Simplicial Approximation Theorem[1]

Mohammad Tariquel Islam

<u>Definition</u>: A subset A of euclidean space is called **affine** if, for every pair of distinct points $x, x' \in A$, the line determined by x, x' is contained in A.

<u>Definition</u>: An **affine combination** of points p_0, p_1, \dots, p_m in \mathbb{R}^n is a point x with

$$x = t_0 p_0 + t_1 p_1 + \dots + t_m p_m,$$
 where $\sum_{i=0}^{m} t_i = 1$

. A convex combination is an affine combination for which $t_i \geq 0$ for all i.

<u>Definition</u>: An ordered set of points $\{p_0, p_1, \dots, p_m\} \subset \mathbb{R}^n$ is **affine independent** if $\{p_1 - p_0, p_2 - p_0, \dots, p_m - p_0\}$ is a linearly independent subset of the real vector space \mathbb{R}^n .

Remark: Any linearly independent subset of \mathbb{R}^n is an affine independent set; the converse is not true.

<u>Definition</u>: Let $\{p_0, p_1, \dots, p_m\}$ be an affine independent subset of \mathbb{R}^n . The convex set spanned by this set, denoted by $[p_0, p_1, \dots, p_m]$, is called the (affine) m-simplex with vertices p_0, p_1, \dots, p_m .

<u>Definition</u>: If $\{p_0, \dots, p_m\}$ is affine independent, the **barycenter** of $[p_0, \dots, p_m]$ is $(1/m+1)(p_0+p_1+\dots+p_m)$.

<u>Definition</u>: Let $[p_0, p_1, \dots, p_m]$ be an m-simplex. The face opposite p_i is

$$[p_p, \dots, \hat{p_i}, \dots, p_m] = \left\{ \sum t_j p_j : t_j \ge 0, \sum t_j = 1, \text{ and } t_i = 0 \right\}$$

(^means "delete"). The **boundary** of $[p_0, p_1, \cdots, p_m]$ is the union of its faces.

<u>Definition</u>: Let S denote the n-simplex $[p_0, \dots, p_n]$, diam $S = \sup_{i,j} ||p_i - p_j||$.

<u>Definition</u>: If $s = [v_0, v_1, \dots, v_q]$ is a q-simplex, then we denote its vertex set by $Vert(s) = \{v_0, \dots, v_q\}$.

<u>Definition</u>: If s is a simplex, then a **face** of s is a simplex s' with $Vert(s') \subset Vert(s)$; one writes $s' \leq s$. If s' < s (i.e. $Vert(s') \subseteq Vert(s)$), then s' is called a **proper face** of s.

<u>Definition</u>: A finite Simplicial complex K is a finite collection of simplexes in some euclidean space such that:

- (i) if $s \in K$, then every face of s also belongs to K;
- (ii) if $s, t \in K$, then $s \cap t$ is either empty or a common face of s and of t.

We write Vert(K) to denote **vertex set** of K, namely, the set of all 0-simplexes in K.

<u>Definition</u>: If K is a simplicial complex, its **underlying space** |K| is the subspace (of the ambient euclidean space)

$$|K| = \bigcup_{s \in K} s,$$

the union of all simplexes in K.

Remark: Clearly, |K| is a compact subspace of some euclidean space. Note that if s is a simplex in K, then |s| = s.

<u>Definition</u>: A topological space X is a **polyhedron** if there exists a simplicial complex K and a homeomorphism $h: |K| \to X$. The ordered pair (K, h) is called a **triangulation** of X.

<u>Definition</u>: If K is the family of all proper faces of an n-simplex s, then there is a triangulation (K, h) of S^{n-1} . Denote this simplicial complex K by \dot{s} .

<u>Definition</u>: Let s be a q-simplex. If q = 0, define $s^o = s$; if q > 0, define $s^o = s - \dot{s}$. One calls s^o an **open** q-simplex.

<u>Definition</u>: Let K be a simplicial complex and let $p \in Vert(K)$. Then the **star** of p, denoted by st(p), is defined by

$$\operatorname{st}(p) = \bigcup_{\substack{s \in K \\ p \in \operatorname{Vert}(s)}} s^o \subset |K|.$$

<u>Definition</u>: If K is a simplicial complex, define its **dimension**, denoted by dim K, to be

$$\dim K = \sup_{s \in K} \{\dim s\}$$

(a q-simplex has dimension q).

<u>Definition</u>: Let K and L be simplicial complexes. A **simplicial map** $\varphi: K \to L$ is a function $\varphi: \operatorname{Vert}(K) \to \operatorname{Vert}(L)$ such that whenever $\{p_0, p_1, \cdots, p_q\}$ spans a simplex of K, then $\{\varphi(p_0), \varphi(p_1), \cdots, \varphi(p_q)\}$ spans a simplex of L.

