UTK — M231 — Differential Equations
Notes on Chapter 4 — Jochen Denzler, Oct 2002

I’ll cover Chapter 4 of the textbook in a different order than the textbook. Let me first give you an
overview of what is ahead altogether:

We are dealing now with 2nd order ODEs, that is, ODEs containing second derivatives. So we look
for y, as a function of z, from an equality involving y"” and any or all of ', y, z. In practice, we don’t
(and couldn’t) handle such a vast generality. For instance y” + 2siny” = y? + 22 is a legitimate 2nd
order ODE which we won’t touch. Rather, we want cases where we could isolate the highest (i.e., second)
derivative on one side of the equation. As, for instance, y" + sin(y) = cos(5z), which could be rewritten
as y" = —sin(y) + cos(5x).

Actually, this is still too general and too complicated; we will deal exclusively with linear second order
ODEs here.! Recall what is a linear ODE (with no reference to order):

An (O)DE is linear, if the unknown function (in other words: the dependent variable) occurs linearly
in the equation, that is, assuming the dependent variable is y and the independent variable is z (the
unknown function being = — y(z)), we have only y,y’,y" ..., possibly multiplied by given expressions of
z, and added together.

So the eqn should NOT contain: y?, y'?, siny, y -y', 1/(1 +y), ...

but ok are: z?, sinz, €* -y, e%y' /(1 +z), "', ...

Therefore, a linear 2nd order ODE can be written as

y" +p(2)y + q(x)y = g(x) (1)

where p(z), ¢(z), g(z) are any given expressions involving only the independent variable z, but NOT
y nor its derivatives. Of course, some straightforward algebraic manipulations may be required first to
bring the equation into this form.

Hwk: This brings us to sec 4.2, homework #1-8,
which needs another two pieces of language: We call a linear ODE (1) homogeneous, if g(z) = 0, i.e.,
if it fits into the paradigm y" + p(z)y’ + q(z)y = 0.

WARNING: This is a hideous use of language, for which I decline responsibility, because I have not
invented it. The word homogeneous is used in a completely different meaning here than in sec 2.6!!!
— If g doesn’t vanish, we call the eqn (1) linear snhomogeneous, and the term g(z) will be called the
inhomogeneity. Make sure you understand these words, because almost the whole chapter hinges on
them. Henceforth, homogeneous will refer to the new meaning, unless explicitly specified otherwise. If
need arises to distinguish the two meanings of homogeneous, I’ll say “linear homogeneous” for the new
meaning and “v = y/z-homogeneous” for the old meaning.

We say that ODE (1) has constant coefficients, if both p(z) and ¢(z) (namely the coefficients of y'
and y respectively) are constant, i.e., just numbers, not actually depending on z. Otherwise we say the
ODE has variable (or nonconstant) coefficients. (The inhomogeneity g(z) is NOT anybody’s coefficient
and is therefore NOT required to be constant.)

So we will study 2nd order linear ODEs of type (1), and we will give a more thorough study to the special
case of 2nd order linear ODEs with constant coefficients.

Note that the above definitions generalize to higher order linear ODEs (we may occasionally mention them)
and also to lower (i.e., first) order ODEs. The latter is relevant, because we are going to compare the new
material with what we know about 1st order linear ODEs.

Examples:

y" +y' —1lzy = 22 | 2nd order, linear inhomogeneous, variable coeff’s
y" + 5y’ — Ty = sin 2z | 2nd order, linear inhomogeneous, constant coeff’s

y" + 23y’ — Ty = 0 | 2nd order, linear homogeneous, variable coeff’s
2y' — 5y — 322 = 0 | 1st order, linear inhomogeneous, constant coeff’s

y' — 2%y = 0 | 1st order, linear homogeneous, variable coeff’s
y"" —22y" + 5y' — Ty = e | 3rd order, linear inhomogeneous, constant coeff’s

y@ — zy"" + 2y' — 9y = 0 | 4th order, linear homogeneous, variable coeff’s

IThe only nonlinear 2nd order ODEs in this class is of a type discussed earlier; namely y" = f (y) coming from Newton’s

law of motion. The trick was to use y’ as an integrating factor; see my notes on Ch. 2, after 2.3, and hwk 3.4#25



I urge you to refer back to this and the following page, possibly rereading it, whenever we have covered
a section of chapter 4 in the book, or whenever a homework trains one of the methods announced here.
This should make sure that all the details you are learning will stand in a larger context right away.

The basic principle about linear ODEs (actually about linear equations in general, never mind if they
are ODEs, PDEs; or systems of linear (algebraic) equations) is the superposition principle, which you
will learn soon. One of its consequences is the following:

The task to find all solutions of a linear inhomogeneous equation can be split into two smaller tasks: (a)
find all solutions to the corresponding homogeneous equation, and (b) find some solution (maybe by
guessing) to the inhomogeneous equation.

In the book, sections 4.2-3,5-6 deal with task (a), whereas sections 4.8-9 deal with task (b). Section
4.7 explains how the task splits in the two smaller tasks (a), (b). Sections 4.1,11-12 deal with the most
important example.

Find all solutions to a linear inhomogeneous ODE;,
e.g., 2nd order: y" + p(x)y’ + ¢(x)y = g(x)

e N

Find some solution to the original linear
inhomogeneous ODE,
e.g.,2nd order: y" + p(z)y' + q(z)y = g(x)

Find all solutions to the corresponding
linear homogeneous ODE,
e.g., 2nd order: y" + p(x)y' + ¢(z)y =0

How will we do it? How will we do it?

e If we have constant coefficients, a routine o If all you need is just some solution, guess-
method is available, which is discussed in ing or eyeballing may be a useful method
Sec 4.5-6. The method says, roughly, and already.
still subject to some embellishments: “So-
lutions to this type of equations will be
y = €™, you only have to find m by plug-
ging in.” You have already encountered a
sample of this method, out of context: it
was hwk 1.24#20. This is an instance of “ed-
ucated guessing”: The education tells you
to guess some kind of exponential, but you
still need to figure out m.

e A jazzed-up version of guessing is educated
guessing: For constant coefficients, with
only sine, cosine, exponentials and powers
as inhomogeneity, it works fine. Section 4.8
does it, under the name Method of un-
determined coefficients. Here, “unde-
termined coefficients” refers to coefficients
in the (guessed) solution, whereas “con-
stant coefficients” refers to coeflicients in

e For very particular types of variable coeffi- the equation.

cients, a similar routine method is available.

We don’t discuss this type (so-called Euler

equations) in detail here. But you have al-

e For other inhomogeneities (even with con-
stant coefficients), and also for variable co-

ready encountered a sample of this case as
well, out of context: it was hwk 1.2#21.

For the general case of variable coefficients,
the task may be difficult, and we just don’t
have a general method. However, power se-
ries methods (see Chapter 8) are very help-
ful in the practically important cases, and
if you ever run across “Bessel functions”
(quite likely) or “hypergeometric functions”
(less likely), this is the context where they
arise.

efficients (even with nice inhomogeneities),
educated guessing rarely works. The
method of choice is called variation of pa-
rameters (Sec. 4.9). I won’t summarize its
contents here. Be it known however that it
requires to solve the corresponding homoge-
neous equation first.
_|

You could of course use this method also
for the simpler cases mentioned before; but
“undetermined coefficients” will be faster,
where it works.



