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Definition: A subset A of euclidean space is called affine if, for every pair of distinct points

x,x’ € A, the line determined by x, 2’ is contained in A.

Definition: An affine combination of points pg,p1,- - ,pm in R™ is a point x with
m
x =topo +t1p1 + - + tiPm, where Zti =1
i=0

. A convex combination is an affine combination for which ¢; > 0 for all 7.

Definition: An ordered set of points {po,p1,---,pn} C R" is affine independent if {p; —

P0sD2 — D0, »Pm — Po} is a linearly independent subset of the real vector space R"™.

Remark: Any linearly independent subset of R™ is an affine independent set; the converse is not

true.

Definition: Let {po,p1,- - ,pm} be an affine independent subset of R"™. The convex set spanned
by this set, denoted by [po, p1,- - , Pm], is called the (affine) m—simplex with vertices pg, p1, - , Pm.-

Definition: If {pg, -+ ,pm} is affine independent, the barycenter of [po, - -, pp] is (/m+1)(po+
p1+ -+ Pm).

Definition: Let [po,p1,- - ,pm] be an m—simplex. The face opposite p; is

[Py s Dis Pl = {thpj 420, t;=1, and t; = 0}
(“means “delete”). The boundary of [pg,p1,- -+ ,pm] is the union of its faces.
Definition: Let S denote the n—simplex [po, - - ,p,|, diam S = sup ||p; — pj||.
i?j

Definition: If s = [vg,v1,--- ,v,] is a g—simplex, then we denote its vertex set by Vert(s) =

{v07"' ,Uq}.



Definition: If s is a simplex, then a face of s is a simplex s’ with Vert(s’) C Vert(s); one writes

s <s. If ¢ <s (ie. Vert(s') C Vert(s)), then s’ is called a proper face of s.

Definition: A finite Simplicial complex K is a finite collection of simplexes in some euclidean

space such that:
(i) if s € K, then every face of s also belongs to K;

(ii) if s,t € K, then sNt is either empty or a common face of s and of ¢.

We write Vert(K) to denote vertex set of K, namely, the set of all 0—simplexes in K.

Definition: If K is a simplicial complex, its underlying space |K| is the subspace (of the

K= s,

seK

ambient euclidean space)

the union of all simplexes in K.

Remark: Clearly, |K| is a compact subspace of some euclidean space. Note that if s is a simplex
in K, then [s| = s.

Definition: A topological space X is a polyhedron if there exists a simplicial complex K and

a homeomorphism h : |[K| — X. The ordered pair (K, h) is called a triangulation of X.

Definition: If K is the family of all proper faces of an n—simplex s, then there is a triangulation
(K, h) of S"~1. Denote this simplicial complex K by $.

Definition: Let s be a g—simplex. If ¢ = 0, define s° = s; if ¢ > 0, define s° = s — 5. One calls

s° an open g—simplex.

Definition: Let K be a simplicial complex and let p € Vert(K). Then the star of p, denoted by
st(p), is defined by

st(p) = U s’ C |K].
seK
p€EVert(s)

Definition: If K is a simplicial complex, define its dimension, denoted by dim K, to be

dim K = sup{dim s}
seK

(a g—simplex has dimension ¢).



Definition: Let K and L be simplicial complexes. A simplicial map ¢ : K — L is a
function ¢ : Vert(K) — Vert(L) such that whenever {pg,p1,---,p,} spans a simplex of K, then

{p(po), (1), -+, »(pg)} spans a simplex of L.

Definition: A map of the form |g| : |K| — |L|, where ¢ : K — L is a simplicial map, is called

piecewise linear.

Let Vert(K) = {po,p1, -+ ,pn}. Every point x € |K| belongs to the interior of exactly one simplex
in K. Let s = [po,p1,- - ,px] be the simplex. We have x = Zle Aip; with Zle Ai=1land A; >0
for all i. Setting b;j(x) = A; for 0 <@ < k and b;j(xz) =0 for k +1 <4 <n we have z = Y ;" bj(x)p;.

lel(@) =D bilz)e(pi).
i=0

Definition: Let K and L be simplicial complexes, let ¢ : K — L be simplicial map, and let
f +|K| — |L| be continuous. Then ¢ is a simplicial approximation to f if, for every vertex p of
K,
f(st(p)) C st(e(p))-

Remark: It is easy to see that |p|(st(p)) C st(¢(p)). Thus we are saying that f behaves like ||

in that it carries neighboring simplexes of p inside the union of the simplexes near ¢(p).

