Instability of standing waves for nonlinear Klein-Gordon equation and related system

Masahito Ohta ¹

Department of Mathematics, Faculty of Science, Saitama University, Saitama 338-8570, Japan E-mail: mohta@rimath.saitama-u.ac.jp

Grozdena Todorova ²

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300, USA

E-mail: todorova@math.utk.edu

1 Introduction and Main Results

We study the strong instability of standing wave solutions $e^{i\omega t}\varphi(x)$ for the nonlinear Klein-Gordon equation of the form

(1)
$$\partial_t^2 u - \Delta u + u = |u|^{p-1} u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,$$

where $N \geq 2$, $1 , <math>-1 < \omega < 1$, and $\varphi \in H^1(\mathbb{R}^N)$ is a nontrivial solution of

(2)
$$-\Delta \varphi + (1 - \omega^2)\varphi - |\varphi|^{p-1}\varphi = 0, \quad x \in \mathbb{R}^N.$$

From the result of Ginibre and Velo ([9]) the Cauchy problem for (1) is locally well-posed in the energy space $X := H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N)$. Thus for any $(u_0, u_1) \in X$ there exists a unique solution $\vec{u} := (u, \partial_t u) \in C([0, T_{\text{max}}); X)$ of (1) with $\vec{u}(0) = (u_0, u_1)$ such that either $T_{\text{max}} = \infty$ (global existence) or $T_{\text{max}} < \infty$ and $\lim_{t \to T_{\text{max}}} ||\vec{u}(t)||_X = \infty$ (finite time blowup). Moreover, the solution u(t) satisfies the conservation laws of energy and charge:

$$E(\vec{u}(t)) = E(u_0, u_1), \quad Q(\vec{u}(t)) = Q(u_0, u_1), \quad t \in [0, T_{\text{max}}),$$

¹Research of the first author supported in part by JSPS grant 14740099

²Research of the second author supported in part by NSF grant DMS-0245578

where

(3)
$$E(u,v) = \frac{1}{2} \|v\|_2^2 + \frac{1}{2} \|\nabla u\|_2^2 + \frac{1}{2} \|u\|_2^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1},$$

(4)
$$Q(u,v) = \operatorname{Im} \int_{\mathbb{R}^N} \overline{u}v \, dx.$$

Let $\phi_{\omega} \in H^1(\mathbb{R}^N)$ be the ground state (the least energy solution) of (2). We refer to [2, 30] for the existence of ϕ_{ω} , and to [12] for the uniqueness of ϕ_{ω} . The stability of standing waves $e^{i\omega t}\phi_{\omega}$ for (1) has been studied by many authors. First, we consider the orbital stability of $e^{i\omega t}\phi_{\omega}$. Shatah [27] proves that $e^{i\omega t}\phi_{\omega}$ is orbitally stable if p < 1 + 4/N and $\omega_c < |\omega| < 1$, where

(5)
$$\omega_c = \sqrt{\frac{p-1}{4 - (N-1)(p-1)}}.$$

Shatah and Strauss [29] prove that $e^{i\omega t}\phi_{\omega}$ is orbitally unstable when p<1+4/N and $|\omega|<\omega_c$ or when $p\geq 1+4/N$ and $|\omega|<1$. Here, we say that a standing wave solution $e^{i\omega t}\varphi$ is orbitally stable for (1) if for any $\varepsilon>0$ there exists $\delta>0$ such that if $(u_0,u_1)\in X$ satisfies $||(u_0,u_1)-(\varphi,i\omega\varphi)||_X<\delta$, then the solution u(t) of (1) with $\vec{u}(0)=(u_0,u_1)$ exists globally and satisfies

$$\sup_{t>0} \inf_{\theta \in \mathbb{R}, y \in \mathbb{R}^N} \|\vec{u}(t) - e^{i\theta}(\varphi(\cdot + y), i\omega\varphi(\cdot + y))\|_X < \varepsilon.$$

Otherwise, $e^{i\omega t}\varphi$ is said to be orbitally unstable.