I stressed above that “2nd order” is not the key issue here, but “linear” is. Therefore, all of the above
also applies to 1st order linear equations, and therefore you should be able to recognize some known stuff,
if you try to treat first order linear equations by the methods outlined above. Probably, right now, there
is not much that looks familiar. Let’s have a closer look:

A first order linear inhomogeneous ODE looks as follows:
y' +p(@)y = g(z)

Ve

pN

When you try to find an integrating fac-
tor, you indeed don’t care about the in-
homogeneity g(z) yet. But do you re-
ally solve the homogeneous ODE, i.e.,

Yy +p@)y=07?

When you try to find some solution to your 1st order
linear inhomogeneous ODE y' + p(z)y = g(x), physics
will often guide you; in practice, finding some solution
means to find the simplest solution. Find here the
physical meaning of these simple solution:

The answer is yes, and this is your
homework N4#1:

Let p(z) be an integrating factor for y' +
p(z)y = g(z). Recall: What is the differen-
tial equation you needed to solve to find u?
What is the formula for u? Now show that
the reciprocal of p, i.e., 1/u, is a solution
of the corresponding linear homogeneous
equation y' +p(x)y = 0. Show that actually,
for every constant C', C'/u is a solution.

In other words, by finding an integrating fac-
tor u, you did indeed solve the linear homo-
geneous equation, namely the solutions are

C/u(x).

e The case of constant coeflicients is
well-known to you already: vy’ + ky =
0: Radioactive decay v' + ky = 0
or Malthusian growth y' — ky = 0.
Indeed, as promised on the previous
page, “Solutions to this type of equa-
tions will be y = e™*, you only have
to find m by plugging in.” Here, the
m is of course —k, or k, respectively.

e You haven’t seen a first order analog
of hwk 1.2#21, because that analog
would not be of practical interest.

e The general case of variable coeffi-
cients may be difficult for higher or-
der, but in 1st order we are lucky, be-
cause the linear homogeneous first or-
der ODE y' + p(z)y = 0 is separable.
The power series methods of Chapter
8 announced for 2nd order, still apply
for 1st order, but they are not used:
they would be overkill.

Also for the linear inhomogeneus ODE, you have
encountered the case of constant coefficients:
y =k(a—y), equivalently y' +ky=ka.

It is Newton’s law of cooling, and also fall under linear air
resistance. Again the exponentials appear in the general

solution.

e But if all you need here is just some solution, one
such solution is easy to guess in this case, and it
has the benefit of being special from a physics point
of view: take the constant function y = a. It’s the
equilibrium solution, where nothing changes; in the
cooling example, it’s when the coffee has room tem-
perature, in the parachute example, it’s the speed
where air resistance balances gravity.

e We also had a cooling example with the inhomo-
geneity a sine function. That was example 2 in
section 3.3 (p. 109-111): They don’t write down
the equation clearly in the texbook, but rather just
plug the data into the solution formula (shame on
them!). If you do write down the equation, as dis-
cussed in class, you have y' + ky = a + bcoswt
(just with different symbols). And the particular
solution they discussed in that problem was the
one where the exponential term from the general
solution had long decayed: It had the structure
y(t) =71+75 coswt+73 sinwt, where each ‘7’ stands
for a certain number that depends on the given pa-
rameters. When we did the problem, the values for
each ‘?” just popped out of the calculation at the
end. Educated guessing would be (a) to guess ex-
actly this formula, but with the ‘?’ really unknown.
Then to plug this formula into the equation and de-
termine for what values of the ‘7’ you get indeed a
solution.

e We'll discuss what variation of parameters does for
first order linear ODEs, when we come to that
method. You haven’t seen it yet.



The Superposition Principle is the basic principle that is characteristic for linear equations, and it is
responsible that the task of solving linear ODEs can be split into two parts as outlined above. It comes
in two variants that you should put together in your mind, even though they are separated by several
chapters in the book:

Thm: If the functions y1 and yo are solutions to a linear homogeneous (OD)E, then any linear combi-
nation c1y1 + cays (with c1,c2 constants) is also a solution. (You find this on p. 163 in the book.)

Thm: If y, is a solution to the linear homogeneous ODE

y" +p(x)y +q(x)y =0 (2)

and y; is a solution to the linear inhomogeneous ODE (note: same stuff on the left, only change is the
inhomogeneity!)
y" +p@)y +q(@)y = g(x) 3)

then yp, + y; is also a solution to the linear inhomogeneous equation (3). Conversely, if you have found
some particular solution y, to the inhomogeneous equation (3), by whatever method, then any other
solution y; to (3) differs from y, by a solution of the homogeneous equation (2). (You find this on p. 201
in the book, somewhat differently worded.)

Note that these theorems hold for linear ODEs of any order.

Homework N4#2: Take the linear inhomogeneous equation (3a) Mv' = —9.81M — kv, with given
numbers k¥ and M, and write down its general solution v;. Write down the general solution v to the
corresponding linear homogeneous equation (2a) Mv' = —kv as well. Also find a particular solution v,
to the inhomogeneous equation (3a) by means of physically motivated guessing: Which constant function
is a solution to the inhomogeneous equation? Verify the theorem in this concrete example.

There is one more fundamental ingredient which you need to understand about 2nd order ODEs (and
this one has nothing to do with linearity): If you have a 2nd order ODE 4" = f(z,y,%'), in order to find
a solution ¥y, you must get rid of two derivatives, i.e., you have to do two integrations; this is true at least
in principle, even though in practice, it is much more difficult than just integrating twice. Whatever you
do in practice to solve the 2nd order ODE (you may not even see the integrations), the two integrations
will be responsible that the general solution contains two undetermined constants C; and Cs.

Accordingly, the initial value problem for 2nd order ODEs contains two initial conditions: you prescribe,
for some xo the value y(zg) = yo of the function, and its derivative y'(xo) = yor- Yo and yor will be given
numbers (in Newton’s law of motion, they would be initial position and initial velocity, respectively). I
have chosen to attach the prime in yo to the index, rather than using the more common notation yj, to
make sure yg looks like a number to you, not like a function.

Remember the Euler method (sec 1.5, see my notes) for 1st order IVPs y' = f(z,y), y(xo) = yo. The
ODE permitted us to calculate the rate of change (derivative) of the unknown function y at the initial
time z¢ by merely plugging in: y'(z¢) = f(xo,¥0), and from this rate of change of y, we can get a good
approximate value of y at a short ‘time’ h later:

y(xo + h) = yo + hy'(x0) = yo + hf (20, o) -

For 2nd order y" = f(z,y,y'), we can similarly get the 2nd derivative (derivative of the derivative, or,
rate of change of the derivative) by plugging in: y"'(z0) = f (0, Y0, ¥o'), and this information helps us to
approximate not only y at a short time h later, but 3’ as well:

y(xo+h) = yo+ hy'(xo) = yo + hyo
y' (o + h) = yor + hy'"' (x0) = yor + hf(w0,Y0,Y0')

— As for 1st order equations, the IVP for 2nd order equations has a unique solution, under mild hy-
potheses. We specify the details only for linear equations:2

2The theorem for nonlinear equations is no more complicated that in the 1st order case, but the notation needed to
write it down may cause confusion; this is the only reason why I omit it



Thm: If p and q and r are continuous in a neighborhood of xq, then the IVP

Y +p@)y +ql@)y=9(=@), yl@o) =y, ¥ (x0)=yo

has exactly one solution. The mazimal interval of existence of this solution is (at least) as large as the
largest interval containing xo on which p, q, and g are continuous. (p. 165 in the textbook)

This, too, holds for higher order linear ODEs, with obvious modifications. The last sentence, which
specifies how large the interval of existence is, has no analog for nonlinear equations. In nonlinear ODEs,
the solution may exist only on a short interval that could not be anticipated from looking at the equation
alone. You have seen this phenomenon for 1st order already: reread the middle of p. 2 of my notes on
Chapter 1, if you don’t remember.

