0

∂f

∂xi
(tx) dt

)
xi

Since p = 0 is a critical point of f , ∂f
∂xi

(0) = 0 for all i. Hence the same argument

shows that for all i and all t ∈ [0, 1],

∂f

∂xi
(tx) =

n∑
j=1

(∫ 1

0

∂f

∂xi∂xj
(stx) ds

)
xj .
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Thus

f(x) =

n∑
i,j=1

(∫ 1

0

∫ 1

0

∂f

∂xi∂xj
(stx) ds dt

)
xixj ,

which we may write as

f(x) =

n∑
i,j=1

bij(x)xixj .

By construction, B0 = A and the bij(x) are smooth functions of x, thus so too is
x 7→ Bx.

Let P : N → GL(n,R) be the matrix valued function from the previous lemma
and set P (Bx) = Qx. De�ne a smooth map φ : U → Rn by φ(x) = Q−1x x on a
neighborhood U of 0. A calculation shows that dφ0 : Rn → Rn is the identity map,
hence by the inverse function theorem φ is a local di�eomorphism at 0. Indeed,
writing Q−1x = (qij(x)) we have that

φ(x) =
( n∑
k=1

q1k(x)xk, . . . ,

n∑
k=1

qnk(x)xk

)
.

Then

∂φi
∂xj

(x) =
∂

∂xj

( n∑
k=1

qik(x)xk

)
=

n∑
k=1

(∂qik
∂xj

(x)xk + qik(x)δkj

)
where δ is the Kronecker delta. Evaluating at x = 0 we see that

∂φi
∂xj

(0) = qij(0).

Hence the Jacobian matrix of φ at 0 is simply Q−10 = P (B0)−1 = P (A)−1 = I
and so dφ0 is the identity. Thus we may take U to be small enough so that φ is a
di�eomorphism onto its image, in which case (φ,U) is a smooth chart at 0. Finally,
set y = φ(x). Then

f(x) = xTBxx

= (Qxy)TBx(Qxy)

= yT (QTxBxQx)y

= yTAy

=

n∑
i=1

aiiy
2
i .

�

Corollary 1.14. Non-degenerate critical points of a smooth function f : M → R
are isolated from other critical points of f .

Proof. By Morse's Lemma, there exists a chart (φ,U) at a critical point p such that

fφ−1(x1, . . . , xn) = f(p)−
k∑
i=1

x2i +

n∑
i=k+1

x2i .
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Then the i-th partial derivative of fφ−1 is simply ±2xi. Hence 0 ∈ φ(U) is the only
point for which the partial derivatives of fφ−1 all vanish. Thus the only critical
point of f in U is p = φ−1(0). �

Corollary 1.15. A Morse function on a compact manifold admits only �nitely
many critical points.

Proof. All critical points of f are isolated by the previous corollary. If the set of
critical points of f is closed inM , then there exists an open cover ofM so that each
element of the open cover contains at most one critical point of f . By compactness,
there exists a �nite subcover, which implies the number of critical points is �nite.

To see that the set of critical points of f is closed, note that the map p 7→ dfp
fromM to the space of linear maps Rn → R is smooth and the set of critical points
of f is precisely the preimage of the zero map Rn → R under p 7→ dfp. �

2. Regular Interval Theorem

With the local characterization of f at non-degenerate critical points given by
Morse's Lemma, we now turn to analyzing how the topology of the sublevel setsMa

changes as a increases. This is accomplished in two main steps. First we show that
if an interval [a, b] contains no critical points, then Ma is a deformation retract of
M b. Hence the two sublevel sets are homotopy equivalent. Second, we show that if
[a, b] contains a single critical value c ∈ (a, b) and f−1(c) consists of a single critical
point p of index k, then there exists a deformaton retraction of M b onto Ma ∪ ek,
where ek is a k-cell. The proofs of both steps rely on integral curves of the gradient
vector �eld of f .

De�nition 2.1. Let X : M → TM be a smooth vector �eld on M . An integral
curve (or solution curve) of X is a di�erentiable map η : J → M where J ⊂ R is
an interval and η′(t) = X(η(t)). Here η′(t) denotes the image of the tangent vector
1 ∈ R ∼= TtJ under dηt : TtJ → Tη(t)M .

Remark 2.2. The existence and uniqueness of integral curves is locally guarenteed
by the Picard-Lindelöf theorem.

De�nition 2.3. Given a vector �eld X on M , for each x ∈ M , a trajectory (or
�owline) of X is a solution curve ηx : J(x)→ M where ηx(0) = x and J(x) is the
maximal interval about 0 for which (ηx)′(t) = X(ηx(t)).