<u>Definition</u>: A map of the form $|\varphi|:|K|\to |L|$, where $\varphi:K\to L$ is a simplicial map, is called **piecewise linear**.

Let $\operatorname{Vert}(K) = \{p_0, p_1, \cdots, p_n\}$. Every point $x \in |K|$ belongs to the interior of exactly one simplex in K. Let $s = [p_0, p_1, \cdots, p_k]$ be the simplex. We have $x = \sum_{i=1}^k \lambda_i p_i$ with $\sum_{i=1}^k \lambda_i = 1$ and $\lambda_i > 0$ for all i. Setting $b_i(x) = \lambda_i$ for $0 \le i \le k$ and $b_i(x) = 0$ for $k+1 \le i \le n$ we have $x = \sum_{i=0}^n b_i(x) p_i$.

$$|\varphi|(x) = \sum_{i=0}^{n} b_i(x)\varphi(p_i).$$

<u>Definition</u>: Let K and L be simplicial complexes, let $\varphi : K \to L$ be simplicial map, and let $f : |K| \to |L|$ be continuous. Then φ is a **simplicial approximation** to f if, for every vertex p of K,

$$f(\operatorname{st}(p)) \subset \operatorname{st}(\varphi(p)).$$

Remark: It is easy to see that $|\varphi|(\operatorname{st}(p)) \subset \operatorname{st}(\varphi(p))$. Thus we are saying that f behaves like $|\varphi|$ in that it carries neighboring simplexes of p inside the union of the simplexes near $\varphi(p)$.

<u>Definition</u>: If s is a simplex, let b^s denote its barycenter. If K is a simplicial complex, define Sd K, the **barycentric subdivision** of K, to be the simplicial complex with

$$Vert(Sd\ K) = \{b^s : s \in K\}$$

and with simplexes $[b^{s_0}, b^{s_1}, \dots, b^{s_q}]$, where the s_i are simplexes in K with $s_0 < s_1 < \dots < s_q$.

<u>Definition</u>: If K is a simplicial complex, then

$$\mathbf{mesh}\ K = \sup_{s \in K} \{ \operatorname{diam}(s) \},$$

where diam(s) denotes the diameter of s.

<u>Definition</u>: A subcomplex L of a simplicial complex K is a simplicial complex contained in K (i.e., $s \in L$ implies that $s \in K$) with $\text{Vert}(L) \subset \text{Vert}(K)$.

<u>Definition</u>: For any $q \ge -1$, the q-skeleton of K, denoted by $K^{(q)}$, is the subcomplex of K consisting of all simplexes $s \in K$ with $\dim(s) \le q$.

<u>Lemma 1</u>: If $p_0, p_1, \dots, p_n \in \text{Vert}(K)$, then $\{p_0, p_1, \dots, p_n\}$ spans a simplex of K if and only if $\bigcap_{i=0}\operatorname{st}(p_i)\neq\emptyset.$

 (\Rightarrow) Assume $\{p_0, p_1, \cdots, p_n\}$ spans a simplex s of K.

Then $s^o \neq \emptyset$ and $s^o \subset \operatorname{st}(p_i)$ for all $i = 0, \dots, n$.

Then s^o is in the intersection.

$$(\Leftarrow) \text{ Suppose} \bigcap_{i=0}^n \operatorname{st}(p_i) \neq \emptyset.$$
 Then $\exists s^o \subset |K|$ such that $s^o \subset \operatorname{st}(p_i)$ for all $i=0,\cdots,n$.

Then $p_0, p_1, \dots, p_n \in \text{Vert}(s)$

Since $p_0, p_1, \dots, p_n \in \text{Vert}(K), [p_0, p_1, \dots, p_n]$ is a face of some simplex of K.

Therefore, $[p_0, p_1, \cdots, p_n]$ is a simplex of K.

Lemma 2: If mesh $K = \mu$ and $p \in Vert(K)$, then diam(st(p)) $\leq 2\mu$.

Proof:

For any point $x \in st(p)$, $|x - p| \le \mu$, because x and p are in the same simplex. Then for any $x, y \in st(p)$,

$$|x - y| \le |x - p| + |p - y| \le 2\mu.$$

Lemma 3: If dim K = n, then

(i)

mesh Sd
$$K \leq (n/n+1)$$
 mesh K .

(ii) For $q \ge 1$,

mesh
$$\operatorname{Sd}^q K \leq (n/n+1)^q \operatorname{mesh} K$$
.

Proof:

(i) Let $s = [b^{s_0}, b^{s_1}, \dots, b^{s_q}]$, where $b^{s_i} \in \text{Vert}(\text{Sd } K)$ and s_i are simplexes in K with $s_0 < s_1 < \dots < s_q$, $i = 1, \dots, q$.

Then diam(s) = $\sup_{s,i} ||b^{s_i} - b^{s_j}||$.