Hwk: Ch4.2 (p165) #13a, 14a, and the following two:
N4+#3: Determine the maximal interval of existence of the solution to the IVP

1
' =Y+ gy =e, y) =1, y(1)=17

(Careful, don’t overlook a little detail.)

N4#4: We’ll soon need complex numbers. To make sure you can calculate with them, do the following
two (If you have difficulties with these, alert me immediately):

2 2 2
(a) Evaluate 1 + z + % forz=1+1 (b) Evaluate CPH + 3%

We now study the task of finding all solutions to a linear homogeneous equation (program of left column
on p. 2 of these notes): Consider three examples:

Example 1: (from hwk 1.2#20a - constant coefficients) — Confronted with the ODE ¢ + 6y’ + 5y = 0,
Ann has the wise hindsight / idea to try y = €™® and see if for any m that is a solution. She comes up
with two solutions: y;(z) = e~® and y2(x) = e~5%.

Example 2: (from hwk 1.2#21a - a certain, particularly convenient type of variable coefficients) —
Confronted with the ODE 3z2y" + 11zy’ — 3y = 0, Bob has the wise hindsight / idea to try y = ™ and
see if for any m that is a solution. He comes up with two solutions: y; (z) = 2~/ and ya(z) = 2. Bob
also notices that y3(x) = 0 is another solution.

Example 3: (new) — Confronted with the ODE z?y" — zy’ + y = 0, Charles has the wise hindsight /
idea to try y = ma and see if for any m that is a solution. He comes up with infinitely many solutions:
For every m, ym,(z) = mx is a solution.

Who has made more / most progress towards finding all solutions of his/her ODE?

If you merely count solutions, you think Charles is the winner, because he has infinitely many solutions,
whereas Ann has two and Bob has three. However, I want to convince you that Ann and Bob are tied
for a win, and Charles gets the third place. The reason is that, without extra work, we can immediately
create infinitely many solutions from Ann’s two solutions, namely y = c1y1 + cay2 = c1e ® + coe 5%, and
that this collection of solutions comprises all solutions of Ann’s ODE. The same thing applies to Bob’s
solution, and his extra solution y3 = 0 isn’t even needed nor does it contribute. It’s redundant, because
we get ys for free out of y; and y2: namely, y3 =0=0-y; + 0 - yo.

Charles’s infinitely many solutions is just what you get “for free” from a single one, namely y; = . His
set of solutions falls short of being all solutions. For instance, y(z) = zInz is another solution, which
Charles hasn’t even come close to finding.

It is therefore our next goal to study when two solutions y; and y» to a linear homogeneous 2nd order
ODE are such that their linear combinations c¢;y; + coy» already make up all solutions of the ODE. The
answer to this question can be given very quickly (for 2nd order): It must NOT be the case that one
solution is a multiple of the other. But you won’t take my word for it: think of the implications of this
statement: I am claiming that if you have found two solutions of a linear 2nd order homogeneous ODE,
subject only to the condition that one shouldn’t be a multiple of the other, then there couldn’t be any
other solution but those that are linear combinations of the two solutions you happen to have already!!
How could I make such a bold claim, without even looking at the specific lin’hom’2nd order ODE, nor
at your specific solutions?



I’ll do this argument parallel, for the general case, and for the special case of Bob’s example. The special
case is meant to show you immediately what is given and what is to be determined.

Let y; and y» be solutions to any given lin’hom’ Let y1 = 2 /3 and y» = 23 be Bob’s two solu-
2nd order ODE tions to the lin’hom’2nd order ODE
n !
y" +p@)y +a(z)y =0 LS
L g 1

In order that any solution y of this equation be
expressible in the form y = c1y1 + c2ys2, it is cer-
tainly necessary that for any given initial values
y(zo) = Yo, ¥'(xo) = yor, the solution to these ini-
tial values is so expressible; in other words, given
any Zo,yo, Yo, we must be able to find ¢;, ¢o such

In order that any solution y of this equation be
expressible in the form y = ¢iz~ /3 + coz 3, it
is certainly necessary that for any given initial
values, e.g., y(1) = 5, ¥'(1) = 3, the solution
to these initial values is so expressible; in other

that words, we must be able to find ¢;, ¢o such that
y(zo) = c1y1(@o) + c2y2(z0) = Yo y(1)=5=c11""3 41 3 =¢; + ¢y
y'(;co) = cly'l(xo) + czyé(g;'o) = yor yl(].) =3= 01%11_4/3 -+ Cz(—3)1_4 = _?161 — 3cy

To solve these equations for ¢, cq, if possible, the following calculation does the job in an organized way:
Get ¢; by subtracting ya(zg) times the second equation from yh(z¢) times the first equation. (The co
terms cancel in this procedure.) You get

C1 (yl (mo)yé(xo) - yi (-"ﬂo)y2($0)) = yoyé(iﬁo) — Yory2(zo)

and similarly, subtracting y; (x¢) times the first from y; (zg) times the second equation,

¢ (41 (w0} (30) — i (w0)y2(20) ) = yorys (wo) — oy (@o)

These equations can be solved for ¢;, ¢, if the stuff in the parenthesis is different from 0 (and in that
case, plugging into the original equations confirms that we have indeed a solution). We still need to show
conversely that, if the stuff in the parenthesis does vanish, there are indeed right hand sides yg, yo for
which we cannot find solutions ¢;, ¢c2. ’ll omit the (straightforward, but a bit lengthy) discussion of these
cases. If you have studied the theory of systems of linear equations, you will be familiar with the result
anyway.

Remember that we argued: “If any solution y can be written as a linear combination y = ¢;y; + coyo of
the two given solutions y;, yo, then this must be true in particular for the solution for any given pair of
initial conditions”. Checking this latter condition reduced the problem to a system of linear (algebraic)
equations. You have done exactly this in hwk 4.2#13a,14a. But the ‘in particular’ above represents
indeed the full generality: If you wonder if some particular solution y;, to the lin’hom 2nd order ODE can
be represented as linear combination ¢;y1 + ¢ay2, then you choose your favorite zg, calculate yp(zo) =: yo
and y; (z0) =: yor and reason: “We have just determined how to write the solution with initial conditions
Yo, Yor as a linear combination. We know that there is exactly one solution to these initial conditions, so
this one solution is indeed yy,.

Let’s give a name to the ‘stuff in parenthesis’ above:

Definition: The Wronskian Wy1,y2] of two solutions of a 2nd order linear homogeneous ODE is the
function given by the formula

Wl 12l(e) = 1 (D) — s @me) = | 40 )

If you know about determinants, you will recognize the second equality sign as justified. If you do not
know about determinants, take the second equality sign as a definition of the rightmost term and be
advised that this rightmost term is called a determinant.

Definition: Let p and q be continuous in some interval I. We call a pair of solutions {y1,y=} to
y" +p(2)y' + q(x)y = 0 a fundamental solution set for this ODE (in the interval I), if Wy1,y2](x0) # 0
for some xg € I.



Theorem: In this case, W[y1,y2](z) # 0 for every x € I. Every solution of the ODE can be written as
a linear combination of y1 and ya, if and only if {y1,y=} is a fundemental solution set.

Definition: Instead of saying “{y1,y2} is a fundamental solution set”, we also say that the solution set
{y1,y2} is linearly independent, or that the solutions y; and y, are linearly independent.