Next, we consider instability of $u_{\omega}(t)$ in stronger sense. Berestycki and Cazenave [1] prove that the ground state standing wave $e^{i\omega t}\phi_{\omega}$ for the nonlinear Klein-Gordon equations (1) is very strongly unstable (see Definition 1 below) when the frequency $\omega=0$ (see also [26]). Shatah [28] proves that the ground state standing wave $e^{i\omega t}\phi_{\omega}$ for the nonlinear Klein-Gordon equations with general nonlinearity is strongly unstable (see Definition 2 below) when $\omega=0$ and $N\geq 3$. Recently, the authors in [22] prove that the ground state standing waves $e^{i\omega t}\phi_{\omega}$ for the nonlinear Klein-Gordon equation (1) are very strongly unstable when the frequency $|\omega|\leq \sqrt{(p-1)/(p+3)}$ and $N\geq 3$. Here, we give the definitions of very strong instability and strong instability.

Definition 1 (very strong instability) We say that $e^{i\omega t}\varphi$ is very strongly unstable for (1) if for any $\varepsilon > 0$ there exists $(u_0, u_1) \in X$ such that $||(u_0, u_1) - (\varphi, i\omega\varphi)||_X < \varepsilon$ and the solution u(t) of (1) with $\vec{u}(0) = (u_0, u_1)$ blows up in finite time.

Definition 2 (strong instability) We say that $e^{i\omega t}\varphi$ is *strongly unstable* for (1) if for any $\varepsilon > 0$ there exists $(u_0, u_1) \in X$ such that $\|(u_0, u_1) - (\varphi, i\omega\varphi)\|_X < \varepsilon$ and the solution u(t) of (1) with $\vec{u}(0) = (u_0, u_1)$ either blows up in finite time or exists globally and satisfies $\limsup_{t\to\infty} \|\vec{u}(t)\|_X = \infty$.

Note that, by the definitions, if $e^{i\omega t}\varphi$ is very strongly unstable then it is strongly unstable, and that if $e^{i\omega t}\varphi$ is strongly unstable then it is orbitally unstable.

Before stating our main results, we recall instability results for the nonlinear Schrödinger equation

(6)
$$i\partial_t u + \Delta u + |u|^{p-1}u = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N.$$

Let $\omega > 0$ and $\phi_{\omega} \in H^1(\mathbb{R}^N)$ be the ground state of

(7)
$$-\Delta \varphi + \omega \varphi - |\varphi|^{p-1} \varphi = 0, \quad x \in \mathbb{R}^N.$$

It is known that for any $\omega > 0$ the standing wave solution $e^{i\omega t}\phi_{\omega}$ for (6) is orbitally stable when 1 , and it is very strongly unstable when <math>1 + 4/N (see [1, 7]). Moreover, for the critical case <math>p = 1 + 4/N, for any $\omega > 0$ and any nontrivial solution $\varphi \in H^1(\mathbb{R}^N)$ of (7), it is known that the standing wave $e^{i\omega t}\varphi$ is very strongly unstable for (6) (see [32]). For general theory of orbital stability and instability of solitary waves, we refer to Grillakis, Shatah and Strauss [10, 11].

We state our main results.

Theorem 1 Let $N \geq 2$, $1 , <math>\omega \in (-1,1)$ and ϕ_{ω} be the ground state of (2). Assume that $|\omega| \leq \omega_c$ if p < 1 + 4/N, where the critical frequency ω_c is given by (5). Then, the standing wave $e^{i\omega t}\phi_{\omega}$ for nonlinear Klein-Gordon equation (1) is strongly unstable in the sense of Definition 2.