WLOG, let i < j, then

$$||b^{s_i} - b^{s_j}|| \le \frac{n_j}{n_j + 1} \operatorname{diam}(s_j),$$
 (using theorem 2.9)

where $n_j = \dim s_j$.

Since $s_j \in K$, diam $(s_j) \le \text{mesh } K$

Also since $n_j \le n$, we have $\frac{n_j}{n_j+1} \le \frac{n}{n+1}$.

Then $\operatorname{diam}(s) \leq \frac{n}{n+1} \operatorname{mesh} K$.

Therefore, mesh Sd $K \leq \frac{n}{n+1}$ mesh K.

(ii) Clear for q = 1. By induction, assume that the statement is true for q - 1. Let $s = [b^{s_0}, b^{s_1}, \dots, b^{s_m}]$, where $b^{s_j} \in \text{Vert}(\text{Sd}^q K)$ and s_j are simplexes in $\text{Sd}^{q-1} K$ with $s_0 < s_1 < \dots < s_m, j = 1, \dots, m$. Using the same argument in part (i),

we get mesh $\operatorname{Sd}^q K \leq \frac{n}{n+1}$ mesh $\operatorname{Sd}^{q-1} K$ $\leq \left(\frac{n}{n+1}\right) \left(\frac{n}{n+1}\right)^{q-1} \text{ mesh } K$ $= \left(\frac{n}{n+1}\right)^q \text{ mesh } K$

<u>Theorem</u>: (Simplicial Approximation Theorem) If K and L are simplicial complexes and if $f: |K| \to |L|$ is continuous, then there is an integer $q \ge 1$ and a simplicial approximation $\varphi: Sd^q K \to L$ to f.

Proof:

Let $Vert(L) = \{w_j : j \in J\}$ and let $\{st(w_j)\}$ be the open cover of |L| by its stars.

Since f is continuous, $\{f^{-1}\operatorname{st}(w_i)\}$ is an open cover of |K|.

Now, since |K| is compact metric, this cover has a Lebesgue number $\lambda > 0$.

By Lemma 3, we can choose q large enough so that mesh $\operatorname{Sd}^q K < \frac{1}{2}\lambda$.

Then by Lemma 2, $\operatorname{diam}(\operatorname{st}(p)) < \lambda$ for every $p \in \operatorname{Vert}(\operatorname{Sd}^q K)$.

Define $\varphi : \operatorname{Vert}(\operatorname{Sd}^q K) \to \operatorname{Vert}(L)$ by $\varphi(p) = w_j$, where w_j is some vertex with $\operatorname{st}(p) \subset f^{-1}(\operatorname{st}(w_j))$.

Such a w_j exists because diam(st(p)) $< \lambda$. If there are more than one such w_j , then pick any one.

Then
$$f(\operatorname{st}(p)) \subset \operatorname{st}(w_j) = \operatorname{st}(\varphi(p))$$
.

Need to show: φ is a simplicial map. i.e. if $\{p_0, p_1, \dots, p_m\}$ spans a simplex in $\mathrm{Sd}^q K$, then $\{\varphi(p_0), \varphi(p_1), \dots, \varphi(p_m)\}$ spans a simplex in L.

Now if $\{p_0, p_1, \dots, p_m\}$ spans a simplex in $\mathrm{Sd}^q K$, then by Lemma 1, $\bigcap_{i=0}^m \mathrm{st}(p_i) \neq \emptyset$. Then

$$\emptyset \neq f\left(\bigcap_{i=0}^{m} \operatorname{st}(p_i)\right) \subset \bigcap_{i=0}^{m} f\left(\operatorname{st}(p_i)\right) \subset \bigcap_{i=0}^{m} \operatorname{st}\left(\varphi(p_i)\right).$$

Then again by Lemma 1, $\{\varphi(p_0), \varphi(p_1), \cdots, \varphi(p_m)\}$ spans a simplex in L.

<u>Proposition</u>: (Quantitative Simplicial Approximation Theorem) For finite simplicial complexes X and Y with piecewise linear metrics, there are constants C and C' such that any L-Lipschitz map $f: X \to Y$ has a CL-Lipschitz simplicial approximation via a homotopy of thickness CL + C' and width C'. [2]

<u>Corollary:</u> Let K and L be simplicial complexes, and let $f:|K| \to |L|$ be continuous. Assume that K' is a simplicial complex such that

- (i) |K'| = |K|;
- (ii) $\operatorname{Vert}(K) \subset \operatorname{Vert}(K')$;
- (iii) mesh K' is "small".

then there exists a simplicial approximation $\varphi: K' \to L$ to f.

Proofs

Here we repeat the proof of the above theorem.

Let $Vert(L) = \{w_j : j \in J\}$ and let $\{st(w_j)\}$ be the open cover of |L| by its stars.