Hwk: Sec 4.3, #2,3,6,7,8, 20, 19 (yes, I suggest to do 20 before 19). For 7,8 also give the interval of
existence.

All the arguments about fundamental sets of solutions carry over to higher order lin’hom’ ODEs. A set
of n solutions {y1,...y,} to a lin’hom’ n*" order ODE is a fundamental system, if the Wronskian

y1(z) ya(x) Un (@)
e vl (z) Yn ()
Wly1,...yn)(z) = : .. :
W V@) i V@) - e V@)

doesn’t vanish. (Note that higher derivatives occur; just as many as you need for specifying enough initial
conditions.) This formula involves an n X n determinant; if you know how to evaluate such determinants,
you can check solution sets for higher order ODEs for being a fundamental system. If you have never
learnt about higher order determinants (which is quite likely), consider this equation as a shorthand for
a messy formula, which I don’t write down, because you won’t need it in this class. [But I do want you
to take knowledge just of the plain fact that such a generalization to higher order ODEs is available.]

Finally: How do we find solutions?
After these preparations, we can reveal quite swiftly the available techniques to find solutions:

Alas there is no general technique for all lin’hom’ 2nd order ODEs; however, for the very important case
of constant coefficients, there is a straightforward technique:

Thm: For linear homogeneous n'™ order ODEs with constant coefficients, the following routine proce-
dure will always find a fundamental set of solutions: Plug in y = €™ and determine m from the (n*®
degree algebraic) equation ensuing.

(a) If there are n different real solutions m, then the corresponding functions y = €™* form a fundamental
set of solutions.

(b) other cases to be discussed soon.

You can already follow this method and solve the following problems:

Hwk: Sec 4.5#2,6,16,21,32; and N4#5:
Also find the solution to the IVP

y'—2+hy' +y=0, y0)=1, y'(0)=3

for any given h > 0.

Let us continue the discussion of how to find solutions for constant coefficient equations. For an nt" order
lin’hom’ ODE with constant coefficients, the educated guess y = e™* leads to an algebraic equation: we
have to find the zeros of an n*® degree polynomial in the variable m. If we are lucky (case (a) above),
this auxiliary equation has n different real solutions. What else could happen? Essentially, two things:
(b) We can have complex solutions m of the auxiliary equation, (¢) we can have multiple solutions. For
sufficiently high order these problems can occur together (multiple complex solutions), but for 2nd order
ODEs, we get m from a quadratic equation, so there are only two solutions: they are (a) either both real
and different, or (b) both complex conjugates, or (c) one double solution (real).

We deal with these problems in turn.

Example: y" — 4y’ + 5y = 0. Try y = €™?, get the auxiliary equation m? — 4m + 5 = 0. The quadratic
formula yields the two complex solutions my/, = 2 % .

e The good news is: The general solution is still y = ¢;e219% 4 ¢,e(2~92 according to the same principle
as for real solutions m.

e The bad news is: You probably have no idea what e to some complex power actually means, and
therefore the previous result is probably (?) meaningless.

e The other good news is that you will learn to make sense out of a formula like y = ¢;e(?19% 4 ¢ye2-07,



A little algebra will make the complex numbers disappear from this formula again, and then you get a
(manifestly) real solution.

Actually, T have borrowed this example y" — 4y’ + 5y = 0 from hwk 4.2#13, and they have given you a
fundamental set of solutions there, without using complex numbers: Namely y; = 2% cosz, y, = €>? sinx.

How does this relate to the strange fundamental set of solutions I proposed above, namely y, = e(?+97
— (2= 9
y_-=e ?

The way to make sense of e* for complex z is by using the Taylor series of the exponential function:

2 Z3 2T
e=ldzt gttt
You know this formula for real z already. But the right hand side makes sense for complex z as well;
so this series now defines e for all complex z. (It can indeed be shown that the series converges for all
complex z.) And what is even better, all the nice algebra rules like e®? = e®¢? remaln true, even if a, b
are complex. Using them, you can slightly rewrite y4 and y_: y; = €2%e®®, y_ = e?®e~%. So the e that
comes up in the formula for y;, y- is already appearing. We are left with understanding e*® and e~
These fellows seem to have something to do with trig functions!!! You are about to witness a miracle:

Once you do complex numbers, you find that
the exponential function and trig functions are closely related!

The precise nature of this relationship can again be found by means of power series: Using the power
series for the exponential function, you get

_ (iz)? | (iz)* | (iz)*  (iz)° (iz)"
=1+iz+ 21 + 30 + 1 + = +...+ ol + ..
1 2’ a:3 z? a:5 (iz)™
22 x4 22k PRI £2kH1
1—— — — ... —1)k ) —+—=—+... S ) LS
(1S T )(2k)!+ Jrifo- G Gt U G )

=cosz + isinx

This formula is so 1mp0rtant that if the phone rings at 3am and someone asks you “e’*?”, you are

expected to reply “cosz + isinz” still half asleep, turn over and continue sleeping as if nothing had
happened.

fi —ir — Qi — 1/ iz —ix — iz —iz
Similarly, you get e™** = cosz — isinz, and consequantly cosz = 3(e'* +e7**), sinz = 2—(@ —e @),

Conclusion: If the auxiliary equation has a pair of complex solutions m+ = a =+ bi, then you get cor-
responding solutions of the lin’hom ODE with constant coefficients y;1 = €% cosbz, ya = €**sinbz,
because
C+e(a+bi)a: + cie(a—bi)x — 0% (C+6i bz + C,e_ibz)
= e (¢4 (cos bz + isinbx) + c_(cosbx — isin bx))
=e* ((c4 + c_) cosbz +i(cy — c_) sin bx)
= c1€%" cos bx + ce* sin bx

Note: When you learned calculus, complex numbers were typically excluded. The earliest reason
for this exclusion is the difficulty to graph functions of a complex variable. Much of calculus tolerates
complex numbers with indifference. For some parts (roots, logarithms, integrals) complex numbers would
cause difficulties inappropriate for 1st year level. Power series in contrast don’t merely tolerate complex
numbers, they actually beg for them: You have just seen some of the goodies you get from admitting them.
Basically, what you need to learn about complex numbers in calculus at this level is the following: Basic
algebra rules as well as rules for the derivative (product rule, chain rule, derivatives of basic functions)
remain true even if complex numbers are involved. And of course the relation between trigs and the
exponential. However, you avoid logarithms of complex numbers until you understand the pitfalls they
pose (which requires at least M 443).

Hwk: Sec 4.6, # 10, 22 (choose further pblms out of these problem sections, when you feel you need
more training).



We are left with one more difficulty: what happens if the auxiliary equation has repeated roots? Example:
y"" — 2y’ +y = 0 leads to the auxiliary equation m? — 2m + 1 = 0 which has the repeated solution m = 1.
This is the case h = 0 of hwk problem N4#5. (The homework assumed h > 0.) I'll explain the method
later, but will give the result first, as part (¢) of the now completed theorem:

Thm: (completion from page 7)

For linear homogeneous n'® order ODEs with constant (real) coefficients, the following routine procedure
will always find a fundamental set of solutions: Plug in y = e™® and determine m from the (n** degree
algebraic) equation enswing.

(a) If there are n different real roots m, then the corresponding functions y = €™ form a fundamental
set of solutions.

(b) If some of the roots m are complex, these will automatically come up in pairs of compler conjugates
m =a xbi. To them, there corresponds the pair of solutions e®® cos bz, e** sinbx of the ODE.