Can we refine further this instability result? Namely, can we prove in certain cases that standing wave $e^{i\omega t}\phi_{\omega}$ for (1) is very strongly unstable in the sense of Definition 1? The result of Cazenave [5] gives an answer of this question for the restricted range for the exponent p of nonlinearity 1 for <math>N = 2 and $1 for <math>N \ge 3$. Cazenave proves that any global solution u(t) of (1) is uniformly bounded in X, i.e., $\sup_{t\ge 0} \|\vec{u}(t)\|_X < \infty$, if 1 and <math>N = 2, and if $1 and <math>N \ge 3$. Therefore, for this range of the exponent p, Theorem 1 together with the result of Cazenave gives us a very strongly instability result in the sense of Definition 1 for ground state standing waves $e^{i\omega t}\phi_{\omega}$ of the NLKG equation (1). Using an argument in Merle and Zaag [17], we can extend the result of Cazenave and prove the uniform boundedness of global solutions of (1) in X when $1 and <math>N \ge 2$. The following Lemma holds.

Lemma 2 Let $N \ge 2$ and $1 . If <math>\vec{u} \in C([0, \infty), X)$ is a global solution of (1), then $\sup_{t>0} ||\vec{u}(t)||_X < \infty$.

Therefore, from Theorem 1 and Lemma 2 we deduce the following.

Corollary 3 In addition to the assumptions in Theorem 1, let 1 if <math>N = 2, 3, and that $1 if <math>N \ge 4$. Then, the ground state standing wave $e^{i\omega t}\phi_{\omega}$ for the nonlinear KG equation (1) is very strongly unstable in the sense of Definition 1.

Remark. Let us mention that when the exponent p of nonlinearity is in the range $1 + 4/(N-1) we can not give better instability results than those in Theorem 1 for ground state standing waves <math>e^{i\omega t}\phi_{\omega}$ of the nonlinear KG equation (1).

For the critical frequency $\omega = \omega_c$ in the case 1 , we have the following.

Theorem 4 Let $N \geq 2$, $1 and <math>\varphi \in H^1(\mathbb{R}^N)$ be any nontrivial, radially symmetric solution of (2) with $\omega = \omega_c$. Then, the standing wave solution $e^{i\omega_c t}\varphi$ of nonlinear KG equation (1) is very strongly unstable in the sense of Definition 1. The same assertion is true for $\omega = -\omega_c$.

For the existence of infinitely many radially symmetric solutions of (2), we refer to [3].

As mentioned above, a similar result of Theorem 4 is known for the nonlinear Schrödinger equation (6) (see [32]) in the critical case p = 1 + 4/N, without assuming the radial symmetry of solution of (7) and the restriction on space dimensions $N \ge 2$.

The proofs of Theorems 1 and 4 are based on using local versions of the virial type identities.

To prove instability of the ground state Shatah in [28] considers a local version of the following identity

(8)
$$\frac{d}{dt} \operatorname{Re} \int_{\mathbb{R}^N} x \cdot \nabla u \partial_t \bar{u} \, dx = N K_1(\vec{u}(t)),$$

$$K_1(u, v) := -\frac{1}{2} \|v\|_2^2 + \left(\frac{1}{2} - \frac{1}{N}\right) \|\nabla u\|_2^2 + \frac{1}{2} \|u\|_2^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1}.$$

Since the integral in the left-hand side of (8) is not well-defined on the energy space X, we need to approximate the weight function x in (8) by suitable bounded functions. To control error terms by the approximation, initial perturbations are restricted to being radially symmetric and the decay estimate for radially symmetric functions in $H^1(\mathbb{R}^N)$:

(9)
$$||w||_{L^{\infty}(|x| \ge m)} \le Cm^{-(N-1)/2} ||w||_{H^1}$$

(see [30]) is employed. The assumption $N \ge 2$ is needed here. This kind of approach has been also used for blowup problem of NLS (6) (see, e.g., [20, 21, 14, 15, 16, 18, 19]).

