
Leslie Matrix Models

October 29, 2013



Leslie Matrix Models

We’ll begin this topic through an example:



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults (in fact, only 2% each
year survive to the nymph stage, and 5% of nymphs survive to
adulthood).



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults (in fact, only 2% each
year survive to the nymph stage, and 5% of nymphs survive to
adulthood).

◮ Some die as eggs, some die as nymphs.



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults (in fact, only 2% each
year survive to the nymph stage, and 5% of nymphs survive to
adulthood).

◮ Some die as eggs, some die as nymphs.

◮ Locusts only reproduce during the adult stage of their life



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults (in fact, only 2% each
year survive to the nymph stage, and 5% of nymphs survive to
adulthood).

◮ Some die as eggs, some die as nymphs.

◮ Locusts only reproduce during the adult stage of their life - the
average female adult produces 1000 eggs before dying.



Leslie Matrix Models

We’ll begin this topic through an example:
We have a population of locusts that we want to track , but in order to
understand how the population grows/declines over time, we need to
actually keep track of what happens to it at each distinct life stage.
This is because:

◮ Not all locust eggs suvive to become adults (in fact, only 2% each
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◮ Locusts only reproduce during the adult stage of their life - the
average female adult produces 1000 eggs before dying.

◮ Adults die soon after reproduction.
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And so on, to see how the herd changes over 5 years.
OR, we can use the general solution ~p(t) = At~p(0) to see how it changes
over 5 years.

Either way, we obtain:

Year Calves Yearlings Adults Total
0 0 0 100 100
1 42 0 95 137
2 40 25 90 155
3 38 24 104 166
4 44 23 117 184
5 49 26 128 203

We clearly see the total female population is growing each year. While
the trend in each individual class is not so clear.
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individual per time step in class i , and Si is the percent of individual in
class i that survive to class i + 1 in each time step , if i < n. Sn is the
percent of individuals in the final class n that survive to the next year and
remain in the same class.
In Leslie matrix models we assume that we census the population after

reproduction and only the females are counted. We assume survival and
fecundity rates are constant over time. We don’t account for any other
effects, like overcrowing, natural disasters/weather effects, seasonal
changes, or harvesting of individuals from the population.
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◮ Leslie matrices ALWAYS have a unique positive eigenvalue.