(c) If some root m is repeated (double root), solutions for the ODE are e™* and xe™®. If the same
m occurs with higher multiplicity than two (say k-fold), then k solutions for the ODE are €™, xe™?,
...k leme,

The set of solutions found according to the above procedure is a fundamental set.

This merits an example that contains all bells and whistles at the same time. The examples you encounter
will be much simpler, but the complicated example is more helpful to understand the theorem:

An ODE of 14th order:
y (1) 4 03) 4489 (12) 4 429 (1) 1 7614 (19) 4501y 43750y (®)+496y (") — 5856y (%) —8448y(>) —36352y ) +86016y"'—40960y" = 0
This leads to the auxiliary equation:
m™ +m'3+48m* 2 +42m ! +761m 0 +501m° +-3750mB +496m ™ —5856m° —8448m> —36352m*+-86016m>—40960m? = 0

Of course you are not expected to find the roots of this mess; however, a symbolic algebra package like
Maple or Mathematica will discover that the whole mess can be factored nicely:

(m+2)m*(m — 1)*(m? + 2m + 5)(m* + 16)* =0

So here is how you get a fundamental set of 14 solutions to the ODE:

factor | contributes | corresponding solutions to ODE
m+ 2 single root m = —2 Yy =e 2%
m? double root m =0 ys = P =1,
ys = e’ =z
(m—1)3 triple root m = 1 Yy = €%,
Ys = meza
Y = _,L.Zez
(m? +2m +5) | complex roots m = —1 +2i | y7 = e~ % cos 2, ys = e~ ¥ sin 2z
(m? +16)3 complex roots m = +4i, yo = €% cosdx = cosdx, yio = €% sindx = sin 4z,
each with multiplicity 3 y11 = z cosdx, Y12 = x sindz,
y13 = =2 cos4x, Y14 = 22 sin 4

Let me briefly explain why part (c) of the theorem is true; in other words, why, if there is a double root
m, ze™® is a solution, in addition to e™*. There is a number of explanations. The naivest explanation
is just: plug in the alleged solution and see that it works. Another explanation is given based on Ch. 4.4
of the textbook, which we haven’t discussed so far. But here is another simple argument: If my and
mo + € are different roots of the auxiliary equation (but very close to each other), we have the solutions
y = c_e™% 4 ¢y e(mo+9)7 for any choice of constants ¢y and c_. If mg and mg + € are the only solutions
to the auxiliary equation (i.e., if we have a second order equation), then we are actually talking about
the ODE y" — (2mg + &)y’ + mo(mo + €)y = 0 here. But the following argument does not rely on such
an assumption.

In particular, we may choose cy = 1/¢ and c_ = —1/e. This gives the solution y. := (e{mote)z —gmo?) /¢,
We have chosen the constants in such a way as to find a solution that has a limit as e — 0. It is
reasonable to believe, and can be proved formally, that the limit of the solution y. as e — 0 is a solution



to the equation with double root mg. (In the absence of further roots, this would refer to the ODE
y" — 2moy’ + miy = 0.) If you remember the limit definition of the derivative, you observe indeeed that

e(mg—i—e)z — Moz d

lim Ye = lim ————— = d_ e™? = ge™o”
e—0 e—0 £ m m=mo

Basically the same idea, only more elaborate, explains why 2z2e™°? is another solution in case mq is a
triple root of the auxiliary equation.

You may wish to observe the same phenomenon again, in the hwk I assigned you above (N4#5). You
had to find the solution to the IVP

y'—2+h)y' +y=0, y0) =1, y'(0)=3

The solution is a bit messy, and you may have sorted the terms together differently. In any case, one way
of writing the required solution is:

y= %e(1+%)m{(eﬁx+6_ﬁm) +% (eFm—e_Fw)}

with /--- a shorthand for /h + 'ﬁl—z. You need I’'Hépital (or the series expansion technique) to carry out

limy_,¢ in the second term of the sum, whereas the limit is straightforward for all subexpressions in the
first term of the sum. The limit is y = £e%{2 + 4z} = = + 2ze®. This is indeed the solution of the IVP

yv' =2y +y=0, y0)=1, y'(0)=3

as you can easily check by plugging in.

Take a deep breath and look back to page 2 what we have accomplished:

We have discussed the superposition principle, which first explains why the task of finding all solutions
to a linear inhomogeneous ODE splits into two tasks as outlined on page 2. We have studied how the
task of finding all solutions to a linear homogeneous ODE can be accomplished in the case of constant
coefficients. There again, the superposition principle played a key role, because the method of educated
guessing (“maybe some e™z is a solution”) could produce only a few solutions, and the superposition
principle spawns all the other solutions out of these. You are already prepared for some review problems:
Hwk: p. 250, #2, 6, 10, 12. Note: for #12, you’ll need to guess a solution for the auxiliary equation
first, by trying a few small integers.

We next switch over to the right column of page 2, where we want to find just some solution of the
inhomogeneous equation. Again, the method of educated guessing works wonders in some important
cases. But we will also need some more sophisticated techniques to deal with the less simple cases. We
start with the case of constant coefficients again:

The method of educated guessing for a particular solution y, of the linear inhomogeneous equation with
constant coefficients is outlined in Section 4.8 of the book, under the name “Method of undetermined
coefficients”. It goes as follows: If the right hand side g(x) is an exponential function, the guess a
constant multiple of that same exponential function as a particular solution. There are some ramifications:
If the rhs is a trig function (sin or cos only) or a polynomial, then try a similar trig function or a
similar polynomial, respectively, as a particular solution. Details to follow. And there is a technique
for trouble shooting, because it may not always be quite that easy. But while the overall technique
seems so surprisingly successful, you should also be aware of its limitations. If the rhs is something
more complicated (as, eg., tanz, v/z2 + 1, arcsinz) don’t bother with trying “similar” expressions for
solutions. That will usually not work. The scope of the technique is limited, and it deserves mentioning
only because this limited scope does cover some of the very important cases.

Let’s see our first example: y" + 5y’ — 14y = €®. You guess y, = Ae® with yet unknown A, plug it in, and
bingo, you find it works for A = —1/8. Next, y" +5y' — 14y = 4e 3*. You guess y, = Ae 3%, and you find
it works with A = —1/5. If you have a sum of two exponentials on the rhs, as in y" +5y' — 14y = e +4e 32,

you can now predict, based on the previous two results, that y, = —fe” — e 37 is a solution.

10



Now let’s see a potential troublespot: y” + 5y’ — 14y = €2%; you try y, = Ae?® of course, but, too bad,
you get 0 x A = 1, and you won’t find an A that satisfies this equation. The reason for the trouble is
that e2® is already a solution ot the homogeneous equation y" + 5y’ — 14y = 0, because m = 2 is a root
of its auxiliary equation m? + 5m — 14 = 0. The trouble shooting advice tells you, that in this case, you
should try aze?®, and that this will succeed, unless m = 2 happens to be a double root of the auxiliary
equation (which is not the case in this example). Guess how you would find a particular solution for
y" — 4y’ + 4y = 17e%*, where m = 2 is indeed a double root of the auxiliary equation: Try Ae?* and see
the attempt fail. Try Aze?® and see this better attempt fail again. Try Az2e2® and succeed!

So here is the method:

If you want a particular solution for
v+ g0y 4+ ay + qoy = g(a)

with constant coefficients qo, ¢1, - - ., gn—1 and if g(z) = ae™, then a special solution is y, = Ae"® where
you only need to determine A by plugging in. This works, unless e"* solves the homogeneous equation
already (i-e., unless m = r is a root of the auxiliary equation). In this case, you need to know what
multiplicity = has, as a root of the auxiliary equation. If it has multiplicity s, then you know already
that €™®, ze™, ..., 2° 1e™ solve the homogeneous equation; a particular solution for the inhomogeneous
equation is found in the form y, = Az®e™.