Assume M has a smooth Riemannian metric, that is, the tangent space TpM
at each point p ∈ M is equipped with an inner product gp : TpM × TpM → R
such that the map (p,X, Y ) 7→ gp(X,Y ) de�ned on {(p,X, Y ) ∈M × TM × TM :
X,Y ∈ TpM} is smooth. Unless it causes confusion, we denote the inner product

on any TpM by 〈X,Y 〉. The corresponding norm is |X| = 〈X,X〉1/2.
For every linear map λ : TpM → R there exists a unique tangent vector Xλ ∈

TpM , called the dual to λ, satisfying λ(Y ) = 〈Xλ, Y 〉.

De�nition 2.4. If f : M → R is smooth, de�ne grad f(p) ∈ TpM to be the dual
of dfp : TpM → R. The vector �eld grad f : M → TM is then naturally de�ned by
p 7→ grad f(p).



MORSE THEORY NOTES 7

Example 2.5. If M is an open subset of Rn and the Riemannian metric is given
by the standard inner product on Rn, then

grad f(x) =
( ∂f
∂x1

(x), . . . ,
∂f

∂xn
(x)
)
.

De�nition 2.6. A gradient line η : J → M of f : M → R is a solution curve of
the gradient vector �eld grad f .

The following elementary observations about grad f follow immediately from the
de�nitions.

Proposition 2.7. A point p ∈M is a critical point of f if and only if grad f(p) = 0.

Proof. If p is a critical point of f : M → R, then dfp is the zero map. Thus
dfp(Y ) = 〈grad f(p), Y 〉 = 0 for all Y ∈ TpM . In particular

〈grad f(p), grad f(p)〉 = 0,

implying that grad f(p) = 0. Conversely, if grad f(p) = 0, then dfp(Y ) = 〈0, Y 〉 = 0
for all Y ∈ TpM , hence p is a critical point of f . �

Proposition 2.8. Let η : J → M be a gradient line of f . Then fη : J → R is
nondecreasing. Moreover, if η(J) contains no critical points of f , then fη is strictly
increasing and is thus transverse to the level sets f−1(f(η(t))).

Proof. To see that fη is nondecreasing, note that

d

dt
f(η(t)) = dfη(t)(η

′(t))

= 〈grad f(η(t), grad f(η(t)〉
= | grad f(η(t))|2 ≥ 0

If η(J) contains no critical points of f , then grad f(η(t)) 6= 0 for all t ∈ J , and the
above work shows that fη is strictly increasing. �

Theorem 2.9 (Regular Interval Theorem). Let f : M → [a, b] be a smooth map
on a compact manifold with boundary. Suppose that f has no critical points and
f(∂M) = {a, b}. Then there is a di�eomorphism F : f−1(a) × [a, b] → M so that
the diagram

f−1 × [a, b] M

[a, b]

F

f

commutes. In particular, all the level surfaces of f are di�eomorphic.

Proof. Give M a Riemannian metric. De�ne the vector �eld X : M → TM by

X(x) =
grad f(x)

| grad f(x)|2
.

Note that the solution curves of X are simply the solution curves of grad f but with
a di�erent parameterization. If η : [t0, t1] → M is a solution curve of X, then the
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derivative of f ◦ η is

d

dt
f ◦ η = 〈grad f(η(t)), X(η(t))〉

=
1

| grad f(η(t))|2
〈grad f(η(t)), grad f(η(t))〉

= 1.

Hence

f(η(t1))− f(η(t0)) = t1 − t0.(1)

Let x ∈ f−1(s). Since M is compact, the set J(x) is closed. Hence by (1),

J(x) = [a− s, b− s].(2)

Since a is a regular value and f(∂M) = {a, b}, f−1(a) is a union of boundary
components of M . De�ne a map F : f−1(a)× [a, b]→M by

F (x, t) = ηx(t− a).

We now show that F is a di�eomorphism. If F (x1, t1) = F (x2, t2), uniqueness
of solution curves implies that x1 = x2. Since f increases along gradient lines,
it also increases along the trajectories of X, showing that t1 < t2 implies that
F (x, t1) < F (x, t2). Thus F is injective. Because gradient lines are tranverse to
level sets, F is also an immersion. Hence F is an embedding. Lastly, (2) implies
that F is surjective. �

Example 2.10.

Example 2.11. To emphasize the role of compactness in the proof of the Regular
Interval Theorem, consider the following example of a manifold M which is not
compact but otherwise satis�es the conditions of the theorem. The function f :
M → R is the height function on M as depicted.
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3. Passing Critical Levels

De�nition 3.1. A Morse function f : M → [a, b] is admissible if ∂M = f−1(a) ∪
f−1(b) and both a and b are regular values of f .

Example 3.2.