Definition: If s is a simplex, let b° denote its barycenter. If K is a simplicial complex, define

Sd K, the barycentric subdivision of K, to be the simplicial complex with
Vert(Sd K) = {b°: s € K}

and with simplexes [b%,0°1, .-, b%], where the s; are simplexes in K with sop < s1 < -+ < sq.

Definition: If K is a simplicial complex, then

mesh K = sup{diam(s)},
seK

where diam(s) denotes the diameter of s.

Definition: A subcomplex L of a simplicial complex K is a simplicial complex contained in K
(i.e., s € L implies that s € K) with Vert(L) C Vert(K).

Definition: For any ¢ > —1, the g—skeleton of K, denoted by K@, is the subcomplex of K

consisting of all simplexes s € K with dim(s) < q.



Lemma 1: If po,p1,- -+ ,pn € Vert(K), then {po,p1,--- ,pn} spans a simplex of K if and only if

n

ﬂ st(p;) # 0.
i=0
Proof:
(=) Assume {pg,p1,- - ,pn} spans a simplex s of K.

Then s° # () and s° C st(p;) for all i =0,--- ,n.

Then s° is in the intersection.

(«<=) Suppose [ ]st(p;) # 0.

Then 3s° C |K| suchl‘gl?at s® Cst(p;) foralli =0,--- ,n.

Then po,p1,--- ,pn € Vert(s)

Since po, p1,- -+ ,pn € Vert(K), [po,p1,- -+ ,pn] is a face of some simplex of K.
Therefore, [po, p1,- - ,Pn) is a simplex of K.

Lemma 2: If mesh K = p and p € Vert(K), then diam(st(p)) < 2u.

Proof:
For any point x € st(p), |z — p| < u, because z and p are in the same simplex.
Then for any x,y € st(p),
[z —yl < |z —pl+|p—yl <2u



Lemma 3: If dim K = n, then

(i)
mesh Sd K < (7/n+1) mesh K.

(ii) For ¢ > 1,
mesh Sd? K < (7/n+1)? mesh K.

Proof:
(i) Let s = [b%,b%,--- b%], where b% € Vert(Sd K) and s; are simplexes in K with sp < s1 <
"'<Sq7i:1,"' 7q_

Then diam(s) = sup |[b* — b%7 ).
4,
WLOG, let 7 < j, then

6% — %] < T:]L 1diam(8j), (using theorem 2.9)
nj

where n; = dim s;.
Since s; € K, diam(s;) < mesh K
n

. n;
Also since nj; < n, we have S .
n; + 1 n+1

Then diam(s) < " mesh K.
n+1

n

Therefore, mesh Sd K < 1mesh K.

n+

(ii) Clear for ¢ = 1. By induction, assume that the statement is true for ¢ — 1.
Let s = [b%,b%, -+, b°"], where b% € Vert(Sd? K) and s; are simplexes in Sd?"* K with

S0 <81 << S8m,Jj=1,---,m. Using the same argument in part (i),

n
+
n

mesh Sd?9~! K

n \7!
) ( ) mesh K
n+1

q
) mesh K

we get mesh Sd? K <

;
¥

1

n
+1
n

n+1



Theorem: (Simplicial Approximation Theorem) If K and L are simplicial complexes and

if £ |K| — |L| is continuous, then there is an integer ¢ > 1 and a simplicial approzimation

p:8d" K —Ltof.

Proof:
Let Vert(L) = {w; : j € J} and let {st(w;)} be the open cover of |L| by its stars.
Since f is continuous, {f~'st(w;)} is an open cover of |K]|.
Now, since | K| is compact metric, this cover has a Lebesgue number A > 0.
By Lemma 3, we can choose ¢ large enough so that mesh Sd? K < %)\.
Then by Lemma 2, diam(st(p)) < A for every p € Vert(Sd? K).

Define ¢ : Vert(Sd? K) — Vert(L) by ¢(p) = wj, where w; is some vertex with st(p) C

S (st(wy).

Such a w; exists because diam(st(p)) < A. If there are more than one such wj, then pick any one.

Then f(st(p)) C st(wy) = st(o(p)).

