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Appetizer: Aut(Fn) and cocommutative Hopf algebras

Let H be a cocommutative Hopf algebra.
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Associativity: =

Coassociativity: =

(e⌦ id)��=(id⌦e)��= id : = =

m�(h⌦ id)=m�(id⌦h)= id : = =

Compatibility of m and �: =
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m � (id⌦S)��= h � e = m � (S ⌦ id)�� :

S
= =

S

S2 = id : S S =

Compatibility of S and �: S =

S

S

Compatibility of S and m: S =

S

S

Cocommutativity: H

H

H

= H

H
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We define an action of End(Fn) on H⌦n as follows.
1 Let j : Fn ! Fn be an endomorphism. j(xi ) = wi .

2 Define j ·h
1

⌦ · · ·⌦hn as follows. If xi appears mi times in all of the
image words w

1

, . . . ,wn, consider �mi (hi ) = h(1)i ⌦ · · ·⌦h(mi )
i .

3 Then use (w
1

, . . . ,wn) as a template, substituting the factors of
�mi (hi ) for the occurrences of xi , applying S in the cases where xi is
inverted.

4 For example, if h : F
2

! F
2

is defined by x
1

7! x�1

2

x
1

, x
2

7! x�1

2

, then
the action of h on H⌦2 looks like:

h
1

S(h(1)
2

)h
1

h
2

S S(h(2)
2

)
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S S S
=

Puzzle: Show (s
12

h)3 = id using graphical calculus.

In order to show that Aut(Fn) acts in a well-defined way on H⌦n, one could
take a presentation for Aut(Fn) and verify that all of the relations are
satisfied via complex but fun graphical calculus arguments. There is also a
more categorical way of doing it.
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Definition
The Hopf algebra H acts on H⌦n via conjugation. That is, suppose h 2 H
and �2n(h) = h(1)⌦h(2)⌦ · · ·⌦h(2n�1)⌦h(2n), using Sweedler notation.
Then define

h ? (h
1

⌦ · · ·⌦hn) = h(1)h1

S(h(2))⌦ · · ·⌦h(2n�1)hnS(h(2n)).

Let H⌦n be the quotient of H⌦n by the subspace spanned by elements of
the form

(h� e(h) ·1)? (h
1

⌦ · · ·⌦hn),

i.e., this is the maximal quotient of H⌦n where the conjugation action of H
factors through the counit.
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Later on in the talk, the group

H2n�3(Out(Fn),T (V )⌦n)

will make an appearance, where Out(Fn) will act on T (V )⌦n with
T (V ) being the tensor (Hopf) algebra generated by V .

Now you know how the action is defined, and the appropriate sense of
suspense has been instilled!
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Main course: The Johnson Homomorphism and its cokernel

1 Mod(g ,1) is the mapping class group of a genus g surface with 1
boundary component.

2 p = p
1

(⌃g ,1) is the fundamental group.
3 Let p(k) be the kth term of the lower central series: p(1) = p and

p(k +1) = [p,p(k)].
4 The Dehn-Nielsen map Mod(g ,1)! Aut(p) induces a map

DNk : Mod(g ,1)! Aut(p/p(k)). The Johnson filtration

Mod(g ,1) =
0

◆
1

◆
2

◆ · · ·

is defined by k = kerDNk .
5 So

1

is the Torelli group.
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Let Jk = k/ k+1

⌦k. Then J =
M

k�1

Jk is a Lie algebra and an SP-module.

Question
What is the Lie algebra and SP-module structure of J?
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The classical Johnson homomorphism

1 Let V = H
1

(⌃g ,1;k).

2 Let L(V) =�
k�0

L
k

(V) be the free Lie algebra generated by V .
3 p(k)/p(k +1)⌦k⇠= L

k

(V)
4 Let j 2

1

⇢ Aut(p), and let B be a standard symplectic basis for V .
Then for every b 2 B, j(b) = bab for some ab 2 p(2). So we can
project ab to lie in L

2

(V)⇠=
V

2 V. Then

(b 7! ab) 2 Hom(V ,
^

2

V )⇠= V ⇤ ⌦
^

2

V

5 V is symplectic, so there is a canonical isomorphism V ⇠= V ⇤. It turns
out that imt is contained in the subset of V ⌦

V
2 V spanned by

elements a⌦ (b^ c)+ c ⌦ (a^b)+b⌦ (c ^a), which is a copy ofV
3 V ⇢ V ⌦

V
2 V . This gives rise to the classical Johnson

homomorphism.
t
1

:
1

⇣
^

3

V .
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The Higher Johnson homomorphisms

By the same procedure, one defines the higher order Johnson
homomorphism

tk : k ! V ⌦L
k+1

(V).

