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Abstract

It has often been wondered what type of geometric data finite type invariants can detect. The
answer is not obvious, their definition being combinatorial in spirit. In this paper we show that
these invariants can be interpreted as obstructions to a certain natural geometric question: does the
knot bound an embedded tower of surfaces into the three sphere? This is a question which arises
naturally in the theory of hierarchies of 3-manifolds. The towers of surfaces we consider are called
gropes, and can be thought of as a topological manifestation of the lower central series.

Gropes can also be thought of as representing a particular type of clasper surgery in the sense
of Habiro. In the last section of the paper we derive some surprising results about claspers which
are hopefully of independent interest.

This paper is a revised version of a previously posted paper. The last section relating to claspers
is completely new.
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1 Introduction

The precise statement of our result is as follows:

Theorem 1.1 If a knot bounds an embedded grope of class n in S3, then Vassiliev in-
variants up to degree dn

2
e taking values in any abelian group do not distinguish that knot

from the unknot.

together with the optimality result:

Theorem 1.2 For all n, there are knots bounding embedded gropes of class n in S3 which
are distinguished from the unknot by a type dn

2
e+ 1 invariant.

One might ask why dn
2
e? As a grope of class n represents an n-commutator, the

work of Ng and Stanford[NS] on n-triviality of group elements would suggest that n− 1
is the natural answer. The problem is that the natural moves that implement “letter
deletion” as considered in that paper cannot be realized independently. The factor of 2
that results is the same factor of 2 encountered by Goussarov [Go2], where he considers
non-independent moves. In fact his work directly implies that knots bounding embedded
class n gropes have trivial invariants up to degree bn

2
c − 1, by using, say moves of type

II (see section 3.2) without the restriction on the vertices.

It is not hard to show that the Alexander polynomial of a knot bounding a grope
of class ≥ 3 is trivial. Since the Alexander polynomial has associated to it finite type
invariants of arbitrarily large type, a converse to theorem 1.1 is not possible. In [CT] the
notion of grope cobordism is introduced. The analogous condition to bounding a grope
in this language is that the knot cobounds an annulus-like grope with the unknot. The
unknot may link with the knot geometrically. It turns out that the analog of theorem
1.1 holds with dn

2
e replaced by bn

2
c, and that a sort of converse holds: that if two knots

share type n invariants, they cobound an embedded grope of class n + 1.

An interesting consequence of the main theorem is that a knot bounding a grope of
arbitrarily large class cannot be distinguished from the unknot by finite type invariants.
It is a conjecture of Mike Freedman that this phenomenon is impossible. More precisely
he conjectures the related statement that in any three manifold, you cannot have an
infinite embedded grope, every stage of which is incompressible. In the case that the three
manifold is a knot complement, theorem 1.1 therefore reduces Freedman’s conjecture to
the famous open question of whether finite type invariants detect knottedness.

The definition of a finite type invariant is that a certain alternating sum over subsets
of crossing changes vanishes. This definition can be generalized by replacing the phrase
“crossing changes” by the word “homotopies.” See section 1.1 for a precise statement.

The way we prove theorem 1.1 is to construct certain homotopies, or moves, on the
embedded grope. These moves restrict to moves of the boundary and so can be plugged
into the finite type definition. The resulting relations allow us to keep writing the values
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of the invariants in terms of their values on simpler and simpler knots. The moves we use
are relatively obvious except in the case of the in-out trick. The in-out trick is a certain
pair of moves, and has some interesting consequences for the theory of claspers. (See
section 7). The majority of the paper is devoted to setting up these moves and analyzing
their effect. In section 6, theorem 1.1 is proved in a couple of pages using the moves
and the resulting alternating sum relations on the finite type invariants. In section 7, we
prove theorem 1.2, using the moves, Habiro’s clasper theory and the calculation of the
Jones weight system derived by Bar-Natan.

This line of research was stimulated by conversations with Mike Freedman and Peter
Teichner, and also by the work of Lin and Kalfagianni [LK]. I also wish to thank the
referee for much helpful advice.

1.1 A slight reformulation of the finite type axiom

For a cheerful introduction to the theory of finite type invariants see Bar-Natan’s original
paper [B-N].1

We would like to make a slight reformulation of the definition of a type n invariant
which will make our arguments easier to state later. The new (but equivalent) definition
is also aesthetically pleasing in that it makes sense for maps of any topological space into
any other.

Suppose h : S1 × I → S3 is a homotopy of a knot to another (embedded) knot. Let
Supp(h) ⊂ S3, the support of h, be the image of M × I where M ⊂ S1 is the closure of
all points which h does not fix. Two homotopies of the same knot are said to be disjoint
if their supports are disjoint.

Definition 1.1 Let ν be an abelian group valued knot invariant. ν is said to be of type
n if for every knot K ⊂ S3 and every collection of n + 1 disjoint homotopies {hi} of K,
we have the following: ∑

σ⊂{1,... ,n+1}
(−1)|σ|ν(Kσ) = 0

Here |σ| is the cardinality of σ and Kσ is the knot modified by the homotopies {hi|i ∈ σ}.

We will call a set of disjoint homotopies of a knot a scheme, which abbreviates Gous-
sarov’s term “variation scheme.”

If one fixes a planar diagram of the knot, a crossing change is a particular type of
homotopy. Such a homotopy pushes the top arc at a crossing down through the bottom
arc. Because of this, a type n invariant in the sense of definition 1.1 is a type n invariant
in the usual sense.

1Many of the conjectures contained in Bar-Natan’s paper have now been resolved in the negative.
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Conversely, one observes that an arbitrary homotopy of S1 in any 3-manifold which
begins and ends with an embedding is itself homotopic to a collection of disjoint finger
moves.2 (One just puts the homotopy in general position.) But any finger move is a
crossing change in some planar diagram of the knot. (Contract the arc which guides
the finger move until it is very short and vertical in the planar projection.) Hence in
definition 1.1 one can substitute the phrase “collections of crossing changes” for the word
“homotopy”. That type n invariants vanish on the alternating sums arising from n + 1
collections of crossing changes is well known. See [Go] lemma 5.2 for a proof.

A piece of terminology: A knot is said to be n-trivial if all type n invariants taking
values in any abelian group do not distinguish it from the unknot.

Convention: All our Vassiliev invariants will vanish on the unknot. This does not
affect our generality because every type m invariant is a constant (type 0 invariant) plus
a type m invariant vanishing on the unknot.

1.2 Gropes

Gropes are certain 2-complexes formed by gluing punctured surfaces together. (A punc-
tured surface is a surface with an open disk deleted.) They can be defined recursively
using a quantity called depth. There is an anomalous case when the depth is 1: the
unique grope of depth 1 is a circle. A grope of depth 2 is a punctured surface. To form
a grope, G, of depth n, first prescribe a symplectic basis {αi, βi} of a punctured surface,
F . That is, αi and βi are embedded curves in F which represent a basis of H1(F ;Z) such
that the only intersections among the αi and βi occur when αi and βi meet at a point.
(αi and βi represent dual classes.) Glue gropes of depth < n to each αi and βi with at
least one such added grope being of depth n− 1. (Note that we are allowing any added
grope to be of depth 1, in which case we are not really adding a grope.)

Definition 1.2 The surface F ⊂ G is called the bottom stage of the grope.

Definition 1.3 The tips of the grope are those prescribed symplectic basis elements of
the various punctured surfaces of the grope which do not have gropes of depth > 1 attached
to them.

For instance in figure 1 there are 9 tips.

Depth is just a tool for defining gropes. The class of the grope is more important
theoretically. It is defined recursively as follows.