In the proof of Theorem 1 for the case $p \ge 1 + 4/N$, we use a local version of the virial identity

(10)
$$-\frac{d}{dt}\operatorname{Re}\int_{\mathbb{R}^N} \{2x \cdot \nabla u + Nu\} \partial_t \bar{u} \, dx = P(u(t)),$$

where

$$P(u) := 2\|\nabla u\|_2^2 - \frac{N(p-1)}{p+1}\|u\|_{p+1}^{p+1}.$$

Note that (10) follows from (8) and

(11)
$$\frac{1}{2} \frac{d^2}{dt^2} \|u(t)\|_2^2 = \frac{d}{dt} \operatorname{Re} \int_{\mathbb{R}^N} u \partial_t \overline{u} \, dx = -K_2(\vec{u}(t)),$$
$$K_2(u, v) = -\|v\|_2^2 + \|\nabla u\|_2^2 + \|u\|_2^2 - \|u\|_{p+1}^{p+1},$$

and that the functional P appears in the virial identity for the nonlinear Schrödinger equation (6):

(12)
$$\frac{d^2}{dt^2} ||xu(t)||_2^2 = 4P(u(t)).$$

For the case p < 1 + 4/N, we use a local version of the identity

(13)
$$-\frac{d}{dt}\operatorname{Re}\int_{\mathbb{R}^N} \{2x \cdot \nabla u + (N+\alpha)u\}\partial_t \bar{u} \, dx = K(\vec{u}(t)),$$

where $\alpha := 4/(p-1) - N$ and

(14)
$$K(u,v) := -\alpha \|v\|_2^2 + \alpha \|u\|_2^2 + (\alpha+2) \{ \|\nabla u\|_2^2 - \frac{2}{n+1} \|u\|_{p+1}^{p+1} \}$$

(cf. [29, page 185]). Note that

(15)
$$K(u,v) = P(u) + \alpha K_2(u,v)$$
$$= -2(\alpha+1)\|v - i\omega u\|_2^2 + 2(\alpha+2)(E - \omega Q)(u,v)$$
$$-2\alpha\omega Q(u,v) - 2\{1 - (\alpha+1)\omega^2\}\|u\|_2^2$$

and that $1 - (\alpha + 1)\omega^2 \ge 0$ if and only if $|\omega| \le \omega_c$.

Further, we consider the Klein-Gordon-Zakharov system

(16)
$$\partial_t^2 u - \Delta u + u + nu = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,$$

(17)
$$c_0^{-2}\partial_t^2 n - \Delta n = \Delta(|u|^2), \quad (t, x) \in \mathbb{R} \times \mathbb{R}^N,$$

where N = 2, 3 and $c_0 > 0$ is a constant. The system (16)-(17) describes the interaction of Langumiur waves and ion acoustic waves in a plasma. The complex valued function u denotes the fast time scale component of electric field raised by electrons, and the real valued function n denotes the deviation of ion density (see [34, 4, 8]).

We consider instability of standing wave solutions

$$(u_{\omega}(t,x), n_{\omega}(t,x)) = (e^{i\omega t}\phi_{\omega}(x), -|\phi_{\omega}(x)|^2)$$

for (16)-(17), where $-1 < \omega < 1$, and $\phi_{\omega} \in H^1(\mathbb{R}^N)$ is the ground state of

(18)
$$-\Delta \varphi + (1 - \omega^2)\varphi - |\varphi|^2 \varphi = 0, \quad x \in \mathbb{R}^N.$$

The well-posedness of the Cauchy problem for (16)-(17) in the energy space is studied by Ozawa, Tsutaya and Tsutsumi [25]. Here, the energy space Y is defined by $Y = H^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N) \times L^2(\mathbb{R}^N) \times \dot{H}^{-1}(\mathbb{R}^N)$. When N = 3 and $c_0 \neq 1$, it is proved in [25] that for any $(u_0, u_1, n_0, n_1) \in Y$ there exists a unique solution $\mathbf{u} := (u, \partial_t u, n, \partial_t n) \in C([0, T_{\text{max}}); Y)$ of (16)-(17) with initial data $\mathbf{u}(0) = (u_0, u_1, n_0, n_1)$ satisfying the conservation laws of the energy $H(\mathbf{u}(t)) = H(\mathbf{u}(0))$ and the charge $Q(\mathbf{u}(t)) = Q(\mathbf{u}(0))$ for all $t \in [0, T_{\text{max}})$, where Q is defined by (4), and