Theorem
tk : ( k/ k+1

)⌦k! V ⌦L
k+1

(V) is injective.

Note that �kV ⇤ ⌦L
k+1

(V)⇠= Der(L(V)) and so t has a Lie algebra as
a target, and indeed t is a Lie algebra homomorphism.

Theorem (Hain 1997)
im(t) is the Lie algebra generated by the image of elements in degree 1.
I.e. by

V
3(V ).
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Define Dk(V ) as the kernel of the bracketing map:

0 ! Dk(V )! V ⌦L
k+1

(V)! L
k+2

(V)! 0.

im(tk)⇢ Dk(V ). (Morita 1993)
The modules Dk(V ) are “easy” to understand. So to study Jk , we can
consider the Johnson cokernel

Ck = Dk(V )/ im(tk).

Another source of interest in the cokernel Ck is that Matsumoto and
Nakamura showed there exist Galois obstructions in Ck related to the
absolute Galois group Gal( / ). In particular, Deligne’s motivic
conjecture implies that the degree k part of the free graded Lie
algebra L(s

3

,s
5

,s
7

, · · ·) on odd generators embeds in C
2k (as a trivial

SP-module).
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Known classes in C

8k � 1, [2k +1]
SP

⇠= S2k+1(V )⇢ C
2k+1

. (Morita 1993)

8k � 1, [14k+1]
SP

⇢ C
4k+1

. (Enomoto-Satoh 2011)
Galois obstructions. [0]

SP

⇢ C
6

, . . .. (Matsumoto, Nakamura late 90’s)
Let Mw be the space of all classical Modular forms of weight w , and
let Sw be the space of cusp forms.

[2k ,2`]
SP

⌦S
2k�2`+2

⇢ C
2k+2`+2

[2k +1,2`+1]
SP

⌦M
2k�2`+2

⇢ C
2k+2`+4

(C-Kassabov-Vogtmann 2013)
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Low order calculations (Morita-Sakasai-Suzuki 2013)

C
1

= C
2

= 0
C

3

= [3]
SP

C
4

= [212]
SP

� [2]
SP

C
5

= [5]
SP

� [32]
SP

� [221]
SP

� [15]
SP

�2[21]
SP

�2[13]
SP

�2[1]
SP

C
6

=
2[412]

SP

� [32]
SP

� [321]
SP

� [313]
SP

� [2212]
SP

�2[4]
SP

�2[31]
SP

�
[31]

SP

�3[22]
SP

�3[212]
SP

�2[14]
SP

� [2]
SP

�5[12]
SP

�2[0]
SP

� [0]
SP

Red classes are part of the families due to Morita, Matsumoto-Nakamura,
Enomoto-Satoh, and CKV13.
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New obstructions

1 Let �ij : V⌦n ! V⌦(n�2) be the contraction of the ith and jth factors
by the symplectic form.

2 Let V hni ⇢ V⌦n be the intersection of the kernels of all �ij .
3 The dihedral group D

2n acts on V⌦n and V hni by visualizing the
tensor factors as lying on the vertices of a polygon. Reflection is
twisted by the sign (�1)n+1.

Theorem (C- 2013)

The coinvariants V hki
D2k

embed in Ck .
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4 C
1

= C
2

= 0
C

3

= [3]
SP

C
4

= [212]
SP

� [2]
SP

C
5

= [5]
SP

� [32]
SP

� [221]
SP

� [15]
SP

�2[21]
SP

�2[13]
SP

�2[1]
SP

C
6

= 2[412]
SP

� [32]
SP

� [321]
SP

� [313]
SP

� [2212]
SP

�2[4]
SP

�
3[31]

SP

�3[22]
SP

�3[212]
SP

�2[14]
SP

� [2]
SP

�5[12]
SP

�3[0]
SP

Conjecture

The part of Ck with partitions of size k is isomorphic to V hki
D2k

.
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Theorem (C-Kassabov 2014))

There is a map C ! H2n�3(Out(Fn);T (V )⌦n) with “large” image. If
H2n�3(Out(Fn);T (V )⌦n) =�l ml [l ]GL

, then imTr contains �l ml [l ]SP

.

n = 2: H1(GL
2

( ),T (V )⌦2) contains the family

[2k �1,12]
SP

⌦S
2k+2

and
([2k +1,12]

