Math 231:Introduction to Ordinary Differential Equations Exam #1 (February 10, 2016)

Name:	The	Finotti'	

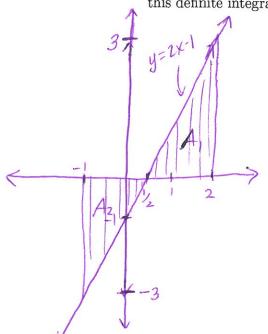
Please read each problem carefully, and indicate answers as directed. Your solutions **must** be supported by calculations or explanations: no points will be given for answers that are not accompanied by, or are not consistent with, supporting work. Partial credit can be earned for steps that make reasonable progress towards a solution.

Problem #	Points	Score
1	30	
2	30	
3	10	4
4	30	
Total	100	

- 1. For every part of this problem, let f(x) = 2x 1. We will find a formula for R_N for f on [1,2], and then compute $\int_1^2 f(x) dx$ by taking the limit $\lim_{N\to\infty} R_N$.
 - (a) [10 points] Give a formula for R_N , expressed using summation notation. Make clear in your work what Δx is equal to.

(b) [6 points] Simplify the formula for R_N using the power sum formulas given on the last page, and your other knowledge of how to compute with summations.

$$R_{N} = \sum_{i=1}^{N} f(1+\frac{i}{N}) = \sum_{i=1}^{N} \frac{1}{N} \left[2(1+\frac{i}{N}) - 1 \right] = \sum_{i=1}^{N} \frac{1}{N} \left[1+\frac{2i}{N} \right]$$


$$= \frac{1}{N} \sum_{i=1}^{N} (1) + \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} = \frac{1}{N} (N) + \frac{2}{N^{2}} \sum_{i=1}^{N} \frac{1}{N^{2}} \left(\frac{N(N+1)}{2} \right)$$

(c) [8 points] Find the value of $\int_1^2 f(x) dx$ by evaluating $\lim_{N\to\infty} R_N$.

$$\int_{1}^{2} f(x)dx = \lim_{N \to \infty} R_{N} = \lim_{N \to \infty} \left(1 + \frac{1}{N} \left(\frac{N(N+1)}{N}\right)\right) = \lim_{N \to \infty} \left(1 + \frac{N+1}{N}\right)$$

$$= \lim_{N \to \infty} \left(1 + 1 + \frac{1}{N}\right) = \frac{2}{N}$$

(d) [6 points] Finally, below is a graph of f(x). Use geometry to compute $\int_{-1}^{2} f(x) dx$. Show your work, or include an explanation for your result. (NOTICE the limits on this definite integral are different from the limits we had in the earlier parts!)

$$A_{1} = \frac{1}{2}b \cdot h = \frac{1}{2} \cdot (1\frac{1}{2})(3) = \frac{1}{2}(\frac{3}{2})(3) = \frac{9}{4}$$

$$A_{2} = \frac{1}{2}b \cdot h = \frac{1}{2}(1\frac{1}{2})(3) = \frac{9}{4}$$

$$\int_{1}^{2} f(x) dx = A_{1} - A_{2} = \frac{9}{4} - \frac{9}{4} = 0$$

3. [10 points] Let s(t) = position of an object at time t. If the velocity of the object is given by $v(t) = -t^2 + 4t + 8$ meters per second, what is displacement of the object after 3 seconds, if the initial position of the object is s(0) = 0?

displacement offer
$$3 \sec z = s(3) - 4(0)$$

and: $4(3) - 4(0) = \int_{0}^{3} s'(t)dt = \int_{0}^{3} v(t)dt = \int_{0}^{3} -t^{2} +4t +8dt$

$$= -\frac{1}{5}t^{3} + 2t^{2} + 8t\Big|_{0}^{3} = \left(-3^{2} + 18 + 24\right) - 0 m$$

(a) [12 points] Complete the table of indefinite integrals.

