UTK — M231 — Differential Equations
Notes on Chapter 1 — Jochen Denzler, Aug 2002

Sec 1.1:

A key point is that differential equations ask to find an unknown function (rather than an unknown
number as in high school equations), from a relation connecting that function with its derivative(s). If
the function is a function of a single variable (often this variable will be time), we call the differential
equation an Ordinary Differential Equation (ODE); if the unknown function is a function of several
variables (often these will be the space coordinates and, possibly time), the derivatives occurring in the
differential equation will necessarily be partial derivatives, and therefore the differential equation will
be called a Partial Differential Equation (PDE). — Except for this basic definition, this course will
restrict attention to ODEs.

The highest order of a derivative occurring in a DE is called the order of the differential equation. The
significance of this concept is as follows: As you solve the equation, you (hopefully) take a calculational
procedure which, at its end, has stripped the function of all its derivatives, by means of integrations.
Each integration kills one derivative and introduces a constant of integration. So the DE will not have
merely a single solution, but a family of solutions, with as many arbitrary constants as is the order of the
DE. — In practice, such a calculational procedure may not be available, and if it is, it’s not obvious how
to find it, but the conclusion concerning the number of arbitrary constants still holds true. Two example
calculations are on p. 2 of the book. — Blatant exceptions to this rule (sec 1.2, hwk #19) are due to
reasons more trivial than ODEs.

The DE is the mathematical representation of a law of nature (eg., free fall, radioactive decay), the free
constants in the solution represent the variety of particular situations governed by these laws (e.g., free
fall from what initial height; or initial amount of radioactive material).

Linear vs. nonlinear equation: be sure to note that the word “linear” refers to the unknown function and
its derivatives (i.e., the dependent variable), not to the quantity of which it is a function (i.e., not to the
independent variable): y'(z) + y(z) = sinz is a linear equation, in spite of the sinz, but y'(z)y(z) = z is
nonlinear because y and y' get multiplied with each other.

Looking back from later in the semester (Ch. 4), you will see the significance of this definition: Linearity
is what gives you the powerful superposition principle, and that superposition principle makes linear
equations so much more manageable than nonlinear ones. This remark applies to all kinds of equations:
systems of linear equations (for numbers), ODEs, PDEs, and others you haven’t met yet and needn’t
know here: difference equations, integral equations.

Hwk for 1.1: # 1-15

Note the explanation I gave in class for the meaning of #5; beyond this you cannot be expected to
understand how the given equations in these exercises relate to the application given as source.

Sec 1.2:

re: implicit solution

The example and definition of “implicit solution” in the book may seem to come out of thin air: Here’s
more like an entire story concerning it:

Suppose you need to solve y'(x)(1+y(z)?) = 2z subject to the condition y(1) = 3. A stroke of ingenuitiy
makes you recognize the left hand side as a total derivative:

y'(z )(1+y( )?) =2z
4 (Ly@)? +y(z) = La2°
ty(x)® +y( )=2*+C

and because y(1) = 3, you conclude $3% + 3 =12 + C, hence C' = 11. By now, the derivatives are gone,
and ODEwise, your job is finished; the solution is l 3 +y = 22 + 11; but one would want to do some
algebra and solve for y = y(z), the unknown functlon and you cannot do this algebra job. So you call

what you have great progress and “an implicit solution”.

Actually, we should at least be sure that there is indeed a function y(z) satisfying the algebraic equation
%y3 +y = 22 +11. (For a contrast, there is no function satisfying the algebraic equation y*+y = —22—1,



and you may wish to pause a moment to think why.) So it may be a bit premature to speak of an implicit
“solution” at this stage. But we’ll see in a moment that ODEs do have solutions under very general
asumptions, therefore those algebraic equations we arrive at when coming from ODEs will not be a dead
end.

Note a slight abuse of language: A solution is a solution. Explicit vs. implicit does not distinguish different
kinds of solution, but different amounts of our knowledge about the solution. Think of “explicit/implicit
solution” as a shorthand for “solution given explicitly /implicitly”

re: Existence and uniqueness for initial value problems
An Initial Value Problem (IVP) for a 1st order ODE has the form

y'(t) = fty(®) . ylto) =wo ()

with f, to, yo given, and with the task being to find a function y = y(t) satisfying these two equations (the
ODE and the so-called initial condition y(tg) = yo). The sought-for function has to be defined in some
interval containing to. We expect IVPs to have one and only one solution. A theorem (below) proves
this expectation to be right in many cases, but there are exceptions where our expectation is wrong.

The intuition behind the expectation is as follows: We are given y at “time” ¢t = tg, and then, the ODE
tells us also the rate of change y'(t9) at that time, so we have a good idea what y is at a short time later,
say at time ¢; = to+At: Namely it should be y(t1) = y(to+At) = y(to)+y' (to) At = y(to)+ f (to, y(to)) At.
From there on, we do another time step by the same argument, arriving at t2 = t; + At, etc. (This is
actually the simplest method of solving an IVP numerically.)

Thm: (Picard-Lindeldf existence and uniqueness theorem) If f and df /0y are continuous in a neighbor-
hood of (to,y0)), then the IVP (x) has one and only one solution in some (possibly smaller) neighborhood
of t().

Explanations: Take the example 4’ = 1+ 42, y(0) = 0. The theorem applies because, in this example
we have f(t,y) = 1+ y? and g—;’;(t, y) = 2y, and both are continuous for (¢,y) close to (tg,y0) = (0,0)
(actually for all (¢,y)). So we know there is a solution; the thm doesn’t tell us how to find it, but you
can check by plugging in that y(¢t) = tant is a solution to this IVP. The theorem now tells us that it
is the only solution. If you plot this solution, you see that y(t) — +o0c as t — §—, and y(t) — —oo as
t— —5+.