Definition 1.4 The class of a depth 1 grope is 1 and that of a depth 2 grope is 2. Suppose
a grope G is formed by attaching the gropes of lower depth {Ai, Bi} to a symplectic

2A finger move is a homotopy of the knot guided by a framed arc from the knot to itself: one pushes a little finger of
the knot along one end of the arc until it crashes through the part of the knot at the other end of the arc.
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Figure 1: A grope of class 4 and depth 5.

basis {αi, βi} of the bottom stage, such that ∂Ai = αi ,∂Bi = βi. Then class(G) =
min
i
{class(Ai) + class(Bi)}.

For a class k grope G, the boundary ∂G represents an element of Γkπ1(G), the kth
term of the lower central series of the free group π1(G). For instance, in figure 1, ∂G
is a commutator of the form [x, [y, [z, [t, u]]]] · [[a, b], [c, d]], where each letter represents
a tip. (It can, in fact, also be shown that ∂G does not represent an element lying in
Γk+1π1(G)[FT].) A fundamental aspect of gropes is the following, which helps explain
their interest: If X is a topological space, σ ∈ π1(X) lies in Γkπ1(X) if and only if any
representative of σ extends to a map of a grope of class k into X [FT]. Restricting to
embedded gropes therefore gives a natural geometric strengthening of the concept of a
k-commutator., Embedded gropes have been especially useful in 4-manifold topology.
They appear throughout Freedman and Quinn’s book [FQ] and also feature prominently
in recent work of Cochran, Orr and Teichner[COT] concerning a filtration of the knot
concordance group. They also appear in [FT], [KT], and [K]. One of the interesting
aspects of the present paper is that it establishes a connection of the theory of embedded
gropes to 3 dimensional topology.

Finally, we’d like to give a couple of examples of embedded gropes.

First, the kth iterated untwisted Whitehead double, Whk(K), of any knot K bounds
an embedded grope of class k + 2. (As usual, the notation Whk(·) is ambiguous as there
are two possible untwisted Whitehead doubles of any knot. However, the statement
holds no matter what set of k choices one makes.) Figure 2 attempts to illustrate this
for the case k = 1. Here S is a Seifert surface for the original knot K, and is genus 1 in
the picture. The left-hand side of figure 2 is the embedded version of the abstract model
on the right. The left-hand side of figure 2 depicts the action near the “clasp part” of
the Whitehead double.
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Figure 2: The Whitehead double of a knot bounds a grope of class 3.

Figure 3: An embedded grope comes from a particular type of clasper surgery.

The iterated Whitehead double is not particularly representative of the general case
because most of the tips of such a grope do not link geometrically, as would be the case
in general. (To anticipate what comes later, the associated graph will have at most three
edges, depending on the Seifert surface of the original knot K.) In fact, it is well-known
that the Whitehead double of an n-trivial knot is n + 1-trivial. It follows that Whk(K)
is k + 1-trivial, about twice what our main theorem would yield.

Secondly, it is relatively easy to prove [CT] (also see section 7) that clasper surgeries
[H1,H2] of a very special form give rise to embedded gropes of class k. Namely a tree
clasper surgery on the unknot, where the clasper has k + 1 leaves all of which avoid
the spanning disk of the unknot except for one leaf called the root leaf which forms a
meridian to the unknot. See figure 3. Indeed the non-root leaves correspond to the tips
of the grope. This is in fact the most general embedded grope where each surface stage
is of genus one. For higher genus, one would add “boxes” to the clasper. A general tree
clasper surgery gives rise to a grope cobordism, a concept which is explored in [CT].
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1.3 The work of X.S. Lin and E. Kalfagianni

The main theorem of this paper is similar to and inspired by that of a preprint of X.S.
Lin and E. Kalfagianni[LK]. The main theorem of that paper is that knots which bound
certain immersed gropes of height n + 2 are l(n)-trivial, where lim

n→∞
l(n) = ∞. More

specifically, they consider immersed gropes such that all self-intersections occur away
from the bottom stage. There is also the restriction that the bottom stage is regular,
which among other things implies that the complement of the Seifert surface has free
fundamental group. (It should be noted that the obvious generalization of their and my
result, that all knots bounding immersed gropes are to some degree trivial, meets with
the problem that all knots bound immersed gropes of arbitrary class, since the lower
central series of a knot complement stabilizes after the second term.) Their method of
proof is to find crossing changes which implement the group-theoretic n−1-triviality (as
defined in [NS]) of an n-commutator.

It turns out in their case that one can not fully realize the degree of triviality present
in an n-commutator, the problem being the same as with the present case in that one
must be able to find n geometric independent moves which have the effect of deleting a
letter in the commutator. Examples due to the author suggest that at most a logarithmic
function of n of the moves can be realized, and indeed the function l(n) which they find
is logarithmic.

2 Grope foundations

Suppose a tip of an embedded grope bounds an embedded disk into the grope comple-
ment. Then one can delete an annular neighborhood of the tip and glue in two parallel
copies of the disk. This procedure is usually abbreviated by the term “surgery on the
disk.” This has the effect of reducing the genus of the surface stage to which the tip
belongs by one. Hence if the stage were already a punctured torus, it would become a
disk under this operation. In this case we can iterate the procedure, reducing the genus
of the next stage down. If each stage of an embedded grope is of genus one, and if a tip
bounds a disk into the embedded grope complement, then this procedure constructs a
spanning disk for the boundary knot.

In the case when the stages of a class n grope are possibly of higher genus, it is
straightforward to show that there is nevertheless a partition of the tips into n sets
of tips, such that if one of these sets of tips bounds disks into the embedded grope
complement, then iterated surgery on these disks provides a spanning disk for the knot.

Definition 2.1 A set of tips of an abstract grope, G, has the trivialization property if,
for each emebedding e : G → S3, where these tips bound disks into S3\e(G), the above
iterated surgery construction produces a spanning disk for e(∂G). Equivalently, if one
deletes the letters in π1(G) corresponding to these tips from the word ∂G, then this word
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Figure 4: The 1-complexes Ξ0 to Ξ5

trivializes.

For instance in figure 1, we observed that the boundary is the curve [x, [y, [z, [t, u]]]] ·
[[a, b], [c, d]] where each letter represents a tip. In this case, {{x, a}, {y, b}, {z, c}, {t, u, d}}
is a partition into four sets of tips with the trivialization property.

We now proceed to find a nice handlebody surrounding the embedded grope. It is
not hard to see that a grope deformation retracts onto its 1-spine, so that a regular
neighborhood of an embedded grope in S3 is indeed a handlebody. However it will be
convenient to keep more careful track of how the grope sits inside the handlebody. For
instance, theorem 2.1 will allow us to assume that the slice of the grope that sits in a
cross-section of a handle looks like one of the following family of 1-complexes, {Ξi}.

Definition 2.2 Ξi is defined recursively as follows. Ξ0 is a point. Suppose that Ξi has
been defined and has 2i univalent vertices. Form Ξi+1 from Ξi and 2i intervals by gluing
each univalent vertex of Ξi to the midpoint of an interval. See figure 4.

Before stating the theorem, we’d like to explain less formally what’s going on, by
considering what happens for a grope of class 3 both of whose surface stages are genus
one. Think of each of these surfaces as a disk with a pair of dual bands attached. To
form the grope one glues the core of one of the bands of one of the surfaces to the
boundary of the other surface. The result is pictured in figure 5. One can think of the
right-hand side of this picture as a standard unknotted embedding of the grope into S3.
The regular neighborhood of this embedding is a genus 3 handlebody. The cross-section
of one handle is just Ξ1 and the cross-section of the other two handles is Ξ2. In this
picture there are three obvious tips forming the cores of the three handles. Observe that
there are annuli which extend from these tips disjointly to the handlebody’s exterior.
For instance in the left-most Ξ2 handle, one extends the annulus upward from the page,
whereas in the other Ξ2 handle one extends the annulus downward from the page.

In the general case, it is convenient to have such annuli, (which we call pushing annuli),
which disjointly extend from each tip to the surface of the handlebody and allow us to
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Figure 5: A grope of class 3.

push out a tip to a curve on the surface of the handlebody. Drawing pictures like 5 will
convince the reader of the truth of the following theorem, although it is proved in detail
for the sake of completeness.

Theorem 2.1 Let G ⊂ S3 be an embedded grope. Then there is a handlebody which is
a ball Σ with handles {Hi = D2 × I} with the following properties:

(i) Σ ∩Hi = D2 × ∂I

(ii) Σ ∪⋃
i

Hi is a regular neighborhood of G.

(iii) ∀t ∈ I the cross-section G ∩ (D2 × {t}) ⊂ Hi is Ξl for some l depending on i.

(iv) vi ∩ (D2 × {t}) ⊂ Hi is the midpoint of Ξ1 ⊂ Ξl.

(v) There exist embedded pushing annuli Pi inside the handlebody where ∂Pi = viq vi
for some curve vi on the surface of the handlebody. The pushing annuli Pi also satisfy:

(a) Pi ∩G = vi

(b) int (Pi) ∩ int (Pj) = ∅ for i 6= j.

[Proof]

We construct the handlebody for an unknotted model of G, which we also call G, in
S3. Since it will be a regular neighborhood, the handlebody with all its decorations will
also be present for any embedding of G in S3. We proceed by induction.

In the case G is of depth 1, let the model of G be an unknot. Σ is a small ball around
a point of G, and the single handle is a regular neighborhood of the portion of the arc
of G that lies outside Σ. The pushing annulus P1 is just the intersection of a spanning
disk for G with the handlebody.

For the inductive step, suppose G is a grope formed by gluing gropes {Ai, Bi}gi=1 to a
symplectic basis {αi, βi}gi=1 of the bottom stage F . Each Ai and Bi is of lower depth than
G, so that by induction, for some models of Ai, Bi embedded disjointly in S3, there are

balls {ΣAi , ΣBi}gi=1 together with handles {HA
ij}m(i)

j=1 attached to each ΣAi and handles
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{HB
ij }n(i)

j=1 attached to each ΣBi , which satisfy the conclusions of the theorem. Denote

the pushing annuli PA
ij and PB

ij associated to the handles HA
ij and HB

ij respectively. Let

∂PA
ij = vAij q vAij and similarly for PB

ij . (Our convention is that the curve with a bar is
the pushed-out version of the unbarred curve.)

By modifying these we will construct a model of G in S3 with an appropriate han-
dlebody. First, modify the balls {ΣAi , ΣBi} so that a piece of the bottom stage of Ai

or Bi “sticks out” into S3 in the following way. Choose a subarc δAi of ∂Ai inside ΣAi .
(Recall ∂Ai = Ai if depth(Ai) = 1.) If depth(Ai) > 1, let εAi be an arc which is a parallel
push-off rel. endpoints of δAi into the bottom stage of Ai. If depth(Ai) = 1, let εAi be a
parallel push-off rel. endpoints into the pushing annulus PA

i1 . In either case, let Si be a
sphere inside ΣAi which intersects Ai ∪

⋃
j

Pij exactly as the arc εAi . Delete the inside of

Si from ΣAi and also delete an open neighborhood of an arc which connects Si, inside of
ΣAi , with the surface of the handlebody ΣAi ∪

⋃
j

HA
ij away from Ai ∪

⋃
j

PA
ij . See figure 6.

We can also do this procedure for Bi.

Via this procedure, we obtain new handlebodies which surround the embedded gropes
{Ai, Bi} except for small subdisks of the bottom stage which jut out. (In the depth 1
case it is a subdisk of the pushing annulus which sticks out.)

The first step in creating the bottom stage of G is to glue annuli along their cores
to each ∂Ai and ∂Bi, perpendicularly to the bottom stages, or to the pushing annuli in
the depth 1 case. These annuli can be arranged to only jut out of each ΣAi0

and ΣBi0
along the arc δAi0 or δBi0 , and can be arranged to be disjoint, away from the attaching

curves, from {Ai, Bi, P
A
ij , P

B
ij }. If a handle HA

i0j0
or HB

i0j0
had a cross-section of ΞN then

after attaching a perpendicular annulus, the new cross-section is ΞN+1.

The next step is to plumb each Ai annulus together with the Bi annulus outside of
ΣA
i and ΣB

i to form a punctured torus Fi for each i = 1 . . . g. The core of the Ai annulus
will be αi and that of the Bi annulus will be βi. As pictured in figure 7 this may be done
so that the pieces of surfaces which jut out (whether they be bottom stages or pushing
annuli) remain with disjoint interiors.

Finally we form the bottom stage F by connecting the punctured tori {Fi} with
bands disjoint from everything except at their ends: run a band from F1 to F2, from
F2 to F3 . . . , from Fg−1 to Fg. The result is the embedded grope G, some of which
lies in some handlebodies. To complete the induction we will take these handlebodies
and form a new one completely surrounding G. The ball Σ is taken to be the union of
the ΣAi , ΣBi together with a regular neighborhood of the things that stick out of the
balls: the plumbed sections of annuli, the bands, and the jutting-out bottom stages or
pushing annuli of {Ai, Bi}. This added neighborhood may be assumed disjoint from the

pushed-out tips {vAij , vBij}. The handles are the collection of all the handles {HA
ij , H

B
ij }.

Again see figure 7. 2

11



          

�
Ai�

Ai

{H  }A
ij

�
A i

�
Ai

�
Ai

�
A isurface of

bottom stage of A

or pushing annulus

i

Figure 6: Pushing a piece of the grope or pushing annulus out of the ball.

2.1 The graph Γ(G)

Our task now is to construct a graph associated to an embedded grope which keeps track
of the interactions between tips, or, more precisely, the handles of which they form the
core.

First off, given an embedded grope, G, of class n, fix a partition of the set of tips into
sets with the trivialization property (definition 2.1) denoted V1 . . . Vn. As a matter of
notation we define Vi to be the collection of pushed-out tips of Vi.

In the case when the embedded grope has bottom stage of genus 1, we observe the
following convention. Notice that there are two “halves” of the grope: the embedded
subgropes attached to the bottom stage. Each collection of tips Vi can be chosen to lie
on one half of the embedded grope or the other. Choose the ordering so that every Vi
on one half and every Vj on the other half satisfy i < j.

A collection Vi is said to be framed unlinked if each v ∈ V i bounds a disk whose
interior intersects the grope only at handles not associated to a tip in Vi. This set of
disks is called a cap. (When a disk does intersect a handle, by general position we can
assume it does so in a single level D2×{t} for each connected component of intersection.)
If Vi is not framed unlinked, we say it is framed linked. The reason for this terminology
is that even if a collection of handles {Hi} looks like an unlink, some pushing annulus
may have nontrivial framing and so a pushed-out tip v may link with v and hence will
not be able to bound a disk into the grope complement.

Secondly, fix a generic projection (a homeomorphism S3\{∞} ∼= R2 ×R) so that the
1-manifolds with boundary, V i ∩Σ, together with the attaching regions for the handles,
are standardly arranged in decreasing order as the height function associated to the
projection increases as in figure 8. This is a side view of the ball, whereas usually in
projections the view is from above. It is reasonably clear that by sliding around the
handles over the ball we can put the embedded grope with its handlebody in the given
position with respect to the height function.

With these additional data fixed we can now define our graph.
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Figure 7: Forming the handlebody surrounding the grope.
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Definition 2.3 Let Γ(G) be the graph which has vertices V1, . . . Vn, and whose edges are
given as follows:

If Vi is framed linked, put an edge from Vi to itself.

If a pushed-out tip vi ∈ V i crosses over a pushed-out tip vj ∈ V j with i > j, put an
edge between Vi and Vj. Here “crosses over” refers to the fixed projection.

An example is shown in figure 9. In the picture, we are looking down on the handlebody
with respect to the height function. v3 crosses over v1 so there is an edge. v1 is knotted,
so there is a loop. v3 is unknotted but has a nontrivial framing, hence there is a loop at
this vertex also.

Back in the general setting, as an exercise note that if V1 is an isolated vertex, then the
knot ∂G is trivial. In this case, possibly after an isotopy, there is a level plane R2×{t0}
which separates the handles associated to the tips in V1 from all the other handles. By
hypothesis the pushed-out tips in V 1 bound disks which only hit the handles below the
level plane. But these disks can be surgered to lie above the plane using an innermost disk
argument. Beware that in general an isolated vertex does not imply triviality because it
does not imply that the handles associated to that vertex can be squeezed between level
planes away from the other handles. This is the case, for instance, in figure 9. v2 does
not bound a disk into the handlebody complement.

One final definition before closing the section.

Definition 2.4 A collection of vertices Vi1 , . . . , Vik is said to be free if for all 1 ≤ s, t ≤ k
there is no edge in the graph connecting Vis with Vit. (In particular, framed linked vertices
are excluded.)

An example is shown in figure 10.
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Figure 9: The regular neighborhood of the grope and its associated graph.

Figure 10: The circled vertices are a free collection of 4 vertices.
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3 The easy moves

Recall that the term “move” is synonomous with “homotopy.” The moves in this sec-
tion will take an embedded grope to another embedded grope. When restricted to the
boundary they give a homotopy of a knot to another knot.

3.1 Move type I, Killing an edge

Given an edge in the graph Γ, we define a move which has the effect of deleting the
edge. Suppose the edge is between Vi and Vj where i < j. That means that some of
the handles in Vj cross over some of the handles in Vi. Then the move is defined to
be the homotopy which switches these handle crossings, supported in balls which are
regular neighborhoods of the guiding arc of the crossing change. Next we describe how
to remove an edge from Vi to itself. To unknot a handle in Vi, first do handle crossings
of the handle with itself so that the handle bounds a disk which intersects only other
handles. However we must also make sure the handle is untwisted, which is to say that
the pushed-out tip of the handle bounds a disk which intersects only other handles. So
Dehn twist to remove the appropriate number of multiples of the meridian of the handle.
This twist is a homotopy supported in some small section of the handle D2 × [a, b]. Do
this for every handle in Vi to remove the edge.

Notice that any number of type I moves may be performed simultaneously, since the
supports are by construction disjoint, with the effect that the corresponding edges are
deleted in Γ.

3.2 Move type II, Moves on free sets of vertices

Given a free set of k vertices, F , we define k moves as follows. Since the set of vertices
is free, there are level planes which separate the collections of handles associated to
the tips in F , and which intersect the ball Σ in circles which lie standardly as level
circles between the attaching regions of the collections of handles. We can now choose
homotopies supported between the appropriate planes which contract the sets of handles
toward the ball to little handles whose pushed-out tips bound embedded disks. See
11. These moves obviously have disjoint support by construction, and further doing
any collection of them has the effect of trivializing at least one set of handles with the
trivialization property. This has the effect of unknotting the boundary of the embedded
grope.
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Figure 11: A type II move trivializing a handle.

4 Reducing to bottom stage of genus 1

One of the key moves we need we haven’t even defined yet, the so-called “In-Out trick.”
This is because it only works for gropes that have bottom stage of genus 1. It therefore
makes sense to first reduce the problem to that case.

4.1 The graph Γ̃.

Given an embedded grope G, we define a slightly different version of the graph defined in
section 2.1. Fix a projection of the handlebody where all the vi ∩ B occur in increasing
order as height decreases. For the graph, Γ̃ ,we let there be vertices vi for every tip of
the grope, as opposed to one for each of the n collections of tips with the trivialization
property. We put an edge from a vertex to itself if that tip is framed linked in the
previously defined sense (since it is just one tip you might say framed knotted instead),
and we draw an edge between two vertices if the corresponding handles cross in the
wrong order in the projection, as before.

In terms of the graph Γ̃ we can still do type Ĩ and type ĨI moves, defined in the
obvious analogous way. However, as analyzed at the beginning of section 2, the result
of doing a type ĨI move is no longer neccessarily to trivialize the knot but instead to
reduce the total genus of the grope, where total genus is defined as the sum of the genera
of all the stages of the grope.

Lemma 4.1 Let G be an embedded grope. If the graph Γ̃(G) has a free set of k vertices
then for any type k − 1 invariant νk−1, we have that νk−1(∂G) =

∑
i

± νk−1(∂Gi), where

Gi is an embedded grope of lower total genus than G, but of the same class.

[Proof]

Let S be the scheme of type ĨI moves defined above. Then
∑

σ⊂S(−1)|σ|νk−1(∂Gσ) =
0. If σ 6= ∅, then G modified by σ is of lower total genus as we just observed. 2.
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4.2 Genus 1 is sufficient

Lemma 4.2 If theorem 1.1 holds for embedded gropes with bottom stage of genus 1, then
it holds in general.

[Proof]

Let E(Γ̃) be the number of edges. Consider, toward a contradiction, a counterexample
which has minimal (total genus, E(Γ̃)), ordered lexicographically. This example has
bottom stage genus > 1, by assumption. Notice that Γ̃ has at least 2n vertices, since for
each pair of dual symplectic basis elements in the bottom stage we get at least n vertices.
I claim that E(Γ̃) ≤ dn

2
e. Otherwise, consider a scheme, S, consisting of dn

2
e+ 1 type Ĩ

moves.

If ν is a type dn
2
e invariant, we have,

ν(K) = −
∑

∅6=σ⊂S
(−1)|σ|ν(Kσ) (1)

where each of the Kσ on the right-hand side has fewer edges but equal total genus. Hence
each of these knots has reduced complexity, so that, by minimality each is dn

2
e-trivial.

That, of course implies that ν(Kσ) = 0 for each σ 6= ∅, and yields the equation ν(K) = 0,
for every ν of type dn

2
e, contradicting that K is a counterexample.

So E = E(Γ̃) ≤ dn
2
e. Recall that we argued that the number of vertices V exceeds or

equals 2n.

Let b0, b1 be the first two Betti numbers of the graph Γ̃. Then b0− b1 = χ = V −E ≥
2n− dn

2
e ≥ dn

2
e+ 1.

This shows there are at least dn
2
e + 1 contractible components of Γ. In particular

these components have no loops beginning and ending at the same vertex. Hence we can
choose a free set of dn

2
e+1 vertices by selecting one vertex from each of these components.

So by lemma 4.1, for every type dn
2
e invariant ν, ν(∂G) =

∑±ν(∂Gi) = 0 since each
Gi is of lower total genus. But this is a contradiction, since K was supposed to be a
counterexample. 2

5 The In-Out trick (The hard move)

Let G be an embedded grope whose bottom stage is of genus one. Then G divides
naturally into two halves: the two embedded subgropes attached to the bottom stage.
A vertex of the associated graph is a set of tips which lies on exactly one of these two
halves. Given a vertex, X, let GX denote the half of G on which lie the tips in X.
Suppose X is framed unlinked. The aim of this section is to construct a pair of moves,
{inX, outX} which have the following effect, at least when not done in conjunction with
other moves.
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in

out

�

Figure 12: The “in” and “out” arcs.

1) inX takes ∂G to ∂GX .

2) outX takes ∂G to ρ(∂GX).3

3) {inX, outX} takes ∂G to the unknot.

The two moves of the in-out trick are each divided into four phases. The expression
inX or outX will refer to just doing phases I and II. Phases III and IV are isotopies
which may or may not be possible if one is doing other moves in conjunction with the
in-out pair. This will be analyzed on a case-by-case basis as the need arises.

We proceed to describe the moves. Suppose X = {x1, . . . , xm}. Recall that each xi
is a tip in X. Let ∆x1 , . . . , ∆xm be a cap. That is, {∆xi} are disks such that ∪∆xi is
embedded, ∂(∪∆xi) = x1∪· · ·∪xm, and such that the disks’ interiors may only intersect
the handlebody at handles not associated to the the tips in X. Define two subarcs of
∂G called “in” and “out” as in figure 12, where α = ∂GX .

If a handle H intersects int∆xi0
, choose an arc inside ∆xi0

from H ∩ int∆xi0
to xi0 ,

terminating on the handle associated to xi0 . Do this for all such intersections of a handle
with the interior of the cap of X, choosing the arcs to all be disjoint.

We now describe a homotopy of G which does not preserve embeddedness but which
restricts to an isotopy of ∂G. The arcs we selected end on handles associated to X. The
cross-section of G inside the handle looks like some Ξi at that point along the handle.
Push each handle, H, hitting the interior of the cap down the arc we chose until its
intersection with the cap has been traded for two intersections with the top stage of G.
See figure 13.

Continue pushing each handle down through the successive stages of G in a small

3ρ is the map which reverses a knot’s orientation. It is unknown whether finite type invariants can detect a knot’s
orientation.
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Figure 13: The first step of the in-out trick.

neighborhood of the cross-section until all the intersections of each handle are with the
bottom stage of G. See figure 14.

Notice at this point that the knot ∂G never crossed itself, so that our procedure was
just an isotopy of ∂G. This preliminary isotopy will be called phase I of the in-out trick.

Phase I introduces many intersections with the bottom stage, and these are naturally
paired together. In figure 15, a typical such pair of intersections of a handle H with the
bottom stage of G is pictured. Here K = ∂G. Define the moves inX, outX by doing
the illustrated move for every such pair of intersections with the bottom stage. inX and
outX are clearly disjoint homotopies after phase I. Doing either inX or outX is called
phase II.

Figure 14: Pushing H down so that all intersections are with the bottom stage.
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H

in K out K	
	

Figure 15: The “in” and “out” moves.

We now analyze what happens when we do inX, outX or both. Doing both is the
easiest case to tackle since it yields an embedded grope with the tips in X bounding the
embedded disks {∆xi}. Doing both inX and outX therefore turns ∂G into an unknot.

Recall the curve α = ∂GX of figure 12. Let GX modified by phase I be called G′X .
G′X is embedded in the sense that it does not intersect itself, but it may intersect the
bottom stage of G if a handle that we pushed down comes from the GX half of G. We
can turn G′X into a disk ∆ by the construction at the beginning of section 2 in a regular
neighborhood of G′X ∪

⋃
i ∆xi . This disk may intersect the bottom stage of G if G′X does.

Now consider what happens when we do inX. All intersections of handles between the
“in” arc and α = ∂∆ have been removed. Consider the arc µ defined in figure 16. The
closed curve gotten by joining the endpoints of “in” and µ in the obvious way cobounds
an annulus with α. α bounds the disk ∆ in the complement of this annulus and of the
knot. It follows that the “in” arc is isotopic to µ in the complement of the rest of the
knot. This isotopy to µ is called Phase III. The “out” arc was never made to cross
itself, so after the “in” arc moves to µ, the “out” arc can be isotoped back to its original
position. But now the band dual to α pulls away, and we are left with α = ∂G′X = ∂GX .
See figure 16. This final isotopy is phase IV.

A similar analysis holds for doing outX, but one must pay attention to orientations.
If α is oriented the same way as the “in” arc, then it will be oriented oppositely to the
“out” arc. Hence after doing outX we get the knot ρ(∂G′X).

For a genus one surface, the “in” and “out” arcs are symmetric so the move outX
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in

Figure 16: The move inX gives the knot α bounding the grope GX .

gives the same (unoriented) result as inX. However, for a higher genus surface, the “out”
move no longer works, the problem occurring during phase IV, which is why we need the
bottom stage of G to be genus one.

We now give an example. Consider the knot bounding an embedded grope of class
3 pictured in the upper left-hand corner of figure 17. We will describe the in and out
moves on v2. Notice that the “in” and “out” arcs have been indicated in the picture.
The bold box indicates the region in which we will be doing the homotopy. Indeed the
moves will be described by substituting the pictures at the bottom of figure 17 into the
box. There is an obvious cap for v2, which is pictured in the upper right-hand corner of
figure 17. Doing phase I guided by the pictured arc is shown in the middle of the picture.
Finally, inv2, outv2 and {inv2, outv2} are pictured at the bottom of the figure.

In this case the curve “α” is unknotted, so that doing any combination of the in and
out moves ought to produce the unknot, which we invite the reader to verify.

5.1 A fun proof that all knots are 1-trivial

We now use the in-out trick to give a proof that every knot is 1-trivial. This also follows
from the main theorem and is well-known, but is good for illustrative purposes.

Suppose a knot, K, bounds a Seifert surface with k pairs of dual bands {xi, yi}ki=1.
Consider the scheme S = {s1, s2} where s1 is the move which unknots and untwists
the x1 band and also does crossing changes with other bands so that x1 always crosses
over them. s2 does a similar thing for y1. Doing either s1 or s2 reduces the genus of
the Seifert surface and hence type 1 invariants vanish inductively. Doing both gives a
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Phase I

Figure 17: An example of “in” and “out” in action.
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in x

out x

Figure 18: The knots on the right are unknots.

connected sum of a genus one knot that has unknotted bands with a reduced genus knot.
1 triviality is easily seen to be preserved by connected sum. Thus it suffices to prove
that a genus one knot with unknotted bands, x, y, is 1-trivial. But every subset of moves
of the scheme {inx, outx} now trivializes the knot. In this simple case, inx (respectively
outx) may be visualized as the move making the “in” arc (respectively “out” arc) cross
over everything in the projection. See figure 18.

5.2 Doing two in-out tricks

The following section is not needed to prove the main theorem, so the reader may skip
there immediately. It is needed for the construction of the examples of the last section,
however.

One might ask what happens when one does two of these in-out tricks simultaneously.
That is one considers the scheme {inx, outx, iny, outy} for two framed unlinked vertices
x and y. Under the hypotheses of lemma 5.1, the answer is reasonably nice. If x and y lie
on the same half of the grope, the answer is not so nice. The problem being that mixed
terms like inx, outy conflict with each other: after phase I of each move, intersections
remain between the arc we called α and the “in” arc and between α and the “out” arc.

Lemma 5.1 Consider an embedded grope G with genus one bottom stage which is formed
by gluing the embedded gropes G′ and G′′ to the bottom stage. They intersect in a point,
∗. See figure 19. There are two ways to resolve this intersection of ∂G′ and ∂G′′ inside
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Figure 19: The local picture at the bottom stage of G.




̂

Figure 20: The two resolutions.

the bottom stage as pictured in figure 20. These give rise to two knots which are denoted
β and β̂, for some choice of orientation. Let x be a framed unlinked vertex on the G′

half and y a framed unlinked vertex on the G′′ half such that {x, y} is not an edge in Γ.
Consider the scheme S = {inx, outx, iny, outy}. Then

∑

σ⊂S
(−1)|σ|∂Gσ = ∂G + β + β̂ + ρ(β) + ρ(β̂)

−2(∂G′ + ρ(∂G′) + ∂G′′ + ρ(∂G′′)) + 3unknot ∈ ZKnots.

[Proof]

Consider figure 19 depicting a neighborhood of G′∩G′′. Recall that in the in-out trick
an arc µ was defined. We needed to define one such arc µ for both the “in” move and
the “out” move. Hence in this case there are four µ arcs µ1, . . . , µ4, which we picture in
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Figure 21: The “in”, “out” and µ arcs.

figure 21. We have pictured the arcs slightly perturbed off of the surface so that they
don’t intersect. µ1 and µ2 have been perturbed along G′ whereas µ3 and µ4 have been
perturbed along G′′. We have also labelled the arcs inx, outx and iny, outy in the figure.
The four “in” and “out” arcs each have a µ arc connecting the endpoints. The claim
is that to perform a combination of moves in our scheme S, one simply replaces the
appropriate “in” and “out” arcs by the corresponding µ arcs. For instance, if one were
to do inx and outy one would replace the inx arc by µ1 and the outy arc by µ4.

Let G′I (resp. G′′I ) be G′ (resp. G′′) modified by stage I of the in-out trick on x
(resp. y). Both phase II and III of the in and out move on x are supported in a regular
neighborhood of G′I , whereas phases II and III of the in and out moves on y are supported
in a regular neighborhood of G′′I . These two open sets intersect in a small ball around
∗. Since we perturbed the µ arcs out along G′I and G′′I , away from ∗, one sees that the
phase III isotopies are disjoint. Hence the in and out x moves up to phase III will be
disjoint from the in and out y moves up to phase III. The last thing to check is that two
moves on the same vertex are disjoint up to phase III. This is readily checked: if one
does say in and out on x, first of all we already know the moves are disjoint up to phase
II. Then there is a disk ∆ which we defined which provides an isotopy of the arc “in”
with µ1 and an isotopy of the arc “out” with µ2. These isotopies are easily made disjoint
by using two parallel copies of ∆.

Consider figure 22.

It depicts doing all subsets of the scheme S. When one passes through a domain
wall marked by a homotopy, one does the homotopy. Hence, for instance the right
hand part of the diagram is the the left-hand part, with the move iny also done. One
can choose orientations for ∂G′, ∂G′′, β, β̂ arbitrarily, although to be consistent with our
earlier convention inx should give ∂G′ and iny should give ∂G′′. The lemma now follows
by taking the signed sum of all terms in figure 22. 2

26



   

y

2

outx
  inx iny out

�
1

�
�

3

�
4

in x

out x

in y

out y

in x

in xin x

out x

out x out x

G'6

G'6

G''6

G''6

unknot

�

G''6

�̂
unknot

�
G''6

G'6

G'6

unknot

� ���

� ���

� ���

� ���

� � �

�̂� � �

Figure 22: The scheme S.
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6 Proof of theorem 1.1

Call an embedded grope of class 2m + 1, which has bottom stage of genus 1 and whose
associated graph has at most m + 1 edges, m-atomic.

Lemma 6.1 If theorem 1.1 holds for m-atomic embedded gropes, then it holds in general.

[Proof]

The fact that we need only consider embedded gropes whose bottom stage is genus 1
is lemma 4.1. We may assume n = 2m + 1 since the even case follows by thinking of a
class 2m grope as a class 2m− 1 grope by forgetting a stage and d2m−1

2
e = d2m

2
}e. Also,

we may assume E(Γ) ≤ m + 1, using an argument like the proof of lemma 4.1, since we
have m + 2 moves in hand to reduce the number of edges. 2

Note that the associated graph to any m-atomic embedded grope has a free set of m
vertices by a simple Euler characteristic argument like the one given to prove lemma 4.1.

Lemma 6.2 Suppose theorem 1.1 holds for every m-atomic embedded grope for which
the associated graph has the property that the complement of any free set of m vertices
is free. Then theorem 1.1 holds for all m-atomic embedded gropes.

[Proof]

Suppose not. Let G be a counterexample with minimal E(Γ\starF ), where F =
{v1, . . . , vm} is a free set of m vertices. Being a counterexample, it is not m + 1-trivial.
Let S = {s1, . . . , sm+2} be the scheme in which s1, . . . , sm−1 are type II moves trivializ-
ing the V1, . . . , Vm−1 handles supported between separating planes. sm, sm+1 are the in
and out move respectively on the Vm handles. These two moves are supported in a neigh-
borhood of the Vm handles with caps, which is separated from the V1, . . . , Vm−1 handles
by hyperplanes, and so is disjointly supported from the type II moves. Finally, sm+2 is
a type I move which reduces E(Γ\starF ). It is possible that a regular neighborhood of
the support of sm+2, N(supp(sm+2)) ∼= qD3 is not disjoint from the type II moves: a
type II move might pull the handles it is contracting through one of these balls. Since
sm+2 is deleting an edge away from V1, . . . , Vm−1, at least the handles that are being
contracted by the type II moves don’t start out hitting the balls. One then chooses
the separating planes for the type II moves so they don’t hit the balls and chooses the
moves themselves to avoid the balls. Finally, sm+2 is clearly disjoint from the in and out
moves using that sm+2 is deleting an edge that doesn’t hit the vertex Vm.

So for any type m + 1 invariant νm+1,
∑

σ⊂S(−1)|σ|νm+1(∂G) = 0, and let us see
what this says. To prepare, let us suppose that G is formed by attaching the embedded
gropes H ′ and H ′′ to the dual bands of the bottom stage, thereby partitioning the set
of vertices of Γ(G), V into two nonempty sets VH′ and VH′′ . Suppose without loss that
Vm ∈ VH′ . Let SH′ and SH′′ partition {s1, . . . , sm−1} into two sets in the obvious way.
Let SI = {sm, sm+1} and SC = {sm+2}.
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Note that we can assume sm+2 reduces E(Γ\VH′) since if this were zero, then VH′′
would have no edges hitting it. By the assumption that the height function separates
the two halves of the embedded grope H ′ and H ′′ (see section 2.1), the handles on the
H ′′ half all bound disks, implying of course that the grope is trivial, contradicting the
premise that G is a counterexample. Thus we can assume some complexity not contained
wholly within the H ′ half, and without loss sm+2 reduces this.

We are now in a position to describe what happens under the various combinations
of moves from SH′ , SH′′ , SI and SC , with the initial assumption that neither SH′ nor SH′′
is empty. For easy reference, here is a table describing the four subsets of S:

SH′ : type II moves on H ′ handles

SH′′ : type II moves on H ′′ handles

SI : in and out move on a handle in H ′

SC : type I move reducing c(Γ\VH′)
In the following list of cases, case i refers to a set of moves, σ, which hits i of the above
4 sets.

Case 0

This is the empty move yielding ∂G.

Case 1

By our previous analysis of the handle-trivializing moves, if σ ⊂ SH′ or σ ⊂ SH′′ ,
∂Gσ is the unknot. ∂Gsm+2 has fewer of the appropriate edges so by minimality
νm+1(∂Gsm+2) = 0. The leftover terms are the ones gotten from the in-out trick: doing
both of sm, sm+1 is the unknot, while ∂Gsm , ∂Gsm+1 are ∂H′ and ρ(∂H′).
Case 2

σ hits SH′ , SH′′ : unknot.

σ hits SH′ , SI : SH′ trivializes some handles, and then sm or sm+1 give H ′ with trivialized
handles, an unknot. Doing both the in and out move also yields an unknot.

σ hits SH′ , SC : SH′ trivializes handles of the embedded grope Gsm+2 yielding an un-
knot.

σ hits SH′′ , SI : SH′′ gives some embedded grope with the H ′ half unaltered. Doing one
move from SI then gives the H ′ half. Recording all of these, we get

∑

∅6=τ⊂SH′′
(−1)|τ|+1{νm+1(∂H

′) + νm+1(ρ(∂H
′))}.

Again if we do both sm and sm+1 the result is obviously an unknot.

σ hits SH′′ , SC : unknot.

σ hits SI , SC : SC gives some embedded grope with the H ′ half unaffected. So as in
case 1 we get ∂H′ and ρ(∂H′) .
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Case 3

σ hits SH′′ , SI , SC : SH′′ , SC give an embedded grope with H ′ half intact, and so as in
case 2(SH′′ , SI) we get, adjusting the sign to include the sm+2 move,

∑

∅6=τ⊂SH′′
(−1)|τ|{νm+1(∂H

′) + νm+1(ρ(∂H
′))}.

σ hits SH′ , SI , SC : unknot. This is case 2(SH′ , SI) applied to Gsm+2 .

σ hits SH′ , SH′′ , SC : unknot. This is case 2(SH′ , SH′′) applied to Gsm+2 .

σ hits SH′ , SH′′ , SI : unknot. This is case 2(SH′ , SI) applied to Gσ for σ ⊂ SH′′ .

Case 4

This involves doing at least one move from each collection and is an unknot. This is
case 3(SH′ , SH′′ , SI) applied to Gsm+2 .

We conclude
∑

σ⊂S
(−1)|σ|νm+1(∂Gσ) = νm+1(∂G)− νm+1(∂H ′)− νm+1(ρ(∂H ′)) +

∑

∅6=τ⊂SH′′
(−1)|τ |+1{νm+1(∂H ′) + νm+1(ρ(∂H ′))}

+νm+1(∂H ′) + νm+1(ρ(∂H ′)) +
∑

∅6=τ⊂SH′′
(−1)|τ |{νm+1(∂H ′) + νm+1(ρ(∂H ′))} = νm+1(∂G) = 0

This contradicts that νm+1(∂G) 6= 0 for some type m + 1 invariant.

If SH′ = ∅, then only cases leading to an m + 1-trivial knot are eliminated so the
calculation still goes through.

If SH′′ = ∅, then two nontrivial cases are eliminated: the SH′′ , SI subcase of case 2
and the SH′′ , SI , SC subcase of case 3. The calculation is now

∑
σ⊂S(−1)|σ|νm+1(∂Gσ) =

νm+1(∂G)−νm+1(∂H ′)−νm+1(ρ(∂H ′))+νm+1(∂H ′)+νm+1(ρ(∂H ′)) = 0 which still yields
the contradiction νm+1(∂G) = 0. 2

Lemma 6.3 Suppose a graph with 2m+1 vertices has the property that the complement
of every free set of m vertices is free, and furthermore that a free set of m vertices exists.
Then the graph has no edges.

[Proof]

Easy. 2
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Figure 23: Habiro’s move 9.

The proof of theorem 1.1 is now complete: the previous three lemmas imply that we
need only check it for embedded gropes whose associated graph has no edges. Since the
boundary of such an embedded grope is the unknot, theorem 1.1 is obvious in this case.

7 Showing the result is sharp

It is the purpose of this section to prove theorem 1.2. That is, to construct embedded
gropes of class n which are not dn

2
e + 1 trivial. In fact we construct embedded gropes

of class 2m which are not m + 1 trivial. These also serve as optimality examples for the
odd case, as a knot bounding an embedded class 2m grope will bound a class 2m − 1
embedded grope by deleting a top stage. The deleted gropes still serve as examples
because d2m−2

2
e+ 1 = m + 1.

The examples are constructed using graph clasper calculus [H2]. As needed ingredients
we obtain some formulas (equations (2),(3) and lemma 7.2) and a result on link triviality
(lemma 7.1) we hope are of independent interest. The invariants we use to detect non-
triviality of our examples are Jones polynomial coefficients, whose weight system was
essentially derived by Bar-Natan [B-N].

To begin, we briefly explain why certain claspers yield gropes. This is explained in
more detail in [CT]. Consider figure 23. Here A and B are both tree claspers with no
boxes with n and m respectively non-root leaves. The shown equality is move 9 of [H2].
Inductively, A ties a grope of class n into a band of the depicted surface, and B ties a
grope of class m into the dual band. The result is a grope of class n + m.

Our examples are depicted in figure 24. The two versions are equal by move 2 of [H2].
Surgery on the given clasper yields an embedded grope of class 2m, which can be seen
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Figure 24: The examples.

by counting the tips (non-root leaves). Denote this embedded grope by G2m.

Suppose the coefficients of the t = ex Taylor expansion of the Jones polynomial are
denoted by {jk}. We will show that jm+1(∂G2m) = 2m+3− 2m+1 6= 0, demonstrating the
optimality of theorem 1.1. We will establish the following formula on graph claspers.

jm+1

(
m

)
= 2jm

( )
, (2)

where the claspers are of degree m. Notice that the right hand side of this formula
involves a type m invariant evaluating on a degree m graph clasper. By section 8.2 of
[H2], this is the same as evaluating the type m invariant on the corresponding chinese
character diagram.4 Our result will follow from

jm

( )
= 2m+2 − 2m (3)

which will follow from Bar-Natan’s derivation of the HOMFLY polynomial weight
systems.

7.1 Link triviality

In this section we analyze a phenomenon noticed by Habiro([H2], prop. 7.4), which is
that certain clasper surgeries preserve finite type invariants of a much larger degree than
expected. We will only use a special case of lemma 7.1, namely for a graph clasper of

4Actually, Habiro only announces this result without proof. The author has verified the claim.
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dual
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Figure 25: Univalent and dual components.

the same form as L in figure 30. The general result is sufficiently interesting to merit
inclusion. The phenomenon we are studying is already present in the case of a graph
clasper representing a grope: it preserves invariants of the clasper’s degree, which is
one higher than expected. This case is, of course, easy since the corresponding chinese
character diagram is trivial modulo STU. The essential feature of this example is that
the clasper has only one leaf which hits the knot.

Definition 7.1 a) Let C be a graph clasper on the unlink Uk. If a component of Uk only
hits one disk leaf of the clasper as in the left-hand side of figure 25, then we call that
component univalent.

b) Two univalent components are said to be dual if the disk leaves that hit them have
emanating edges which meet at a vertex. See figure 25.

Lemma 7.1 Suppose Cd is a graph clasper of degree d on Uk, for which there are u
univalent components, no two of which are dual. Then surgery on Cd preserves type
d + u− 1 link invariants.

Note: This lemma is optimal in the sense that there are graph claspers satisfying the
hypotheses which don’t preserve type d + u invariants. Intriguingly, the claspers Habiro
considers in prop 7.4 preserve one further degree than what lemma 7.1 claims.

[Proof]

First, cut apart Cd using move 2 of [H2] into a link of tree claspers Ci such that:

(i) Each Ci has a designated root, which is a disk leaf hitting a component of Uk.

(ii) Every univalent component of Uk hits a root.

(iii) Each clasper is at least of degree 2.

An example is pictured in figure 26. For now, ignore the stars and the “in,out”
markings.

Modify Uk via successive applications of the procedure depicted in figure 23 beginning
at the root of each tree. We will define a scheme of cardinality d+u on this new link, L,
which is the link obtained by surgery on Cd. There is an obvious scheme of d moves: each
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Figure 26: An example of lemma 7.1 Here d = 6, k = 4 and b = 2. Hence the pictured link is 7-trivial.

move either unlinks a hopf-linked pair of leaves, or pushes the link out of a non-root disk
leaf. Call these types of moves obvious moves. (These moves are performed on L but can
be viewed as being performed on the claspers.) We turn this scheme into a scheme of
d+u moves as follows. For each of the u claspers whose root hits a univalent component,
choose a non-root leaf. Do this in such a way that no two such leaves are a hopf-linked
pair. Each of these u claspers ties a grope into its univalent component, hence we can
do an in-out pair of moves on each of these selected leaves. The new scheme is gotten
by converting the u obvious moves associated to the u selected leaves to in-out pairs.
In figure 26, we have marked obvious moves with an asterisk, and have also marked the
in-out moves. The arrrows indicate which grope (clasper) we are doing the in-out pair
on.

Now we have a scheme with the appropriate number of moves. The claim is that the
usual alternating sum over the scheme is L− Uk ∈ ZKnots. We prove this for a couple
of illustrative examples including the one we need and leave the details of the general
argument to the reader.

The in and out moves are depicted on the clasper level in figure 27.

The first example is given in figure 28. We have pictured the scheme we constructed
at the beginning of this proof. In this case every nonempty subset of the scheme just
gives the unlink U2. This is because all moves will trivialize a leaf of at least one of the
two claspers: hence that clasper just gives an isotopy and may be deleted. But once that
clasper is deleted the other one will have a trivial leaf, and so may be deleted as well.
Doing a typical subset of the scheme is shown in the right hand side of figure 28: the
top in move and an obvious move have been done.