If you have a sum of different terms g;(z) + g2(z) + ... on the right hand side, and if you can find
a particular solution y,; for each term g;(z) separately, then their sum y,; + yp2 + ... is a particular
solution for the right hand side g;(z) + g2(z) + . ... This is a variant of the superposition principle, and
we immediately use it to discuss what happens if g(x) involves trig functions (sin and cos):

Example: y"” + y' + 5y = 20cos3z. You use 20cos3z = 10e3* + 10e 3** and employ the method for
exponential right hand sides (justly unworried about the complex exponent): you need an A;e3* term
(with A} yet to be found) to produce the 10e3® on the right hand side. And you need an A_e 3
to produce the 10e=3% on the right hand side. You get the equations A;[(3)? + (3i) + 5] = 10 and
similarly A_[(—=3i)? + (=3i) + 5] = 10. A little arithmetic produces Ay = 10/(—4 + 3i) = —2(4 + 3i),
A_ =10/(—4—3i) = —2(4 — 3i). This gives you the solution y, = —2(4 + 3i) €@ — 2(4 — 3i) e=%%. Of
course you’d be required to rewrite this whole thing as a real expression:

Yp = —§(4 + 3i) % — %(4 — 3i)e 3@

2 2 1 12
= —5(4 + 3i)(cos 3z + isin3z) — 3(4 — 3i)(cos 3z — isin 3z) = —36 cos 3z + = sin 3z

The alternative (for those who dislike complex numbers and are willing to pay with extra memorization
for it): If you have a right hand side of acosfz, try y, = Acos Bz + Bsinfz and determine A, B by
plugging in. If you have a right hand side of asin Sz, again try y, = Acosfz + Bsinfz. That will
work, unless +if are roots of the auxiliary equation for the homogeneous equation. Then you have to
try 2®(Acosfx + Bsin Bz) with s the multiplicity of +i8 as a root of the auxiliary equation.

You have the whole collection of possibilities in the table 4.1 on p. 208 of the book. Note that in this
table, everything is a special case of case (VII). The right hand sides you can handle are no more and no
less than:
polynomial p,(z) (possibly p, = 1)
x exponential e*® (possibly @ = 0, reducing the exponential to 1)
x sin Bz or cos Sz or a linear combination thereof (possibly 8 = 0, reducing the cosine to 1)
and linear combinations of such terms of such terms. The trial function is then
x® x x exponential e*® (possibly a = 0, reducing the exponential to 1)
X Pp(z)cos Bz + Qn(z)sin Sz
with P, (z), Qn(z) polynomials of the same degree as p,, (A4, B, if this degree is 0)
where s is the multiplicity of a + 48 as a root of the auxiliary equation for the homogeneous ODE. If
a=+if is not a root of that equation, then s = 0. — Pages 208-210 of the book seem to be very useful for
examples. A deficit in the preceding pages of the book is that they do not explain the relation between
the trial functions for trig right hand sides and the one for exponential right hand sides.

The next page shows an example with all bells and whistles attached. Given sufficient time (and en-
couragement to persevere), you could be required to do such an example. Make sure you understand all
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steps.
Sample Problem: Solve the IVP

1

9
- " - _Z
00 Y (0)

y" —3y' + 2y =5cosz +9(x? —1)e 2* + 8¢ “sin2z, y(0)= 8 ,y'(0) = :

15

Solution: We first have to get the general solution, then we have to determine the constants from the
initial conditions. The problem to find all solutions to this linear inhomogeneous ODE splits into several
parts (because of the superposition principle):

(a) Find the general solution y, for the homogeneous equation y"' — 3y’ + 2y =0

(b) Find a particular solution yp; for the inhomogeneous eqn y"' — 3y’ + 2y = 5cosz

(¢) Find a particular solution y,» for the inhomogeneous eqn y"' — 3y’ + 2y = 9(z% — 1)e~2®
(d) Find a particular solution yps for the inhomogeneous eqn y"' — 3y’ + 2y = 8~ % sin 2z

We address them in turn:

(a) For the homogeneous equation, we try y, = e™® and get the auxiliary equation m® —3m + 2 = 0.
Too bad that it is a cubic equation, but there is some hope to guess one solution by eyeballing.
Indeed m = 1 works. So we can carry out a long division of polynomials and find m® — 3m + 2 =
(m — 1)(m? +m — 2). We can now find all roots: m® —3m + 2 = (m — 1)%(m + 2).

We conclude: m =1 is a double root, m = —2 is a single root.

yn = c1€° + coxe® + cze

(b) In order to find a particular solution of ¥ — 3y’ + 2y = 5cosz = 2 (e + =),
we have the choice between the real method and the complex method; in either case we notice that
m = %14 is not a root of the auxiliary equation, so s = 0 in this case. The real method says: Try
y = Acosz + Bsinz and determine 4 and B. The complex method says: Try y = A e’ + A_e™ ™
and determine Ay and A_. When done, write the (apparently) complex solution in terms of real
trigonometric functions; the coefficients thus obtained will automatically turn out real, unless you
have made a miscalculation. I’ll choose the real method here; it’s probably a bit shorter.

Plugging y = Acosz + Bsing into ¥ — 3y’ + 2y = 5cosz and collecting terms cosz and sinz
respectively yields
(2A —4B)cosz + (4A + 2B)sinx = 5cosz

and therefore we need 24 — 4B = 5 and 44 + 2B = 0. Solving these two equations yields: A = 1
B=-1.

Y

We conclude:

Ypt = 5 COST —sinz

(c) In order to find a particular solution of y"" — 3y’ + 2y = 9(z% — 1)e~22,
we note that the m = —2 that is relevant due to the exponent in e~2% is already a root of the
auxiliary equation in (a), namely a single root (s = 1). The polynomial in front of the exponential
is of degree 2. So we have to try y = z°Py(x)e™2* = z(ax® + bz + c)e~2® with undetermined
coefficients a, b, c. A bit of hard labor to do here:

y = (az® + ba® + cx)e™®
y' = (3ax® + 2bz + c)e™2® — 2(ax® + bx? + cx)e 2
y" = (6az + 2b)e~2% — 2-2(3ax?® + 2bz + c)e~ 2% + 4(ax® + bx? + cx)e 2"
y" = 6ae™2" — 3 - 2(6ax + 2b)e™ 2 + 3 - 4(3ax? + 2bz + c)e~ 2 — 8(ax® + bx? + cx)e 2
Therefore: y'" — 3y’ + 2y =
= (—8a + 6a + 2a)x®e=2% + (—8b + 36a + 6b — 9a + 2b)z%e~2*
+ (=8¢ + 24b — 36a + 6¢ — 6b + 2¢)re 2% + (12¢ — 12b + 6a — 3c)e 2* = 9z2e~2% — Qe =27
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So we conclude:
2
27a=9, —-36a+18 =0, 6a—12b+ 9c= —9 ,therefore: a=—-, b=§, c=—

and 1
Yp2 = gm(xz +2z—1)e %

(d) In order to find a particular solution of y"' — 3y’ + 2y = 8¢ ®sin 2z = £ (e~ 14207 _ g(~1-20)z),
we note that the m = —1 =+ 2i that is relevant due to the exponent here is not a root of the auxiliary
equation in (a), so here we have s = 0 and our trial function is y = e~ % (A cos 2z + Bsin 2z); or else,
if you prefer to take the complex approach, you take y = A e(~1129% 1 A_e(=1-20z_ Either choice
is fine; in contract to (b), I choose the complex approach this time. The reason is that it saves me
repeated application of the product rule when calculating y'’. I anticipate this will outweigh the
extra labor of returning the (apparently) complex result into a manifestly real form. You can do
the real trial function and compare.