Even though the function y(t) = tant, as a formula, is defined outside the open interval ¢ € |—2, 2],

as a solution to the IVP, we should think of it as defined only in this interval, because it cannot be

continuously differentiable in any larger interval, only in a larger set that is not an interval any more.

In DEs that model an explosion, this behavior is to be expected (and it is generally named “blow up in
™

finite time” based on this idea). The ODE gy’ = 1 + y? shows nothing suspicious for t = 5 nor for any

particular y. So you see why I stressed the “possibly smaller neighborhood” in the theorem.

Thm: Linear ODEs never show the “blow up in finite time” phenomenon, nonlinear ODEs may or may
not have it (depending on the particular ODE or IVP).

Thm: (Peano existence theorem) If f (but not necessarily df/0y) is continuous in a neighborhood
of (to,90)), the IVP still has a solution, but it may have more than one. — Hwk 29 on p. 13 gives an
example.

Rmk: These three theorems hold in more generality, namely for the higher order IVP

y(n) (t) = f(tay(t)7yl(t)7 s ,y(n—l) (t)) ’ y(tO) =Y, yl(to) =Y, - y(n—l) (to) =Yn-1

(Picard-Lindel6f then assumes continuity of f and all its first partial derivatives except 0f/0t, Peano still
only continuity of f), and for systems of ODEs, like, e.g.,

y'(t) = f(t,y(t),2(t) , y(to) = yo
2'(t) = g(t,y(t),2(t) ,  2(to) = 20
(the respective assumptions must then be made for f and g). The assumption for Picard-Lindel6f can be

slightly weakened, but the stated version is good enough for most purposes.
Hwk for 1.2: #1,3,5,9,10,15,19,20a,22a,23,25,26,29



Sec 1.3:

Not much comment needed on this section. Only one, concerning the figure on p. 19, and the text
accompanying it on p. 18: They give a direction field for dy/dx = 3y*/3, where the IVP has several
solutions, and say the direction field is “intriguing” for that very reason. However, if you try to look
at the direction field alone, not seeing the ODE actually given as an equation, you may not see much
difference to, e.g., the direction field for dy/dz = |y|, for which uniqueness does hold (even though our
version of the existence and uniqueness theorem doesn’t tell us so).

I you mark on the y-axis all those values of y for which they have actually drawn slopes in the figure,
these are only finitely many values (seven positive, seven negative, and 0). From only fifteen (or any
finite number of) values of f(y) = 3y%/3, you cannot determine that f(y) = 3y*/? is not differentiable at
0; for this you need all values in some neighbourhood of 0. So don’t expect to see the intriguing thing in
the direction field (left figure);

Hwk for 1.3: #1,3,5,7
Sec 1.5:

Skipping over 1.4, we just touch 1.5 briefly: less for its own sake, but because I think it deepens your
understanding of 1.1-1.3.

A cheap technique for finding approximate solutions for an IVP y' = f(z,y), y(zo) = yo, from the
direction field is as follows: Locate the initial point (zg,9o) calculate the slope y'(xo) = f(xo,y0) directly
from the ODE, follow a short straight line segment passing over an z-interval of length h, where h is a
small number you choose at your convenience. The segment is approximately a part of the graph of the
actual solution, and it abuts in a pint (z1,y1) with 1 = 29 + h, y1 = yo + f(zo,y0)h. Now you repeat
the process with starting point (z1,y1), etc, until you have constructed enough of the graph.

Let’s denote by y[p) the function whose graph is the polygon of line segments and take pblm 2 from p. 35,
namely dy/dx = —z/y, y(0) = 4 as an example.

Here is a Homework, a variant of #2 from p. 35: For
h = 01 and h = 0.05, calculate yp(z) at = €
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. (If you have a programmable
pocket calculator and get the hang of it, you may also try it with
®--0-- 4 h = 0.02, but otherwise the former two are good enough.)
RSN This is a test example, where, unlike more realistic examples, a
Q. solution in terms of an explicit formula can be found (and you’ll
20) soon learn how): it is y = v/16 — 22, and you can of course check
easily that this is a solution. Compare the above found values
+ of the approximate solutions y;) with the corresponting values of
the exact solution y.

T 0 01 (0.2 |03 |04 |05 |06 |07 0.8
__1 4
Ylo.1]
h 3h Yjo.o5] || 4
et y |4

Of course, for most examples more sophisticated numerical methods are appropriate; but this one is the
starting point for understanding them all, and useful to deepen the understanding of what we’ve learned
so far.



Solution of Hwk 1.5, previous page:

We calculate y[h](z) successively at & = h, = 2h, z = 3h, ..., and we record the values needed for the
table, when we encounter them.

We have yp (0) = 4, the initial value, and then, as described in the lecture

Yir((n + Dh) = ypy(nh) + b x (=nh)/yp (nh)

forn =0,1,2,... successively. Here are the results, with 5 digits behind the decimal point:

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Yo || 4 4. 3.9975 3.9925 3.98498 | 3.97495 | 3.96237 | 3.94722 | 3.92949
Yo.os] || 4 3.99938 | 3.99625 | 3.99062 | 3.98247 | 3.97179 | 3.95856 | 3.94276 | 3.92435
Yo.o2) || 4 3.999 3.9955 3.98949 | 3.98096 | 3.96989 | 3.95627 | 3.94007 | 3.92125

Y 4 3.99875 | 3.995 3.98873 | 3.97995 | 3.96863 | 3.95474 | 3.93827 | 3.91918