Need to show: ¢ is a simplicial map. i.e. if {pg,p1, - - ,pm} spans a simplex in SA?K, then
{¢e(po), o(p1),- - ,©(pm)} spans a simplex in L.

m
Now if {po,p1,- - ,Pm} spans a simplex in Sd? K, then by Lemma 1, m st(pi) # 0. Then

=0
0+ f (ﬂ st(p») c () £ (stpi)) < [ st (e (pi) -
=0 =0 =0

Then again by Lemma 1, {¢(po), ©(p1), -, ©(pm)} spans a simplex in L.

Proposition: (Quantitative Simplicial Approximation Theorem) For finite simplicial com-
plexes X andY with piecewise linear metrics, there are constants C and C' such that any L— Lipschitz
map f: X — Y has a CL—Lipschitz simplicial approzimation via a homotopy of thickness CL + C’
and width C'. 2]



Corollary: Let K and L be simplicial complexes, and let f : |K| — |L| be continuous. Assume

that K' is a simplicial complex such that

(i) |K'| = [K];

(il) Vert(K) C Vert(K');

(i) mesh K’ is “small”.
then there exists a simplicial approrimation @ : K' — L to f.

Proof:

Here we repeat the proof of the above theorem.
Let Vert(L) = {wj : j € J} and let {st(w;)} be the open cover of |L| by its stars.
Since f is continuous, {f~'st(w;)} is an open cover of |K]|.
Now, since | K| is compact metric, this cover has a Lebesgue number \ > 0.

Since mesh K’ is small, we can say that mesh K’ < %)\.
Then by Lemma 2, diam(st(p)) < A for every p € Vert(K’).

Define ¢ : Vert(K') — Vert(L) by ¢(p) = w;, where w; is some vertex with st(p) C f~!(st(w,)).

Then f(st(p)) C st(w;) = st(p(p))-

To show that ¢ is a simplicial map, let {pg,p1,--- ,pm} spans a simplex in K.
m

By Lemma 1, ﬂ st(p;) # 0. Then
i=0

0+ f (ﬂ st<pi>> c () £ (stpi)) € (st ((pi) -
=0 =0 =0

Then again by Lemma 1, {¢(po), ¢(p1), -, ©(pm)} spans a simplex in L.



Lemma 4: If ¢ : K — L is a simplicial map, then ¢ (K(q)) c LD for every q. Therefore,
dim K = n implies that im|p| C |L(].

Proof:
If s € K9 then s = [pg, - -- ,p,] for some r < q.

Then 90(3) = [(p(po)a e 730(p7‘)] S L(Q)
So, p(K@) c L.

Then p(K) € L™ when dim K = n.
For z € |K|, x = > ; \ips and |p|(z) = D1 bi(x)e(p;) where p; € Vert(K).
Then |¢|(z) € |L™)]. So, im|p| C |L(™)].

Lemma 5: If ¢ : K — L is a simplicial approzimation to f : |K| — |L|, then |¢| ~ f.

Proof:
Enough to show that Yz € |K]|, |¢|(z) and f(z) are in the same simplex. Then the map
H(t,x) = (1 —t)|p|(x) + tf(x) where t € [0, 1] is the desired homotopy.

Need to show: whenever x € |K| and f(z) € s° where s is a simplex of L, then |p|(x) € s.

Let = € t°, where t = [po, p1,--- ,Pq| is a simplex in K.
Then x € st(p;) for some i =1,--- ,q.
Which implies f(x) € st (¢(pi))-
So, s° C st (¢(pi)).
Then ¢(p;) is a vertex of s for each i =1,--- ,q.

Since |p|(z) is determined by ¢(p;), |¢|(z) € s.
Theorem: If m < n, then every continuous map f : S™ — S™ is nullhomotopic.

Proof:
Let K be the m—skeleton of an (m + 1) simplex, and let L be the n—skeleton of an (n + 1) simplex.
We may regard f as a continuous map from |K| into |L|.
By the Simplicial Approximation Theorem, let ¢ : Sd? K — L be a simplicial approximation to f.
Since dim Sd? = dim K = m, by Lemma 4, im|p| C |L(™)].
Hence || is not surjective. In particular im|p| C |L| — {point}, which is contractible.
So, |¢| is nullhomotopic. But by Lemma 5, |¢| ~ f.

Therefore, f is nullhomotopic.



References

[1] Joseph J. Rotman. An Introduction to Algebraic Topology. Springer, GTM 119, 1998.

[2] Gregory R Chambers. Quantitative nullhomotopy and rational homotopy type. Geometric and
Functional Analysis, 28(3), 2018.