y=A el"11207 4 4_e(-1-20)z

y' = Ay (—1+20)e 17207 4 4_ (=1 — 24)e(~1-20)2

y" = AL (=1 + 2i)3e(-1+207 4 4 (—1 — 24)3e(-1-20)z

y"' =3y +2y=A4 ((—1 +2i)3 — 3(—1+2i) + 2)e(—1+2i)w + A cc = —dje(—1¥20)e | gip(-1-20)z

Note that I have used the lazybones notation cc as a shorthand for “complex conjugate”: The
stuff behind A_ is the complex conjugate of the stuff behind A, ; it suffices to evaluate one of
them, and the other arises by changing all i to —i in the end. A brief piece of arithmetic gives
(=1 +2i)% — 3(—=1+2i) + 2 = 16 — 8i, so we have

Ay (16 —8i)=—-4i, A_(16+8i)=4i , hence AL =(1—-2i)/10, A_=(1+2)/10
Therefore

1-2i 142 : e
Yps = Tle(—mz)z n %e(—l—w = 61—0 ((1 — 2§)(cos 2z + i sin 2z) + (1 + 2i)(cos 2z — i sin 2x))
—T —x

€ 0 (2cos2z + 4sin2z) = eT(cos 2z + 25sin 2z)

We have now found the general solution of the ODE:

—

1 1
Y = Yn+Yp1t +Yp2+Yps = cre” +caze® +cze > + 5 c08 r—sinz+ gx(a:2+2x—1)e_2w+e?(cos 2x+2sin 2x)

We need to determine ¢y, co, c3 from the initial values at 2 = 0. Plugging 2 = 0 into the general solution
(and its derivatives, which we therefore have to calculate first), we get

—Z

1 1
Y =cie® + oz +1)e” —2c3e™?® — —sinx — cosx + 3 (—22° — 2> + 62 — 1) e + %(3 cos 2z — 4sin 2x)

—T

1 1
y" = c1e® + co(z + 2)e” + dcze ™ — 5 cosw +sinz + 3 (42° — 42” — 14z + 8) ™" + %(—11 cos 2z — 2sin 2x)

y(0)=01+03+%+% ) R :%
y'(O):cl+62—2C3—1—§+g = 10
y'(0)=c1+2c+4cs— 5+ 3 -2 =-1

These linear equations can be solved by successive elimination and substitution, with the result:

7 12

C]_Z%,CQZ—
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The method of Variation of Parameters is a method to find solutions to a linear inhomogeneous
ODE of any order. For first order, it is equivalent to the method via integrating factors we studied
earlier; this equivalence is however a bit disguised, and we will exhibit it below. For higher order with
constant coefficients, it is mainly used when the right hand side (inhomogeneity) is not among the
special cases that can be handled by undetermined coefficients (i.e., exponentials, and their offspring
sin and cos, and polynomials). The method of variation of parameters is also applicable in the case
of nonconstant coefficients. However, it requires knowledge of a fundamental set of solutions to the
homogeneous equation, and we have no general method to find such a fundamental system, except in
first order, or for constant coefficients. If we have a fundamental system for the homogeneous equation,
we can handle any inhomogeneity and any order, and the only difficulty that could prevent us from
evaluating the solution all the way is an integral, which we may or may not be able to evaluate explicitly.

Let me first introduce the method for 1st order, where it can be motivated by your previous experience.
Take for instance the equation

y' + (tanz)y = sin’ z as an example for the general y' +p(x)y = g(z)

You have seen previously that for 1st order linear ODEs, the reciprocal 1/u of an integrating factor u
is a solution of the homogeneous equation. In our example, pu(z) = ——, and yx(z) = 1/pu(z) = cosz is

indeed a solution of the homogeneous equation y' + (tanz)y = 0. When we multiply our ODE with the
integrating factor, we get

1 o, 1 ., .
= th 1 "=
(cosmy) L or in the general case (ny) = p(z)g(x)

or

.2
Yy = cosx/ S(:(I:S;: dx or in the general case y(z) = pt /p(w)g(m) dx

So, whereas the general solution of the homogeneous equation is Cpu~!, solutions of the inhomogeneous
equations are v(z)u !, with v being given by some integral, namely v(z) = [ p(z)g(z) dz.

As a cookbook recipe, the method of variation of parameters says therefore: Take the homogeneous
solution (here Cpu~! = C cosz), replace the constant of integration by an unknown function v, plug the
so obtained function into the inhomogeneous equation and you will obtain v'. You just need to integrate
to find v and thus a solution to the inhomogeneous equation. The origin of the name for the method is
now clear: the constant of integration is referred to as a parameter (a parameter in the general solution
of the homogeneous equation). It is changed into a (nonconstant) function, i.e., it is made to vary.
Sometimes the method is also called “variation of constants”, for the same reason.

Let’s see how this method works on our example y' + (tanz)y = sin®z. First solve the homogeneous
equation y'+ (tan )y = 0 (say, by separating variables): You find the general solution of the homogeneous
equation yp(z) = Ccosz. Following the method of variation of parameters, you try the substitution
y(z) = v(x) cos z on the inhomogeneous equation; here is what you get:

v'(x) cos z 4+ v(z)(—sinz) + tanz v(z) sinz = sin’ z

>l

=0
The first two terms come from y'. Note that the underbraced terms cancel, precisely because cosz was

a solution of the homogeneous equation, and so you are left with only v’, but no v. You get v’ = sc‘;‘:;”,

which you can solve by direct integration: v(z) = [ Ség:; dz =1n % —sinz+C. The actual evaluation
of the integral was of course a quite non-obvious job, and I have deliberately chosen the example so you

are prepared for being able or unable to actually evaluate it.

In a moment, we’ll see how the method works just as well for 2nd order.
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A brief remark: Variation of parameters is another instance of the superposition principle, but in a rather
sophisticated way, so that you are not expected to actually see the superposition principle acting here. Take it
on good faith from me that using variation of parameters means chopping up the inhomogeneity into a sum
of small pulses and using the superposition principle on this sum:

g = g1 + 92 + g3 + 94 + 95
= + + |\| + I\I + H
(In contrast to the picture, variation of parameters really chops up the inhomogeneity not in five pulses, but in
infinitely many infinitely short pulses, by which a limiting process similar to the Riemann integral is intended.
| am not going to elaborate on details how variations of parameters arises from this idea of chopping up the

inhomogeneity and using the superposition principle. This would take one session, which the syllabus doesn’t
afford. )

Let me now exemplify the method in an example of 2nd order:

(1-=)

1-2)y' +zy —y= sinz in the interval —oco <z <1

You first need the solutions of the homogeneous equation (1 — z)y" + zy' —y = 0. If it were constant
coefficients, you could do it routinely; here you are dependent on undeserved luck, or advanced methods.
I have particularly prepared the luck for you so I can give you two functions, which you can readily check
to be solutions to the homogeneous equation: y;(z) = z, y2(z) = €®. As you cannot rely on the results
about constant coefficients, you should make sure that these two solutions are linearly independent, or, in
other words, form a fundamental system of solutions. Their Wronskian is W = y1yb—yjy2 = (x—1)e” # 0
in the interval —oco < z < 1.

