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◮ This means that our population is growing by 100% in each time
step.

◮ Leslie matrices ALWAYS have exactly one positive dominant
eigenvalue.
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◮ It turns out that when you have a transfer matrix (each entry is a
probability of moving from one state to another, AND the columns
sum to one),the dominant eigenvalue is always equal to 1.

◮ This means that long term, since we have ~x(t + 1) = λ~x(t), and
λ = 1, then ~x(t + 1) = ~x(t)... or the population reaches equillibrium
in the long term!

◮ This is exactly what we saw in the examples we did.

◮ Let’s do an example of finding the dominant eigenvalue for a
transfer matrix - say the simple wetland model

◮ But FIRST, we need to learn how to find a determinant...
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