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Definition: A subset A of euclidean space is called affine if, for every pair of distinct points

x, x′ ∈ A, the line determined by x, x′ is contained in A.

Definition: An affine combination of points p0, p1, · · · , pm in Rn is a point x with

x = t0p0 + t1p1 + · · ·+ tmpm, where
m∑
i=0

ti = 1

. A convex combination is an affine combination for which ti ≥ 0 for all i.

Definition: An ordered set of points {p0, p1, · · · , pm} ⊂ Rn is affine independent if {p1 −
p0, p2 − p0, · · · , pm − p0} is a linearly independent subset of the real vector space Rn.

Remark: Any linearly independent subset of Rn is an affine independent set; the converse is not

true.

Definition: Let {p0, p1, · · · , pm} be an affine independent subset of Rn. The convex set spanned

by this set, denoted by [p0, p1, · · · , pm], is called the (affine) m−simplex with vertices p0, p1, · · · , pm.

Definition: If {p0, · · · , pm} is affine independent, the barycenter of [p0, · · · , pm] is (1/m+ 1)(p0+

p1 + · · ·+ pm).

Definition: Let [p0, p1, · · · , pm] be an m−simplex. The face opposite pi is

[pp, · · · , p̂i, · · · , pm] =
{∑

tjpj : tj ≥ 0,
∑

tj = 1, and ti = 0
}

(ˆmeans “delete”). The boundary of [p0, p1, · · · , pm] is the union of its faces.

Definition: Let S denote the n−simplex [p0, · · · , pn], diam S = sup
i,j
||pi − pj ||.

Definition: If s = [v0, v1, · · · , vq] is a q−simplex, then we denote its vertex set by Vert(s) =

{v0, · · · , vq}.
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Definition: If s is a simplex, then a face of s is a simplex s′ with Vert(s′) ⊂ Vert(s); one writes

s′ ≤ s. If s′ < s (i.e. Vert(s′) ( Vert(s)), then s′ is called a proper face of s.

Definition: A finite Simplicial complex K is a finite collection of simplexes in some euclidean

space such that:

(i) if s ∈ K, then every face of s also belongs to K;

(ii) if s, t ∈ K, then s ∩ t is either empty or a common face of s and of t.

We write Vert(K) to denote vertex set of K, namely, the set of all 0−simplexes in K.

Definition: If K is a simplicial complex, its underlying space |K| is the subspace (of the

ambient euclidean space)

|K| =
⋃
s∈K

s,

the union of all simplexes in K.

Remark: Clearly, |K| is a compact subspace of some euclidean space. Note that if s is a simplex

in K, then |s| = s.

Definition: A topological space X is a polyhedron if there exists a simplicial complex K and

a homeomorphism h : |K| → X. The ordered pair (K,h) is called a triangulation of X.

Definition: If K is the family of all proper faces of an n−simplex s, then there is a triangulation

(K,h) of Sn−1. Denote this simplicial complex K by ṡ.

Definition: Let s be a q−simplex. If q = 0, define so = s; if q > 0, define so = s− ṡ. One calls

so an open q−simplex.

Definition: Let K be a simplicial complex and let p ∈ Vert(K). Then the star of p, denoted by

st(p), is defined by

st(p) =
⋃
s∈K

p∈Vert(s)

so ⊂ |K|.

Definition: If K is a simplicial complex, define its dimension, denoted by dim K, to be

dim K = sup
s∈K
{dim s}

(a q−simplex has dimension q).
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Definition: Let K and L be simplicial complexes. A simplicial map ϕ : K → L is a

function ϕ : Vert(K) → Vert(L) such that whenever {p0, p1, · · · , pq} spans a simplex of K, then

{ϕ(p0), ϕ(p1), · · · , ϕ(pq)} spans a simplex of L.

Definition: A map of the form |ϕ| : |K| → |L|, where ϕ : K → L is a simplicial map, is called

piecewise linear.

Let Vert(K) = {p0, p1, · · · , pn}. Every point x ∈ |K| belongs to the interior of exactly one simplex

in K. Let s = [p0, p1, · · · , pk] be the simplex. We have x =
∑k

i=1 λipi with
∑k

i=1 λi = 1 and λi > 0

for all i. Setting bi(x) = λi for 0 ≤ i ≤ k and bi(x) = 0 for k + 1 ≤ i ≤ n we have x =
∑n

i=0 bi(x)pi.

|ϕ|(x) =

n∑
i=0

bi(x)ϕ(pi).

Definition: Let K and L be simplicial complexes, let ϕ : K → L be simplicial map, and let

f : |K| → |L| be continuous. Then ϕ is a simplicial approximation to f if, for every vertex p of

K,

f(st(p)) ⊂ st(ϕ(p)).

Remark: It is easy to see that |ϕ|(st(p)) ⊂ st(ϕ(p)). Thus we are saying that f behaves like |ϕ|
in that it carries neighboring simplexes of p inside the union of the simplexes near ϕ(p).