Recall that a k-cell ek in M is the image of an embedding Dk →M

Theorem 3.3. LetM be compact and f : M → [a, b] an admissible Morse function.
Suppose f has a unique critical point p, of index k. Then there exists a k-cell
ek ⊂ M − f−1(b) such that ek ∩ f−1(a) = ∂ek, and there exists a deformation
retraction of M onto f−1(a) ∪ ek.

Proof. Let f(p) = c, a < c < b. To prove the theorem it su�ces to prove it for
the restriction of f to f−1[a′, b′] for any a′, b′ satisfying a < a′ < c < b′ < b by
applying the Regular Interval Theorem to f−1[a, a′] and f−1[b, b′]. Moreover, we
can assume that c = 0 by replacing f with f − c otherwise.

Let (φ,U) be a chart at p as in Morse's lemma. Write Rn = Rk × Rn−k. Then
φ maps U di�eomorphically onto an open set V ⊂ Rk × Rn−k and

f ◦ φ−1(x, y) = −|x|2 + |y|2,
where (x, y) ∈ V . Note that φ(p) = (0, 0). For ease of notation, set g = f ◦ φ−1.

Choose 0 < δ < 1 so that V contains the set Γ = Dk(δ) × Dn−k(δ) where
Di(δ) ⊂ Ri denotes the closed ball centered at 0 of radius δ. GiveM a Riemannian
metric which agrees in φ−1(Γ) with the metric induced by φ from the standard
inner product on Rn. That is, if u ∈ φ−1(Γ) and X,Y ∈ TuM , then de�ne an inner
product on TuM by

〈X,Y 〉 = 〈dφu(X), dφu(Y )〉
where the inner product on the right is the standard inner product on Rn. If
φ(u) = v ∈ Γ, then

dφu(grad f(u)) = grad g(v).
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Choose ε > 0 so that
√

4ε < δ. Set

Bk = Dk(
√
ε)× 0 ⊂ Rk × Rn−k

= {(x, 0) ∈ Rk × Rn−k : |x|2 ≤ ε}.

and let ek = φ−1(Bk). A deformation of f−1[−ε, ε] to f−1(−ε) ∪ ek is made by
patching together two deformations. First consider the set

Γ1 = Dk(
√
ε)×Dn−k(

√
2ε).

The set Γ1 was chosen so that the level set g−1(ε) intersects ∂Γ1 in a particular
manner, as shown in the below �gure. Indeed, if (x, y) ∈ Γ1 satis�es |x| =

√
ε and

|y| =
√

2ε , then

g(x, y) = −|x|2 + |y|2 = −ε+ 2ε = ε.

Note that in Γ1, g(x, y) = −|x|2 + |y|2 ≥ ε+ |y|2 ≥ −ε. Also, since |x| ≤ ε in Γ1,
we have that (x, 0) ∈ Bk for all x ∈ Γ1.

In Γ1∩g−1[−ε, ε], a deformation is obtained by moving a point (x, y) at constant
speed along the interval joining (x, y) with (x, 0) ∈ Bk by (x, (1 − t)y). Note that
these intervals are the closures of the solution curves of the vector �eld

X(x, y) = (0,−2y).

Conjugating this deformation, say H, by φ then induces a deformation

H ′(x, t) = φ−1(H(φ(x), t))

of f−1[−ε, ε] ∩ φ−1(Γ1) onto ek

Let

Γ2 = Dk(
√

2ε)×Dn−k(
√

3ε).

On f−1[−ε, ε]−φ−1(Γ2) our deformation moves each point at constant speed along
the �ow line of the vector �eld − grad f so that it reaches f−1(−ε) in unit time.
(The speed of each point is the length of its path under the deformation.) To see
that each �owline of − grad f starting outside of φ−1(Γ2) will reach f−1(ε), note
that | grad f | has a positive lower bound in the compact set f−1[−ε, ε]−Intφ−1(Γ2),
and f decreases along the �ow lines of − grad f . Hence it su�ces to show that any
�owline of − grad f may not enter φ−1(Γ2) ∩ f−1[−ε, ε] from outside. This follows
from that fact that �owlines of − grad f in φ−1(Γ)− φ−1(Γ2) are mapped by φ to
�owlines of − grad g in Γ− Γ2 and |x| increases along any such �owline.
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To extend this deformation to points of Γ2 − Γ1, it su�ces to �nd a vector �eld
which agrees with X in Γ1, and with − grad g outside Γ2. Such a vector �eld is

Y (x, y) = 2(µ(x, y)x,−y),

where µ : Rk × Rn−k → [0, 1] is a smooth function which is 0 on Γ1, and equals 1
outside Γ2. Each �ow line of Y beginning at a point of (Γ2−Γ1)∩ g−1[−ε, ε] must
reach g−1(−ε) since |x| is non-decreasing along �ow lines.