SP

� [2k ,2,1]
SP

� [2k ,13]
SP

)⌦M
2k+2

yielding obstructions in C
2k+3

and C
2k+5

.
Projecting T (V )⌦n ! S(V )⌦n recovers the CKV2013 obstructions.
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Tree interpretation of D(V )

D
3

(V ) =

8
>>><

>>>:

v
0

v
3

v
1

v
4

v
2

9
>>>=

>>>;
/IHX+AS+MultiLin

1 IHX: = �

2 AS:

J
1

J
2

J
3

= (�1)|s |

Js(1)

Js(2)Js(3)
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The bracket map

2

664

v
2

v
3

v
4

v
1

,

w
1

w
2

w
3

3

775= hv
1

,w
3

i
v
2

v
3

v
4

w
2

w
1

+

hv
1

,w
2

i
v
2

v
3

v
4

w
1

w
3

+ hv
1

,w
1

i
v
2

v
3

v
4

w
3

w
2

+hv
2

,w
3

i

v
3

v
4

v
1

w
2

w
1

+ · · ·
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Our strategy is to graphically define a map Tr on D(V ) and mod out by
enough relations so that it vanishes on iterated commutators of degree 1
elements.

Tr

0

B@

y
1

x
2

y
2

x
1

1

CA=

y
1

x
2

y
2

x
1

+

x
2

y
2

+

y
1

x
1

+
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In general, the target of Tr is defined to be the space C
1

H , spanned by
V -labeled trees with some univalent vertices connected by directed edges,
modulo IHX, AS and Multilinearity of the trees, and switching edge order
giving a sign. We quotient C

1

H by the following relations:
1

= 0 (Lollipop)

2
v

=

v
(Slide)

3

+ + = 0 (Jellyfish)
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Let ⌦(V ) = C
1

H /Lollipop+Slide+ Jellyfish.

Theorem
Tr : D(V )! ⌦(V ) vanishes on im(t), so induces an invariant of the
cokernel.

Proof.
1 Let t be a degree 1 tree.

2 Show Tr[t,X ] = [t,Tr(X )].
3 Done by induction.
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Tr[t,X ] = [t,Tr(X )]

2

64

w
1

w
2

w
3

, X

v
1

v
2

v
3

v
4

v
5

v
6

3

75= hw
1

,v
1

i w
2

w
3

X

v
2

v
3

v
4

v
5

v
6

+ · · · Tr7!

hw
1

,v
1

ihw
2

,w
3

i X

v
2

v
3

v
4

v
5

v
6

+ hw
1

,v
1

ihw
3

,v
5

i w
2 X

v
2

v
3

v
4

v
6

+

hw
1

,v
1

ihw
3

,v
5

ihw
2

,v
4

i X

v
2

v
3

v
6

+ c w
2

w
3

X

v
4

+ · · ·
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The terms of the form X

v
2

v
3

v
4

v
5

v
6

are zero by the Lollipop relation.

Terms of the form w
2 X

v
2

v
3

v
4

v
6

cancel with terms of the form

w
2 X

v
2

v
3

v
4

v
6

via the Slide relations. Terms of the form

X

v
2

v
3

v
6

cancel with X

v
2

v
3

v
6

and X

v
2

v
3

v
6

via the Jellyfish relation.
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The leftover terms, like w
2

w
3

X

v
4

are part of [t,Tr(X )]. Thus we

have shown that Tr([t,X ]) = [t,Tr(X )].
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Now break up ⌦(V ) into graded pieces:

⌦(V ) =
M

r ,s
⌦r ,s(V ),

where r is the rank of the graph (or the number of external edges) and s is
the number of V -labeled hairs.

1 ⌦
1,s(V )⇠= V⌦s

D2s
. This gives the Enomoto-Satoh trace.

2 Let ⌦r ,shV i ⇢ ⌦r ,s(V ) be spanned by graphs with labels in V hsi.
3 Theorem: Tr is onto ⌦r ,shV i, which follows from

C-Kassabov-Vogtmann 2013.
4 If r � 2 then �s�0

⌦r ,s(V )⇣ H2r�3(Out(Fr ),T (V )⌦r ). (C-Kassabov
2014)
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Questions

1 Does V hni
D2n

equal the partition size n part of Cn?

2 Calculate H2r�3(Out(Fr ),T (V )⌦r ) or H2r�3(Out(Fr ),S(V )⌦r )! We
almost have the r = 2 case solved.

3 Are the Galois obstructions related to the Morita classes in
µk 2 H4n(Out(F

2n+2

); )? Both first appear in degree 6.
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