Definition: If s is a simplex, let bs denote its barycenter. If K is a simplicial complex, define

Sd K, the barycentric subdivision of K, to be the simplicial complex with

Vert(Sd K) = {bs : s ∈ K}

and with simplexes [bs0 , bs1 , · · · , bsq ], where the si are simplexes in K with s0 < s1 < · · · < sq.

Definition: If K is a simplicial complex, then

mesh K = sup
s∈K
{diam(s)},

where diam(s) denotes the diameter of s.

Definition: A subcomplex L of a simplicial complex K is a simplicial complex contained in K

(i.e., s ∈ L implies that s ∈ K) with Vert(L) ⊂ Vert(K).

Definition: For any q ≥ −1, the q−skeleton of K, denoted by K(q), is the subcomplex of K

consisting of all simplexes s ∈ K with dim(s) ≤ q.
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Lemma 1: If p0, p1, · · · , pn ∈ Vert(K), then {p0, p1, · · · , pn} spans a simplex of K if and only if
n⋂

i=0

st(pi) 6= ∅.

Proof:

(⇒) Assume {p0, p1, · · · , pn} spans a simplex s of K.

Then so 6= ∅ and so ⊂ st(pi) for all i = 0, · · · , n.

Then so is in the intersection.

(⇐) Suppose

n⋂
i=0

st(pi) 6= ∅.

Then ∃so ⊂ |K| such that so ⊂ st(pi) for all i = 0, · · · , n.

Then p0, p1, · · · , pn ∈ Vert(s)

Since p0, p1, · · · , pn ∈ Vert(K), [p0, p1, · · · , pn] is a face of some simplex of K.

Therefore, [p0, p1, · · · , pn] is a simplex of K.

Lemma 2: If mesh K = µ and p ∈ Vert(K), then diam(st(p)) ≤ 2µ.

Proof:

For any point x ∈ st(p), |x− p| ≤ µ, because x and p are in the same simplex.

Then for any x, y ∈ st(p),

|x− y| ≤ |x− p|+ |p− y| ≤ 2µ.
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Lemma 3: If dim K = n, then

(i)

mesh Sd K ≤ (n/n+ 1) mesh K.

(ii) For q ≥ 1,

mesh Sdq K ≤ (n/n+ 1)q mesh K.

Proof:

(i) Let s = [bso , bs1 , · · · , bsq ], where bsi ∈ Vert(Sd K) and si are simplexes in K with s0 < s1 <

· · · < sq, i = 1, · · · , q.
Then diam(s) = sup

i,j
||bsi − bsj ||.

WLOG, let i < j, then

||bsi − bsj || ≤ nj
nj + 1

diam(sj), (using theorem 2.9)

where nj = dim sj .

Since sj ∈ K, diam(sj) ≤ mesh K

Also since nj ≤ n, we have
nj

nj + 1
≤ n

n+ 1
.

Then diam(s) ≤ n

n+ 1
mesh K.

Therefore, mesh Sd K ≤ n

n+ 1
mesh K.

(ii) Clear for q = 1. By induction, assume that the statement is true for q − 1.

Let s = [bs0 , bs1 , · · · , bsm ], where bsj ∈ Vert (Sdq K) and sj are simplexes in Sdq−1 K with

s0 < s1 < · · · < sm, j = 1, · · · ,m. Using the same argument in part (i),

we get mesh Sdq K ≤ n

n+ 1
mesh Sdq−1 K

≤
(

n

n+ 1

)(
n

n+ 1

)q−1
mesh K

=

(
n

n+ 1

)q

mesh K
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Theorem: (Simplicial Approximation Theorem) If K and L are simplicial complexes and

if f : |K| → |L| is continuous, then there is an integer q ≥ 1 and a simplicial approximation

ϕ : Sdq K → L to f .

Proof:

Let Vert(L) = {wj : j ∈ J} and let {st(wj)} be the open cover of |L| by its stars.

Since f is continuous,
{
f−1st(wj)

}
is an open cover of |K|.

Now, since |K| is compact metric, this cover has a Lebesgue number λ > 0.

By Lemma 3, we can choose q large enough so that mesh Sdq K < 1
2λ.

Then by Lemma 2, diam(st(p)) < λ for every p ∈ Vert(Sdq K).

Define ϕ : Vert(Sdq K) → Vert(L) by ϕ(p) = wj , where wj is some vertex with st(p) ⊂
f−1(st(wj)).

Such a wj exists because diam(st(p)) < λ. If there are more than one such wj , then pick any one.

Then f(st(p)) ⊂ st(wj) = st(ϕ(p)).

Need to show: ϕ is a simplicial map. i.e. if {p0, p1, · · · , pm} spans a simplex in SdqK, then

{ϕ(p0), ϕ(p1), · · · , ϕ(pm)} spans a simplex in L.