[== possess] coss	apacto tare tolore or anacon		
$\int f(x) dx$	F(x) + C	$\int f(x) dx$	F(x) + C
$\int kdx$	RX+C	$\int x^n dx$	X 11+1 + C
$\int \frac{1}{x} dx$	In/x/+C	$\int e^x dx$	ex+c
$\int \sin(x) dx$	-cos(x)+C	$\int \cos(x) dx$	An(x)+C
$\int \sec^2(x) dx$	·tan(x)+C	$\int \sec(x)\tan(x)dx$	sec(x)+C
$\int b^x dx$	(h(b)) bx+C	$\int \frac{1}{ x \sqrt{x^2-1}} dx$	arcsec(x)+(
$\int \frac{1}{\sqrt{1-x^2}} dx$	arcsin(x)+C	$\int \frac{1}{x^2+1} dx$	arctan(x)+

(b) [8 points] Let $\int_1^x e^{\sin(t)} dt$. Find A(1), A'(x), and $A'(\pi)$.

(b) [8 points] Let
$$\int_{1}^{x} e^{\sin(t)} dt$$
. Find $A(1)$, $A'(x)$, and $A'(\pi)$.

On board on board during exam

by FTC II,
$$A'(x) = e^{\sin(x)}$$

so $A'(\pi) = e^{\sin(\pi)}$.

(c) [8 points] Compute $\frac{d}{dx} \left(\int_0^{\ln(x)} \frac{t}{t^3+2} dt \right)$.

Let
$$A(x) = \int_0^x \frac{t}{t^3 + 2} dt \implies A'(x) = \frac{x}{x^3 + 2} \text{ by FTC II}$$

and $g(x) = h(x) \implies g'(x) = \frac{1}{x}$

So
$$\left(\int_{0}^{\infty} \frac{\ln(x)}{t^{3}+2} dt\right)' = \left(\int_{0}^{\infty} \frac{\ln(x)}{t^{3}+2} dt\right)' = \left(\int_{0$$

$$= \frac{\ln(x)}{\left(\ln(x)\right)^3+2} \cdot \frac{1}{X}$$

- 4. Evaluate the following:
 - (a) [7 points]

$$\int \frac{2(x+3)^2}{x} dx = \int \frac{2(x^2 + 6x + 9)}{x} dx$$

$$= 2 \int x + 6 + \frac{9}{x} dx = 2 \left(\frac{1}{2} x^2 + 6x + 9 \ln|x| \right) + C$$

(b) [7 points]

$$\int_{1}^{2} t \cos(3t^{2} - 4) dt \qquad \begin{cases} u = 3t^{2} - 4 \\ du = 6t dt \end{cases}$$

$$= \int_{6}^{4} coo(u) du = \int_{6}^{4} sin(u) \int_{-1}^{8} t = 1 \implies u = 3 - 4 = -1 \\ t = 2 \implies u = 12 - 4 = 8 \end{cases}$$

$$= \int_{6}^{4} (sin(8) - sin(-1)).$$
(58)

(c) [8 points]

$$\int \frac{(\ln(x))^{3/2}}{x} dx \qquad \text{let } u = \ln(x)$$

$$\Rightarrow du = \frac{1}{x} dx$$

$$\Rightarrow du = \frac{1}{x} dx$$

(c) [8 points]

Let
$$25x^2 = 4u^2$$

$$\Rightarrow 5x = 2u$$

$$\Rightarrow u = \frac{5}{2}x$$

$$\Rightarrow du = \frac{5}{2}dx$$

$$\Rightarrow \frac{2}{3}du = dx$$

$$\int \frac{1}{4+25x^2} dx = \int \frac{1}{4+4u^2} \cdot \frac{2}{5} du$$

$$= \frac{2}{5} \cdot \frac{1}{4} \int \frac{1}{1+u^2} du$$

$$= \frac{2}{5} \arctan(u) + C$$

$$= \frac{1}{10} \arctan(\frac{5}{2}x) + C$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

$$\sum_{i=1}^{N} i^2 = \frac{N^3}{3} + \frac{N^2}{2} + \frac{N}{6}$$

$$\sum_{i=1}^{N} i^3 = \frac{N^2(N+1)^2}{4}$$