(19)
$$H(u, v, n, \nu) = \frac{1}{2} \|v\|_{2}^{2} + \frac{1}{4c_{0}^{2}} \|\nu\|_{\dot{H}^{-1}}^{2} + \frac{1}{2} \|\nabla u\|_{2}^{2} + \frac{1}{2} \|u\|_{2}^{2} + \frac{1}{4} \|n\|_{2}^{2} + \frac{1}{2} \int_{\mathbb{R}^{N}} |u|^{2} n \, dx.$$

For global existence results for the case $c_0 = 1$, see [24] and [31].

By a similar method as in the proof of Theorem 1 for the case $p \ge 1 + 4/N$ together with an argument in Merle [16] for the Zakharov system, we have the following.

Theorem 5 Let $N=2,3, \ \omega \in (-1,1)$ and ϕ_{ω} be the ground state of (18). Then, the standing wave $(e^{i\omega t}\phi_{\omega}, -|\phi_{\omega}|^2)$ of KGZ system (16)-(17) is strongly unstable in the following sense. For any $\lambda > 1$, the solution $\mathbf{u}(t)$ of (16)-(17) with initial data $\mathbf{u}(0) = (\lambda\phi_{\omega}, \lambda i\omega\phi_{\omega}, -\lambda^2|\phi_{\omega}|^2, 0)$ either blows up in finite time or exists globally and satisfies $\lim \sup_{t\to\infty} \|\mathbf{u}(t)\|_Y = \infty$.

Remark. It is known (see [4]) that the negative initial energy $H(\mathbf{u}(0))$ implies that the solution $\mathbf{u}(t)$ of (16)-(17) either blows up in finite time or blows up in infinite time, namely the solution exists globally and satisfies the asymptotic condition $\limsup_{t\to\infty} \|\mathbf{u}(t)\|_Y = \infty$. Since the energy

$$H(\lambda\phi_{\omega}, \lambda i\omega\phi_{\omega}, -\lambda^2 |\phi_{\omega}|^2, 0) > 0$$

for λ close to 1, the result in [4] is not applicable to Theorem 5.

Next, we consider the very strong instability of $(e^{i\omega t}\phi_{\omega}, -|\phi_{\omega}|^2)$ for the system (16)-(17). Since the second equation (17) of the Klein-Gordon-Zakharov system is massless, it seems difficult to obtain an uniform boundedness of global solutions for (16)-(17) similar to Lemma 2. Therefore, for the standing wave $(e^{i\omega t}\phi_{\omega}, -|\phi_{\omega}|^2)$ we do not deduce a very strong instability similar to the instability result in corollary 3 of Theorem 1. However, using the method in our previous paper [22], we obtain the following very strong instability result for small frequencies.

Theorem 6 Let N=3, $|\omega|<1/\sqrt{3}$ and ϕ_{ω} be the ground state of (18). Then, the standing wave $(e^{i\omega t}\phi_{\omega}, -|\phi_{\omega}|^2)$ of the KGZ system (16)-(17) is very strongly unstable in the following sense. For any $\lambda > 1$, the solution $\mathbf{u}(t)$ of (16)-(17) with the initial data $\mathbf{u}(0) = (\lambda \phi_{\omega}, \lambda i \omega \phi_{\omega}, -\lambda^2 |\phi_{\omega}|^2, 0)$ blows up in a finite time.

In the next section, we give a sketch of the proof of Theorem 1. For the proofs of Lemma 2, Theorems 4, 5 and 6, see [23].

2 Outline of the proof of Theorem 1

Here, we present a short sketch of the proof of Theorem 1. For the details, see [23]. First, we consider the case $p \ge 1 + 4/N$. We define

(20)
$$J_{\omega}(u) = \frac{1}{2} \|\nabla u\|_{2}^{2} + \frac{1 - \omega^{2}}{2} \|u\|_{2}^{2} - \frac{1}{p+1} \|u\|_{p+1}^{p+1},$$

(21)
$$d_{\omega}^{1} = \inf\{J_{\omega}(u) : u \in H^{1}(\mathbb{R}^{N}) \setminus \{0\}, \ P(u) = 0\},$$

(22)
$$\mathcal{R}^{1}_{\omega} = \{(u, v) \in X : (E - \omega Q)(u, v) < d^{1}_{\omega}, \ P(u) < 0\}.$$

Note that

(23)
$$(E - \omega Q)(u, v) = J_{\omega}(u) + \frac{1}{2} ||v - i\omega u||_{2}^{2},$$

(24)
$$P(u) = 2\partial_{\lambda} J_{\omega}(\lambda^{N/2} u(\lambda \cdot))|_{\lambda=1}.$$

The following Lemmas are crucial for the proof of Theorem 1 in this case.

Lemma 7 Let $N \ge 2$, $1 + 4/N \le p < 1 + 4/(N-2)$ and $\omega \in (-1,1)$. Then, we have the followings.

(i)
$$J_{\omega}(u) - \frac{1}{N(p-1)}P(u) > d_{\omega}^1$$
 for all $u \in H^1(\mathbb{R}^N)$ satisfying $P(u) < 0$.

(ii) The minimization problem (21) is attained at the ground state ϕ_{ω} of (2).

(iii)
$$\lambda(\phi_{\omega}, i\omega\phi_{\omega}) \in \mathcal{R}^1_{\omega} \text{ for all } \lambda > 1.$$

Lemma 8 Suppose that $N \geq 2$, $1 + 4/N \leq p < 1 + 4/(N-2)$ and $\omega \in (-1,1)$. If $(u_0, u_1) \in \mathcal{R}^1_{\omega}$, then the solution u(t) of (1) with $\vec{u}(0) = (u_0, u_1)$ satisfies

(25)
$$-\frac{1}{N(p-1)}P(u(t)) > d_{\omega}^{1} - (E - \omega Q)(u_{0}, u_{1}), \quad t \in [0, T_{\max}).$$

Proof of Theorem 1 for the case $p \ge 1 + 4/N$. Let $\lambda > 1$ and put

$$\delta := \frac{N(p-1)}{2} \{ d_{\omega}^1 - (E - \omega Q)(\lambda(\phi_{\omega}, i\omega\phi_{\omega})) \}.$$

Then, by Lemma 7 (iii), we have $\delta > 0$. Suppose that the solution u(t) of (1) with $\vec{u}(0) = \lambda(\phi_{\omega}, i\omega\phi_{\omega})$ exists for all $t \in [0, \infty)$ and is uniformly bounded in X, i.e.,

(26)
$$M_1 := \sup_{t \ge 0} \|\vec{u}(t)\|_X < \infty.$$

Note that u(t) is radially symmetric in x for all $t \geq 0$. For the solution u(t) of (1) and m > 0, we define a function $I_m^1(t)$ by

(27)
$$I_m^1(t) = 2 \operatorname{Re} \int_{\mathbb{R}^N} \Psi_m \partial_r u \partial_t \overline{u} \, dx + \operatorname{Re} \int_{\mathbb{R}^N} \Phi_m u \partial_t \overline{u} \, dx,$$

where

(28)
$$\Phi_m(r) = \Phi\left(\frac{r}{m}\right), \quad \Psi_m(r) = \frac{1}{r^{N-1}} \int_0^r s^{N-1} \Phi_m(s) \, ds$$

and $\Phi \in C^2([0,\infty))$ is a non-negative function such that

$$\Phi(r) = \begin{cases} N & \text{for } 0 \le r \le 1, \\ 0 & \text{for } r \ge 2, \end{cases} \qquad \Phi'(r) \le 0 \text{ for } 1 \le r \le 2.$$

Then, we have

$$\begin{split} &-\frac{d}{dt}I_{m}^{1}(t)\\ &=2\int_{\mathbb{R}^{N}}\Psi_{m}'|\nabla u|^{2}\,dx-\frac{p-1}{p+1}\int_{\mathbb{R}^{N}}\Phi_{m}|u|^{p+1}\,dx-\frac{1}{2}\int_{\mathbb{R}^{N}}\Delta\Phi_{m}|u|^{2}\,dx\\ &\leq P(u(t))+\frac{N(p-1)}{p+1}\int_{|x|>m}|u(t,x)|^{p+1}\,dx+\frac{C_{0}}{m^{2}}\|u(t)\|_{2}^{2} \end{split}$$

for all $t \geq 0$, where C_0 is a positive constant independent of m. By (9) and (26), we have

$$\int_{|x| \ge m} |u(t,x)|^{p+1} dx \le ||u(t)||_{L^{\infty}(|x| \ge m)}^{p-1} ||u(t)||_{2}^{2}$$

$$\le Cm^{-(N-1)(p-1)/2} ||u(t)||_{H^{1}}^{p+1} \le CM_{1}^{p+1} m^{-(N-1)(p-1)/2}$$

for all $t \geq 0$ and m > 0. Note that we assume $N \geq 2$. Thus, there exists $m_0 > 0$ such that

$$\sup_{t\geq 0} \left(\frac{N(p-1)}{p+1} \int_{|x|>m_0} |u(t,x)|^{p+1} dx + \frac{C_0}{m_0^2} ||u(t)||_2^2 \right) < \delta.$$

Then, by Lemma 8, we have $(d/dt)I_{m_0}^1(t) \ge \delta$ for all $t \ge 0$, which implies $\lim_{t\to\infty} I_{m_0}^1(t) = \infty$. On the other hand, there exists a constant $C = C(m_0) > 0$ such that $I_{m_0}^1(t) \le 0$

 $C\|\vec{u}(t)\|_X^2 \leq CM_1^2$ for all $t \geq 0$. This is a contradition. Hence, for any $\lambda > 1$, the solution u(t) of (1) with $\vec{u}(0) = \lambda(\phi_\omega, i\omega\phi_\omega)$ either blows up in finite time or exists for all $t \geq 0$ and $\limsup_{t\to\infty} \|\vec{u}(t)\|_X = \infty$. This completes the proof of Theorem 1 for the case $p \geq 1 + 4/N$.

Next, we consider the case where p < 1 + 4/N. For this case, we need a variational characterization of the ground state ϕ_{ω} of (2) different from that of the case $p \ge 1 + 4/N$. We consider

(29)
$$K_{\omega}^{0}(u) = \alpha(1 - \omega^{2}) \|u\|_{2}^{2} + (\alpha + 2) \{ \|\nabla u\|_{2}^{2} - \frac{2}{n+1} \|u\|_{p+1}^{p+1} \},$$

(30)
$$d_{\omega}^{0} = \inf\{J_{\omega}(u) : u \in H^{1}(\mathbb{R}^{N}) \setminus \{0\}, \ K_{\omega}^{0}(u) = 0\},$$

(31)
$$\mathcal{R}^0_\omega = \{ (u, v) \in X : (E - \omega Q)(u, v) < d^0_\omega, \ K^0_\omega(u) < 0 \},$$

where $\alpha = 4/(p-1) - N > 0$. Note that

$$K_{\omega}^{0}(u) = 2\partial_{\lambda}J_{\omega}(\lambda^{\beta}u(\lambda\cdot))|_{\lambda=1}, \quad \beta = \frac{\alpha+N}{2} = \frac{2}{p-1}.$$

The following Lemmas play an essential role in the proof of Theorem 1 for the case p < 1 + 4/N, as Lemmas 7 and 8 do for the case $p \ge 1 + 4/N$.

Lemma 9 Let $N \ge 2$, $1 and <math>\omega \in (-1,1)$. Then, we have the following:

(i)
$$\frac{1-\omega^2}{\alpha+2}||u||_2^2 > d_\omega^0$$
 for all $u \in H^1(\mathbb{R}^N)$ satisfying $K_\omega^0(u) < 0$.

- (ii) The minimization problem (30) is attained at the ground state ϕ_{ω} of (2).
- (iii) $\lambda(\phi_{\omega}, i\omega\phi_{\omega}) \in \mathcal{R}^{0}_{\omega} \text{ for all } \lambda > 1.$

Lemma 10 Suppose that $N \geq 2$, $1 and <math>\omega \in (-1,1)$. If $(u_0, u_1) \in \mathcal{R}^0_{\omega}$, then the solution u(t) of (1) with $\vec{u}(0) = (u_0, u_1)$ satisfies

$$\frac{1-\omega^2}{\alpha+2}||u(t)||_2^2 > d_{\omega}^0, \quad t \in [0, T_{\text{max}}).$$

Now, instead of $I_m^1(t)$ defined by (27), we consider a function

(32)
$$I_m^2(t) = I_m^1(t) + \alpha \operatorname{Re} \int_{\mathbb{R}^N} u \partial_t \bar{u} \, dx,$$

where $\alpha := 4/(p-1) - N$. Using this function $I_m^2(t)$ and based on Lemmas 9 and 10, we can prove Theorem 1 for the case p < 1 + 4/N in a way similar to the case $p \ge 1 + 4/N$.

References

- [1] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris. 293 (1981) 489–492.
- [2] H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Arch. Rat. Mech. Anal. 82 (1983) 313–345.
- [3] H. Berestycki and P. L. Lions, *Nonlinear scalar field equations II*, Arch. Rat. Mech. Anal. **82** (1983) 347–375.
- [4] L. Bergé, B. Bidégaray and T. Colin, A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence, Physica D 95 (1996) 351–379.
- [5] T. Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Aanl. **60** (1985) 36–55.
- [6] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
- [7] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982) 549–561.
- [8] R. O. Dendy, *Plasma Dynamics*, Oxford University Press, Oxford, 1990.
- [9] J. Ginibre and G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z. **189** (1985) 487-505.
- [10] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987) 160–197.
- [11] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal. 94 (1990) 308–348.
- [12] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal., **105** (1989) 234–266.
- [13] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au + F(u)$, Trans. Amer. Math. Soc. **192** (1974) 1–21.

- [14] F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math. 45 (1992) 203–254.
- [15] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. **69** (1993) 427–454.
- [16] F. Merle, Blow-up results of virial type for Zakharov equations, Comm. Math. Phys. 175 (1996) 433–455.
- [17] F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math. 125 (2003) 1147–1164.
- [18] H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan 46 (1994) 557–586.
- [19] H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. **52** (1999) 193–270.
- [20] T. Ogawa and Y. Tsutsumi, Blow-up of H^1 solution for the nonlinear Schrödinger equation, J. Differential Equation 92 (1991) 317–330.
- [21] T. Ogawa and Y. Tsutsumi, Blow-up of H¹ solutions for the one-dimensional non-linear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc. 111 (1991) 487–496.
- [22] M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equations, Discrete Contin. Dyn. Syst. 12 (2005) 315–322.
- [23] M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system, to appear.
- [24] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. Henri Poincaré, Analyse non linéaire 12 (1995) 459–503.
- [25] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann. 313 (1999) 127–140.
- [26] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975) 273–303.

- [27] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. **91** (1983) 313–327.
- [28] J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc. **290** (1985) 701–710.
- [29] J. Shatah and W. Strauss, *Instability of nonlinear bound states*, Comm. Math. Phys. **100** (1985) 173–190.
- [30] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. **55** (1977) 149–162.
- [31] K. Tsutaya, Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, Nonlinear Anal. 27 (1996), 1373–1380.
- [32] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567–576.
- [33] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. **39** (1986) 51–68.
- [34] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908–914.