Now if {p0, p1, · · · , pm} spans a simplex in Sdq K, then by Lemma 1,
m⋂
i=0

st(pi) 6= ∅. Then

∅ 6= f

(
m⋂
i=0

st(pi)

)
⊂

m⋂
i=0

f (st(pi)) ⊂
m⋂
i=0

st (ϕ(pi)) .

Then again by Lemma 1, {ϕ(p0), ϕ(p1), · · · , ϕ(pm)} spans a simplex in L.

Proposition: (Quantitative Simplicial Approximation Theorem)For finite simplicial com-

plexes X and Y with piecewise linear metrics, there are constants C and C ′ such that any L−Lipschitz

map f : X → Y has a CL−Lipschitz simplicial approximation via a homotopy of thickness CL+ C ′

and width C ′. [2]
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Corollary: Let K and L be simplicial complexes, and let f : |K| → |L| be continuous. Assume

that K ′ is a simplicial complex such that

(i) |K ′| = |K|;

(ii) Vert(K) ⊂ Vert(K ′);

(iii) mesh K ′ is “small”.

then there exists a simplicial approximation ϕ : K ′ → L to f .

Proof:

Here we repeat the proof of the above theorem.

Let Vert(L) = {wj : j ∈ J} and let {st(wj)} be the open cover of |L| by its stars.

Since f is continuous,
{
f−1st(wj)

}
is an open cover of |K|.

Now, since |K| is compact metric, this cover has a Lebesgue number λ > 0.

Since mesh K ′ is small, we can say that mesh K ′ < 1
2λ.

Then by Lemma 2, diam(st(p)) < λ for every p ∈ Vert(K ′).

Define ϕ : Vert(K ′)→ Vert(L) by ϕ(p) = wj , where wj is some vertex with st(p) ⊂ f−1(st(wj)).

Then f(st(p)) ⊂ st(wj) = st(ϕ(p)).

To show that ϕ is a simplicial map, let {p0, p1, · · · , pm} spans a simplex in K ′.

By Lemma 1,
m⋂
i=0

st(pi) 6= ∅. Then

∅ 6= f

(
m⋂
i=0

st(pi)

)
⊂

m⋂
i=0

f (st(pi)) ⊂
m⋂
i=0

st (ϕ(pi)) .

Then again by Lemma 1, {ϕ(p0), ϕ(p1), · · · , ϕ(pm)} spans a simplex in L.
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Lemma 4: If ϕ : K → L is a simplicial map, then ϕ
(
K(q)

)
⊂ L(q) for every q. Therefore,

dim K = n implies that im|ϕ| ⊂ |L(n)|.

Proof:

If s ∈ K(q), then s = [p0, · · · , pr] for some r ≤ q.
Then ϕ(s) = [ϕ(p0), · · · , ϕ(pr)] ∈ L(q).

So, ϕ(K(q)) ⊂ L(q).

Then ϕ(K) ⊂ L(n) when dim K = n.

For x ∈ |K|, x =
∑n

i=0 λipi and |ϕ|(x) =
∑n

i=0 bi(x)ϕ(pi) where pi ∈ Vert(K).

Then |ϕ|(x) ∈ |L(n)|. So, im|ϕ| ⊂ |L(n)|.

Lemma 5: If ϕ : K → L is a simplicial approximation to f : |K| → |L|, then |ϕ| ' f .

Proof:

Enough to show that ∀x ∈ |K|, |ϕ|(x) and f(x) are in the same simplex. Then the map

H(t, x) = (1− t)|ϕ|(x) + tf(x) where t ∈ [0, 1] is the desired homotopy.

Need to show: whenever x ∈ |K| and f(x) ∈ so where s is a simplex of L, then |ϕ|(x) ∈ s.

Let x ∈ to, where t = [p0, p1, · · · , pq] is a simplex in K.

Then x ∈ st(pi) for some i = 1, · · · , q.
Which implies f(x) ∈ st (ϕ(pi)).

So, so ⊆ st (ϕ(pi)).

Then ϕ(pi) is a vertex of s for each i = 1, · · · , q.
Since |ϕ|(x) is determined by ϕ(pi), |ϕ|(x) ∈ s.

Theorem: If m < n, then every continuous map f : Sm → Sn is nullhomotopic.

Proof:

Let K be the m−skeleton of an (m+ 1) simplex, and let L be the n−skeleton of an (n+ 1) simplex.

We may regard f as a continuous map from |K| into |L|.
By the Simplicial Approximation Theorem, let ϕ : Sdq K → L be a simplicial approximation to f .

Since dim Sdq = dim K = m, by Lemma 4, im|ϕ| ⊂ |L(m)|.
Hence |ϕ| is not surjective. In particular im|ϕ| ⊂ |L| − {point}, which is contractible.

So, |ϕ| is nullhomotopic. But by Lemma 5, |ϕ| ' f .

Therefore, f is nullhomotopic.
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