The global deformation of f−1[−ε, ε] into f−1(−ε) ∪ ek is obtained by moving
each point of Γ at constand speed along the �ow line of Y until it reaches g−1[−ε, ε]∪
Bk in unit time and transporting this motion toM via φ. Each point of f−1[−ε, ε]−
φ−1(Γ) moves at constant speed along the �ow line of − grad f until it reaches
f−1(−ε) in unit time. Points on f−1(−ε) ∪ ek stay �xed. �

De�nition 3.4. The k-th type number of a Morse function f : M → R is the
number νk = νk(f) of critical points of index k, where 0 ≤ k ≤ n = dimM . We
say that f has type (ν0, . . . , νn).

Theorem 3.5. Let f : M → [a, b] be an admissible Morse function of type (νo, . . . , νn)
on a compact manifold. Suppose f has just one critical value c, a < c < b. Then
there are disjoint k-cells eki ⊂ M − f−1(b), 1 ≤ i ≤ νk, k = 0, . . . , n, such that
eki ∩ f−1(a) = ∂eki , and there is a deformation retraction of M onto

f−1(a) ∪
⋃
i,k

eki .

The proof is the same as the proof of Theorem 3.3, except that one uses disjoint
Morse charts for each critical point.

4. CW Complexes

The following facts about CW complexes and attaching maps can be found in
Milnor's Morse Theory on page 21 (although in a slightly less general form). An-
other good reference is The Topology of CW Complexes by Lundell and Weingram.

Proposition 4.1. Let f : X → Y be a homotopy equivalence, let (A,B) be a CW
pair, and let φ : B → X be a map. Then X∪φA is homotopy equivalent to Y ∪f◦φA.

De�nition 4.2. A map f : X → Y between CW complexes is cellular if for all
n ≥ 0, f maps the n-skeleton of X to the n-skeleton of Y , that is, f(Xn) ⊆ Y n.

Proposition 4.3. Let f : X → Y be a map of CW complexes. Then f is homotopic
to a cellular map.
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Proposition 4.4. Let (A,B) be a CW pair and let φ, ψ : B → X be two maps. If φ
are ψ are homotopic, then the adjunction spaces X ∪φA and X ∪ψ A are homotopy
equivalent.

Proposition 4.5. Let X be a CW complex, let (A,B) be a CW pair, and let
f : B → X be a cellular map. Then the adjunction space X ∪f A is a CW complex.

Theorem 4.6. Suppose X has the homotopy type of a CW complex and let (A,B)
be a CW pair. Then for any map φ : B → X, X ∪φ A has the homotopy type of a
CW complex.

Proof. By assumption there exists a CW complex Y and a homotopy equivalence
f : X → Y . Then by Proposition 4.1, X ∪φ A is homotopy equivalent to Y ∪f◦φ A.
By Proposition 4.3, f ◦φ is homotopic to a cellular map ψ : B → Y and this induces
a homotopy equivalence between Y ∪f◦φA and Y ∪ψ A by Proposition 4.4. Finally,
Y ∪ψ A is a CW complex by Proposition 4.5, proving the result. �

Theorem 4.7. Let M be a compact n-manifold and f : M → [a, b] and admissible
Morse function of type (ν0, . . . , νn) such that ∂M = f−1(b). Then M has the
homotopy type of a �nite CW complex having exactly νk cells of each dimension
k = 0, . . . , n and no other cells.

Proof. The proof is by induction on the number of critical values of f . If c1 is the
smallest critical value, then c1 is the absolute minimum of f . This follows from
the fact that f attains an absolute minimum since M is compact, and if d < c1
is the absolute minimum, d is a regular value of f since c1 was assumed to be the
smallest critical value. But by the local form of submersions, f maps onto an open
neighborhood of d, a contradiction.

So choose a1 > c1 so that c1 is the only critical value in [a, a1]. Then f−1[a, a1]
has the homotopy type of a �nite discrete set of points by Theorem 3.5, hence the
homotopy type of a CW complex. This starts the induction. Now assume that cn ∈
(an−1, an) is the only critical value in the interval [an−1, an], and that f−1[a, an−1]
has the homotopy type of a CW complex. By Theorem 3.5, f−1[an−1, an] deforma-
tion retracts onto f−1(an−1)∪

⋃
i,m e

m
i . By holding f

−1[a, an−1] �xed, this induces

a deformation retraction of f−1[a, an] onto f−1[a, an−1] ∪
⋃
i,m e

m
i , which has the

homotopy type of a CW complex by Theorem 4.6. This �nishes the inductive
step. �


