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7.3: Partial Fractions

Partial fraction decomposition is a method of algebraically transforming rational functions into
a certain standard form that makes integration a matter of routine. For instance, we would
transform
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The main task and main work consists of understanding why we write it this way, and how
we can find this form. Once you have written the integrand in this way, integration reduces to
doing standard integrals you have seen already. Namely,
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Compare with 7.1: There, I introduced a procedure to integrate rational functions, but only with
denominator polynomials of degree one and two. Qur approach here will enable us to handle
higer degree denominators as well, and at the same time, gives a slight variant of the case with
quadratic polynomials.

— As in 7.1., you will only handle proper fractions; improper fractions, i.e., rational functions
whose numerator has a degree higher or equal to the denominator will be reduced by long
division, splitting off a polynomial that can readily be integrated immediately.

— Now you have to factor the denominator. This follows the general
Theorem: Any polynomial can be written as a product of linear and quadratic
polynomials.
This may be difficult to carry out in practice, and if you get stuck here, you can’t do much
about the integral either. You will have to apply this theorem to the denominator of the
rational function. To do so was the first step in [implification (1) of our example.

Let us pause a bit here: If you want to write a quadratic polynomial, e.g., 22 + 42 4+ 3 as a
product of linear polynomials, you can always use the quadratic formula to find the zeros of
that polynomial: z? 4+ 4z + 3 = 0 if and only if z = —3 or = —1. This is how you find
2?2+ 4z +3 = (z+1)(z+3). If the quadratic formula does not give any real zeros, as in the case
of 22 + 4z + 5, you leave the quadratic polynomial alone. Zeros of the polynomial will always
correspond to linear factors.

In the case (1), you have no feasible systematic way to find zeros of the denominator z* + 2> —

z? + z — 2. By guessing, you may however find that z =1 is a zero, and then you know

gt 4+ 23 — 22+ x — 2= (z — 1)(poly’ of deg 3, to be found by long division)
= (z —1)(2®+ 222+ +2)



If you can guess another zero of the remaining factor (z® + 222 + x + 2) —here, this would be
T =—2-, you get (z3+ 222 +z+2) = (z+2)(z2 + 1)

In order to see how surprisingly strong this factorization theorem is, try the polynomial z* + 1.
It has no zeros, so applying our theorem to it cannot produce linear factors. So, if our boldfaced
theorem is true, it must be possible to write z* +1 as a product of two quadratic polynomials. If
you try to find how this will actually look: well, it will be quite sophisticated, you would probably
not guess it. You have to find numbers p1, g1, p2, g2 such that z2+1 = (22 +p12+q1) (22 +paz+go)-
Can you do this, by expanding the right hand side and comparing coefficients of powers of x? — In
principle you can; but don’t get dishearted: it takes some time to find the coefficients. If you have
actually carried it out, you’'ll be in for a surprise:!

We can now continue our itemized strategy of finding a partial fraction decomposition:

— Theorem: Any proper fraction of polynomials can be decomposed into partial
fractions according to the following example, which displays all features that
could occur: Given numbers a1, as,p1,P2,¢1, g2, and any polynomial in the numerator,
numbers b1, bo, b3 ... can be found such that:
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In other words:

— For every nonrepeated linear factor in the denominator on the left (here z — aq), you
get one simple fraction (here, number/(z — a1)) on the right.

— For every repeated linear factor in the denominator on the left (here (z — as)*), you
get as many simple fractions on the right as the number how often that factor was
repeated, and their denominators echo the corresponding factor from the left, but
with increasing powers from 1 up to what we had on the left.

— For every nonrepeated quadratic factor in the denominator on the left (here z2 +
P1Z + q1), you get one simple fraction with that very denominator on the right. The
denominator of that fraction may be a linear polynomial now:

(bsz + b7)/(2* + pr + q1).-

— For every repeated quadratic factor, you get similar fractions on the right, with
increasing powers in the denominator.

What remains to be done is to see how yo can actually find by, bo, . ... This will be described
in a moment. Once you have accomplished this, you can do the integral term by term.
Actually, the standard integrals available to you cannot handle the last term yet, and you
may be content with the assurance, for the time being, that you will not encounter cases
leading to this kind of term.

'Answer: (I+ 28\ — “x)(I 4+ xS\ + “x) = I + *x. At least, check this by expanding.



This ends the basic outline of partial fraction decomposition. We now discuss the way how you
can actually find the numbers b1, bo, b3, . . ..

There is a simple-minded way that always works; however, in all but the simplest cases it will
be rather tedious. But you should have understood it and tried for yourself, before you venture
into the more sophisticated, but very fast way of doing it. For example, we need to find b1, bs, b3
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holds identically (for all z). So we bring the right hand side on a common denominator, and
sort powers of z in the numerator:
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and this should =

So comparing coefficients in the numerator, you need

bi+ by +b3=1 —
by +2by — b3 =2

D— 2by+3b= 3

Therefore we get by = —1, by =5/3, bg = 1/3.

This method is available in all cases, but it involves as many equations in as many unknowns as
is specified by the degree of the denominator. — In contrast, here is a shorter method, which
will however only apply to linear nonrepeated factors. With a slight modification for linear
repeated factors, it will only give the coefficient of the highest power (in the big example given
above, it would therefore only yield b; and b5). For back reference in the future: The method
could be generalized to quadratic factors, using intermediate calculations with complex numbers
(for those of you who happen to know complex numbers from school). However, I will not detail
this out, as it would lead too far away from the focus of our freshman calculus course. So, I will
now assume we have nonrepeated linear factors only:

To determine by, ba, b3 in turn from (2), we multiply (2) by the corresponding denominators
respectively, namely by z, £ — 1 and z 4+ 2. This is done in separate independent steps starting
over from (2) each time. For by, multiplication by z transforms (2) into
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We (pretend to) plug in z = 0 into this equation, and get
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i.e., —1 = b; immediately. The method is called cover-up method, because it can be done
without a lot of writing already from (2): To obtain by, you look at the left hand side, cover up
exactly that term in the denominator that goes with b; on the right hand side, and then you plug
in that number for  which would have made vanish the covered-up factor in the denominator.

I have been careful to say we pretend to plug in, rather than ‘we plug in’. The reason is that z =0
is not legitimate to plug in into (2), exactly because of the vanishing denominator. Therfore, an
equation derived from (2) is also not legitimate to be used for z = 0. What we actually mean
to do here is to calculate the limit as £ — 0. But the actual calculation of this limit will now
(i.e., after having multiplied by z) amount practically to plugging in z = 0.

There is kind of a philosophical message coming together with the partial fraction decomposition.
You should consider those points z of a rational function f as its distinctive marks, where the
denominator vanishes. If ever rational functions were wanted by the sheriff for wrongdoing, their
vertical asymptotes would be the information given on the public announcement :-) With some
embellishments added, there will be a result in advanced calculus to the effect that the behavior of
a rational function near these points identifies that function nearly as uniquely as a fingerprint. To
write a rational function in terms of partial fractions means to write it in such a way as to display
certain of its essential features the most visibly. Displaying essential features as clearly as possible
will simplify any scrutiny, in particular the search for an antiderivative. And the cover up method is
so smart and efficient just because it uses those numbers for 2 where the essential things happen,
namely where the denominator of the rational function vanishes. By focusing on the essential points
(in the example z = 0, z = 1 and £ = —2) — ‘essential points’ in the literal as well as in the figurative
sense — we avoid unnecessary calculations and retreive by, by and b3 exactly at those places where
they naturally belong.

Your textbook will give you a few more tricks how to calculate coefficients in cases where repeated
factors occur.

Some practice problems

Here are a few examples for practising:
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Solution to 7.2.5

The equation
/e“c coshz dz = €” coshz — /e“c sinhz dz = e” coshx — e” sinhx + / e’ coshzdr (%)

is an equation of indefinite integrals. These do not represent a single function F(z), but a whole
family of antiderivatives, F(z) + C. Namely, [e”coshzdz = [ 3(e** +1)dz = 1e** + Iz +C. If
you plug this in on both sides of (), you have to be aware that the constant C' may be different
in the two occurrences of the indefinite integral. After cancelling this integral, what we are
really left with is not 0 = 1, but rather 0 = 1 4+ C for some constant C, and there is nothing
wrong with this result.

Solution to practice problems

Not all intermediate steps are carried out, but essential steps are given.

(a)
r 1 _ e bz +c
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with @ = § (cover up method), b= —%, ¢ = 2 (solve linear equations for unknown coefficients).

Must complete square in denominator and separate fractions in order to reduce to standard

integrals:
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(d)

Factorization of denominator: see page 2.

r ax +b cx +d
41 22422+ 1  22—22+1

With the tools available here, there is probably no shortcut to solving the equations for a, b, ¢, d:
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Now In(2 +v2) —In(2 — v/2) = In g"’\‘;g = In \‘;’L} In((v2 + 1)2). You are certainly not

expected to know that arctan(v/2 + 1) = 37/8, arctan(v/2 — 1) = /8, but these are true, and
so the final result can be simplified to
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