Since f is continuous, $\{f^{-1}\operatorname{st}(w_j)\}$ is an open cover of |K|.

Now, since |K| is compact metric, this cover has a Lebesgue number $\lambda > 0$.

Since mesh K' is small, we can say that mesh $K' < \frac{1}{2}\lambda$.

Then by Lemma 2, $\operatorname{diam}(\operatorname{st}(p)) < \lambda$ for every $p \in \operatorname{Vert}(K')$.

Define $\varphi : \operatorname{Vert}(K') \to \operatorname{Vert}(L)$ by $\varphi(p) = w_j$, where w_j is some vertex with $\operatorname{st}(p) \subset f^{-1}(\operatorname{st}(w_j))$.

Then $f(\operatorname{st}(p)) \subset \operatorname{st}(w_i) = \operatorname{st}(\varphi(p))$.

To show that φ is a simplicial map, let $\{p_0, p_1, \dots, p_m\}$ spans a simplex in K'.

By Lemma 1, $\bigcap_{i=0}^{m} \operatorname{st}(p_i) \neq \emptyset$. Then

$$\emptyset \neq f\left(\bigcap_{i=0}^{m} \operatorname{st}(p_i)\right) \subset \bigcap_{i=0}^{m} f\left(\operatorname{st}(p_i)\right) \subset \bigcap_{i=0}^{m} \operatorname{st}\left(\varphi(p_i)\right).$$

Then again by Lemma 1, $\{\varphi(p_0), \varphi(p_1), \dots, \varphi(p_m)\}$ spans a simplex in L.

Lemma 4: If $\varphi: K \to L$ is a simplicial map, then $\varphi(K^{(q)}) \subset L^{(q)}$ for every q. Therefore, dim K = n implies that $\operatorname{im}|\varphi| \subset |L^{(n)}|$.

Proof:

If $s \in K^{(q)}$, then $s = [p_0, \dots, p_r]$ for some $r \leq q$. Then $\varphi(s) = [\varphi(p_0), \dots, \varphi(p_r)] \in L^{(q)}$. So, $\varphi(K^{(q)}) \subset L^{(q)}$.

Then $\varphi(K) \subset L^{(n)}$ when dim K = n. For $x \in |K|$, $x = \sum_{i=0}^{n} \lambda_i p_i$ and $|\varphi|(x) = \sum_{i=0}^{n} b_i(x) \varphi(p_i)$ where $p_i \in \text{Vert}(K)$. Then $|\varphi|(x) \in |L^{(n)}|$. So, $\text{im}|\varphi| \subset |L^{(n)}|$.

<u>Lemma 5</u>: If $\varphi: K \to L$ is a simplicial approximation to $f: |K| \to |L|$, then $|\varphi| \simeq f$.

Proof:

Enough to show that $\forall x \in |K|$, $|\varphi|(x)$ and f(x) are in the same simplex. Then the map $H(t,x) = (1-t)|\varphi|(x) + tf(x)$ where $t \in [0,1]$ is the desired homotopy.

Need to show: whenever $x \in |K|$ and $f(x) \in s^o$ where s is a simplex of L, then $|\varphi|(x) \in s$.

Let $x \in t^o$, where $t = [p_0, p_1, \dots, p_q]$ is a simplex in K.

Then $x \in \operatorname{st}(p_i)$ for some $i = 1, \dots, q$.

Which implies $f(x) \in \operatorname{st}(\varphi(p_i))$.

So, $s^o \subseteq \operatorname{st}(\varphi(p_i))$.

Then $\varphi(p_i)$ is a vertex of s for each $i=1,\cdots,q$.

Since $|\varphi|(x)$ is determined by $\varphi(p_i)$, $|\varphi|(x) \in s$.

Theorem: If m < n, then every continuous map $f: S^m \to S^n$ is nullhomotopic.

Proof:

Let K be the m-skeleton of an (m+1) simplex, and let L be the n-skeleton of an (n+1) simplex. We may regard f as a continuous map from |K| into |L|.

By the Simplicial Approximation Theorem, let $\varphi : \operatorname{Sd}^q K \to L$ be a simplicial approximation to f. Since dim $\operatorname{Sd}^q = \dim K = m$, by Lemma 4, $\operatorname{im}|\varphi| \subset |L^{(m)}|$.

Hence $|\varphi|$ is not surjective. In particular $\operatorname{im}|\varphi| \subset |L| - \{\operatorname{point}\}\$, which is contractible.

So, $|\varphi|$ is nullhomotopic. But by Lemma 5, $|\varphi| \simeq f$.

Therefore, f is nullhomotopic.

References

- [1] Joseph J. Rotman. An Introduction to Algebraic Topology. Springer, GTM 119, 1998.
- [2] Gregory R Chambers. Quantitative nullhomotopy and rational homotopy type. Geometric and Functional Analysis, 28(3), 2018.