Just as an aside, let me note that things would be vastly different, if I had chosen the left
hand side to be (1 — z)y” — zy' — y (just one sign change), or (1 — z)y" — 2zy’ + y. Just so
you really see it’s a carefully arranged piece of luck, not a routine matter to solve variable
coefficients ODEs. Moreover, I fed the former of these two equation to a symbolic algebra
package (Mathematica Version 4.1), which of course tried its advanced methods, ignorant
that I hade fine tuned the example to get simple solutions, and it came up with the following
useless wisdom:

y=c1e® T2,z —1) + c2(x — 1)2Laguerre_1’2(m -1

involving two functions I" and Laguerre unknown to you. After insisting with the Mathematicaese
translation of “are you sure you can’t simplify this; try harder to simplify”, it came indeed up
with y = ¢1z, so it lost the solution e”. Seems pretty strange; probably a bug. Just so you see
the limitation of these computer packages, marvelous as they are. (Mathematica Version 4.2
gives the same result, but refrains from simplifying the Laguerre term, which is better than

a wrong simplification, but short of the useful correct simplification; Maple (Release V) gives
the correct result right away.)

Another thing you may stumble over here is that I told you that the Wronskian of solutions
of an ODE either vanishes everywhere or nowhere. Now you have W = (z — 1)e®, which
vanishes at £ = 1 and nowhere else. The apparent contradiction is resolved by the fact
that the statement about the Wronskian came with the assumption that all coefficients are
continuous and that the coefficient of the highest derivative is 1. To ensure the latter, you
must rewrite the ODE as " + {2y’ — 1Ly = (1 — m)s‘%, and you see that z = 1 is not
permissible. Note that = 0 is also (kind of) a problem; but I have tacitly used the fact that
S(z) :=sinz/z can be extended continuously into 0 with the definition S(0) := 1.

Returning to our main task after having gone off on tangents a bit, the general solution of the homogeneous
equation is yp, = c1x+c2e”. We try to find a solution y, of the inhomogeneous equation; and the variation
of parameters principle tells us to try y, = vi(z)x + va(z)e®, with yet unknown functions v; and vy. At
first sight, two problems arise, but at second sight, it turns out that they are each other’s solution!

o If we plug y, = vi(z)z + va(z)e” into (1 — z)y" — 22y’ +y = @ sinz, we get one equation, which

is certainly not good enough to determine two unknown functions v; and wvs.
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o If we plug y, = vi(z)x + va(z)e” into (1 —x)y" — 22y’ +y = @ sin z, we get an equation involving

second derivatives of v; and vy, so it is not clear whether finding v; and vs is actually easier than the
original ODE.

The way that makes these two problems each other’s solution is the following: We realize that, whatever
the yet unknown solution y, may turn out to be, there will be different choices of v, va representing it:
For instance, if y, should turn out to be (just making this up) 2, this could happen with v; = z, vy =0,
or also with v; = 1, v3 = e~ *(2? — ), or in infinitely many other ways: you choose your favorite v;, and I
can adapt ve accordingly. Therefore, we may impose an extra condition on vy, vy that will not affect the
solution y, but will fix v; and v,. This extra condition will be designed just in such a way that second

derivatives of v; and vy cancel. Here’s how we do it in practice:

xz

Q-2 +ay —y= @ sinz with y =vi(x)z + va(x)e
y' = v (x)x +vi(x) - 1+ vh(z)e® + va(x)e®

Before taking the next derivative, we impose the extra condition

vi(z)x + vh(z)e* =0

which just gets rid of the v}, v} before they have a chance to get differentiated again:

y' =wvi(z) - 1+ va(x)e®
y" =vj(x) - 1+vi(z) -0+ vh(x)e® + va2(x)e®

If you plug all this into the left hand side, you'll find that all terms vy, without a derivative cancel!®

vi(z)(1 — z) + v)(z)(1 —x)e* = % sin

The extra condition and the condition obtained from the equation are good enough to determine v{ and
vy by merely solving an algebraic system of linear equations:

vl (z) + e*vh(x)
!
1

0
(1 — 2)v} (z) + (1 — 2)evh(z) = U=

v
$)2 . = ... — 7
sinx Uy

xz

Hence

i
v (z) = / mr dx + Cq nothing can be done with this integral
x

va(z) = —/e’m sinzdr = 62 (cosz +sinz) + Co

and the general solution is

y==x (/ s1nxd$+cl> + e* (e; (cosx + sinx) +02>

z
You automatically retrieve the contribution of the homogeneous solution from the integration constants
in v, v9, even if you were initially modest enough to look for a particular solution only.

Let’s do a 3rd order example: The only extra is that you have to impose two extra conditions, such
as to kill the 1)9 in every but the last step of differentiation.

ylll+4yll+5yl+2y: —
et +e 7T

The auxiliary equation m3 + 4m? 4+ 5m + 2 = 0 has a double root —1 and a single root —2. The general
solution of the homogeneous equation y"' + 4y" + 5y’ 4+ 2y = 0 is therefore y, = cie™ + core™ + c3e ™22,

3This was to be expected: If you first track the undifferentiated vy /2 only, you will retrieve exactly such terms as if you
had erroneously treated v and vy as constants; and as c1 + c2e” solves the homogeneous equation, all the undifferentiated
v1/2 terms cancel after plugging them into the left hand side of our ODE, as if the v;/5 had been constants.
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We therefore try y = vy (z)e™% + vo(z)re™® + v3(x)e~2* for the inhomogeneous equation:

y = v1(z)e™® + vo(z)ze™" + v3(T)e™2®
require this to be =0

y' = —vi(z)e™® +va(x)(1 — 2)e™® — 2u3(x)e2® + v} (z)e ™" + vy (z)ze T + vh(z)e 2
require this to be = 0

y" = v (z)e™® +v2(x)(z — 2)e™* + dvz(x)e 2 — vi(z)e * +vh(z)(1 —x)e * — 21);’;(517)672;
y" = —vi(x)e " + v2(x)(3 — x)e ® — 8uz(x)e 2% + v (x)e " + vh(z)(z ; 2)e % + 4vh(z)e 2®

YAy 5y + 2y = vl (@) T+ vh(@)(o — e+ duhla)e = S

It’s a bit of work to solve these three equations for vy, vh, v4, but it can be done in a straightforward way.

e~ v (z) + ze %vh(z) + e *®vi(z) =0
—e~ %} (z) + (1 — z)e~2vh(z) — 2e2%vi(z) =0
e™™v] (z) + (z — 2)e vy (x) + 4e” vy (2) = =

Add the first and second equation, also add the second and third equation, to eliminate v].

e "vh(z) — e **vi(z) =0 : —2a, 2
d by adding th = —
—e %vh(x) + 2e 2%k (z) = —emfe_m and by acding them e () er +e @

Substituting back yields

2

— —xz, ! _ _2(:8 + 1)
e* +e "

e (@) = et +e?

The integrals for v, and v3 are best treated with the substitution u = e, but alas you won’t have much
luck with the one for v;.

-2 1)e”
vy = 2(e” — arctane®) + Cs , vy = 1In(1 +€**) + Oy , v = / % dz + Cy

Hwk: Sec 4.9 (p.217) #1,10,12. Hint for # 12: Try y; = 2" to find a solution for the homogeneous
eqn. Check that y» = Inz/x is another solution for the homogeneous equation. Don’t forget to convince
yourself that the solutions thus found form a fundamental set.
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