The second example is given at the top of figure 29. In this case the claim is that
doing any nonempty subset of the in and out moves has the same effect whether or not
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both

Figure 27: The in and out moves on the clasper level.

in,out

in,out

*

*

*
*

Figure 28: The first example of lemma 7.1.

Root Root Root Root

*

in,out in,out in,out

Figure 29: The second example of 7.1.
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C C L
1 2

Figure 30: Three claspers corresponding to the Kaufmann bracket skein relation.

the one obvious move is done. This is illustrated for at the bottom of figure 29: an
in and an out move are pictured, and one can see that unlinking the link component
from the left-hand clasper makes no difference since the clasper can be deleted anyway.
Therefore all terms involving the in and out moves cancel in pairs, and the alternating
sum is evidently as stated. 2

7.2 Claspers and the Jones polynomial

Consider the three claspers of degree m pictured in figure 30. Here C1, C2 and L refer
to the link gotten by surgery along the pictured clasper. The skein relation for the
Kaufmann bracket yields the equation

A−1 < C1 > +A < C2 >=< L > .

Let w denote the writhe. Assume it is zero away from the box enclosing the skein
relation. Then w(C1) = 1, w(C2) = −1 and w(L) = 0. Recalling that the Jones
polynomial J is given by JK = (−A)−3w < K >, and making the standard substitution
A−2 = e

x
2 , we achieve the following relation:

−e−
x
2 JC1(x)− e

x
2 JC2(x) = JL(x) (4)

Notice that C1 and C2 are degree m clasper surgeries on the unknot, hence they are
m − 1-trivial. On the other hand, by lemma 7.1, L is actually m + 1 trivial. Let U2

denote an unlink of two components. Thus

JC1(x) = 1 + jm(C1)x
m + jm+1(C1)x

m+1 + o(xm+2)

JC2(x) = 1 + jm(C2)x
m + jm+1(C2)x

m+1 + o(xm+2)

JL(x) = j0(U2) + o(xm+2)

Recall that the Jones polynomial of an unlink of two components is −e−
x
2 − e

x
2 , and

hence that j0 = −2. Now, plugging these into equation 4 and comparing the coefficients
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G

Figure 31: G is the unknot surgered along the pictured clasper.

of xm+1, we get the following equation:

1

2
jm(C1)−

1

2
jm(C2)− jm+1(C0)− jm+1(C1) = 0 (5)

Notice that C2 can be thought of as C1 with an extra half-twist on one its edges. On
the level of chinese character diagrams this corresponds to a switch in sign. Therefore
jm(C2) = −jm(C1), and equation 5 becomes

jm+1(C1) + jm+1(C2) = jm(C1) (6)

7.3 An STU-like relation

In figure 31, a degree m clasper is defined, where the shaded region is the same as in
C0, C1 and L.

We have the following lemma giving an STU-like relation at one degree higher than
the claspers’ degree.

Lemma 7.2 Let νm+1 be a type m+1 invariant. Then νm+1(G) = νm+1(C1)+νm+1(C2)+
νm+1 (ρ(C1)) + νm+1 (ρ(C2)).

5

[Proof]

The proof uses lemma 5.1. One considers G as a grope by breaking apart appropriate
edges using move 2 of [H2]. There are m moves corresponding to unlinking these hopf-
linked pairs of tips/leaves. Pick a pair that has one tip x belonging to one half of the
grope, and another pair where there is a tip y belonging to the other half. We consider
the scheme of m+2 moves gotten by doing the m−2 hopf-pair unlinking moves, and also
the in and out moves on both x and y. The claim is that if one does any of the hopf pair

5Recall ρ is the map reversing the knot’s orientation.
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unlinkings, even in conjunction with the in-out moves, the result is unknotted. One can
verify this by noting that doing a set of the in-out moves gives one of the “β” curves or
one half of the grope. (In our setting, each half of the grope is unknotted in the absence
of the other.) Now if one does some of the in-out moves, and further unlinks some hopf
pairs of tips, one gets the analog of the “β” curves or grope halves, only with respect to
the grope with the unlinked tips. But all these curves are the unknot. Hence the only
nontrivial moves of the scheme correspond to subsets of the in-out moves. These are
analyzed in lemma 5.1. It now simply remains to observe that in our case β = C1 and
β̂ = C2. 2

7.4 Bar-Natan’s HOMFLY weight system and the rest of the proof

Lemma 7.2 gives us the equation, remembering that the Jones polynomial is knot orien-
tation independent,

jm+1(G) = 2 (jm+1(C1) + jm+1(C2))

which together with (6) implies that,

jm+1(G) = 2jm(C1) (7)

At this point we’ve shown that if, for some choice of filling in the shaded oval in C1,
jm(C1) 6= 0, then the embedded grope G of class 2m is not m + 1-trivial as desired. As
we stated earlier, we will do this for the choice given in equation 3.

Bar-Natan[B-N] derives a weight system corresponding to the Lie algebra gl(N) which
gives a multiple of the coefficients of the HOMFLY polynomial. Specifying N = 2, one
gets a weight system corresponding to a multiple of the Jones coefficients. We reproduce
the formula (p. 463, formula (36)) of [B-N]:

T2(D) =
∑

M

(−1)sM2b(τDM ) (8)

Here D is a connected Chinese character diagram.6 M is a marking of the internal
vertices of D by the digit 0 or 1. sM is the sum of the digits of M . b(τDM) is the
number of boundary components of the thickening τ(DM) of DM . The two ways of
thickening a vertex are depicted in figure 32. Let T i2 refer to the restriction of T2 to
diagrams of degree i. If one works out the details of section 6.5 of [B-N], one discovers
that

ji =
1

2
T i2 .

The reason for the factor of 1
2

is that T 0
2 applied to an unknot is 2, whereas j0 is 1 on

an unknot.
6The formula as presented is actually for the framed Jones polynomial, and in this sense will work for non-connected

diagrams. Deframing a weight system via exercise 3.22 of [B-N] does not affect connected diagrams.

38



            

0

1

Figure 32: Thickening a marked diagram.

Lemma 7.3 Suppose m ≥ 2. T m2

( )
= 2m+2− 2m, where the depicted diagram

has m− 2 vertical struts.

[Proof]

The statement is easily verified for the case m = 2. For m > 2, we consider the eight
possible markings of the left-hand triangle. See figure 33. Here T m2 is represented as a
sum over the eight markings of the triangle, some of which have been consolidated due
to symmetry. Also each yet-to-be-marked vertex has boxes surrounding it. If the vertex
is marked with a 0, “=” signs are substituted for each surrounding box, and if the vertex
is marked with a 1, the surrounding boxes are replaced by “X”s. We have pre-simplified
some of the diagrams using the identity that 2 “X”s on the same edge cancel. The
depicted equations are to be interpreted on the level of T mi . Thus in the first row of
figure 33 a factor of 2 pulls out due to the presence of an additional component of the
thickening. The second row of terms is zero, because each term gives the same picture
whether or not the x vertex is a 0 or a 1. Since these two possibilities have opposite
sign, everything cancels. Finally the last row is zero, either by cancelling the two given
terms or by noting that each is T m2 applied to a diagram which is trivial modulo STU.
The total is given in figure 34. If the diagram with m − 2 struts is called Dm, then we
have shown that T m2 (Dm) = 2T m−1

2 (Dm−1). Hence we are done by induction. 2

The alert reader will have noticed that we never constructed an example for the case
m = 1. That is, an embedded grope of class 2 which is not 2-trivial. As all knots bound
Seifert surfaces, this is the statement that there exist knots which are not 2-trivial. I
believe that of the knots which have eight crossings or fewer, that 820 is the only 2-trivial
knot.
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