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Applications of Chapter 4: Forced oscillations and resonance — Jochen Denzler, Nov 2002

We are going to use the theory of 2nd order constant coefficient linear ODEs to study oscillation phe-
nomena. This is is the most important application of Chapter 4, maybe of the entire course.

Think of a mass suspended from a spring. The fact that this simple construction is not seen realized in
everyday life shouldn’t distract you. With more or less precision, virtually all phenomena where some
object vibrates or oscillates can be described by the same (or very similar) differential equations: vibrating
bridges or other concrete structures, the perpendicle in a grandfather’s clock. Moreover, electronic circuits
constructed from a capacitor and an inductivity (and the ever-present Ohm resistance), and used to
create and amplify electromagnetic waves like the ones carrying radio signals, are also goverened by the
same underlying equations. Filtering high frequency or low frequency signals out of a signal containing a
mixture of frequencies is based on the fact that different frequencies are amplified more or less, depending
on the parameters of the oscillation mechanism. You are advised to reread this introductory paragraph
once you are through with the technical discussion to follow now.

We are considering a mass m suspended from a spring. We choose our coordinate y in
such a way that y = 0 corresponds NOT to the unexpanded spring, but to the spring
expanded just as much such as to balance the weight. Any excess expansion y > 0 will
then correspond to a pulling force of the spring exceeding the weight of the object and thus
pulling it back up. By referring to the force ky from the spring, according to Hooke’s law,
we are only considering the excess force beyond the one that balances gravity, because
our y is also only the excess expansion of the spring beyond what is needed to balance
gravity. This is why in our equations, gravity does not show up. It is tucked away
neatly in a smart choice of coordinates; and this is just fine, because then it doesn’t
get in our way when we focus our study
on the oscillations. (If you do not like this y 0
idea of hiding gravity, and it looks more N
0 like black magic to you, you may instead !j{ 5085060 85—
y consider the horizontal version as depicted NG

in the second figure.)

First consider the mechanism in the absence of friction (air resistance): The ODE governing it is my" +
ky = 0, according to Newton’s law. The solutions are the Free Undamped Oscillations

k
y = Acoswgt + Bsinwgt with wi = — (FUO)

m
The wisdom of exposition consists of expressing the solutions in terms of easily observable parameters
here, and interpreting their meaning. So wq is the frequency with which the oscillator oscillates when

kicked and then left alone.

One of the important things to understand about trig functions in this context is the following: any
linear combination of sine and cosine with the same frequency can be written as a sine alone, with an
appropriate amplitude R, and an appropriate phase shift. So, given any numbers A, B, you can calculate
numbers R, ¢ from them such that

A coswot + Bsinwet = Rsin(wot + ¢) (1)

becomes a true identity. Indeed, using the addition theorem sin(a + 8) = sinacos 8 + cosasin § on the
right hand side, you see that

Rsin(wot + ¢) = Rsin(wot) cos ¢ + R cos(wopt) sin ¢

So, in order for (1) indeed to be true, you have to find R and ¢ in
such a way that

R A
Rsing=A, Rcos¢p=B
Q B
This means you need R = vV A2 + B? and tan¢ = A/B.
Using this little calculation, we prefer to rewrite the solution (FUQO) as
y(t) = Rsin(wot +¢)  with Wi = % (FUO")

because R (unlike A and B) is a very conspicuous quantity, namely the amplitude of the oscillation.



If you have done the homework, you know how the same formula (1) can be obtained using complex
numbers; giving this second, alternative explanation for that fundamental formula is very instructive.
First look at the figure of the right triangle on the previous page. But now pretend that this triangle
lies in a plane representing complex numbers. The acute corner at which the angle ¢ is measured is the
origin. The right angle of the triangle lies at the real number B, and the remaining corner of the triangle
lies at the complex number B +iA. We see that B +iA = Rcos ¢ + iRsin ¢ = R(cos ¢ +isin ¢) = Re'®.
It is therefore easy to locate a complex number given in the form Re?® in the complex number plane:
from the origin, go a distance R in the direction specified by the angle ¢.
Concerning formula (1), you can add A coswt and Bsinwt geometrically by first adding (as vectors in
the plane of complex numbers) Ae#«*+7/2) and Be™*, and then reading off their imaginary parts on the
vertical axis:

sin wt = Im e®?

coswt = Imeiwt+=/2 T e
Acoswt + Bsinwt = Im (Be! 4+ Aeiwttm/2)) Bsin L:Ut —————————————— “\
— Im (Rei(wt+¢)) E < ==T XQ\ | \“
! [
with Rsing=A A A A
Rcos¢p =B ‘ \_:\, Q& R sin(wt + ¢) '
Acoswt 3 Loy
. . O wt G
The occurrence of the right angle makes'lt clear 1 ) / Be ' Binwt
why the amplitudes A and B for the sine and 3 oF Dl
cosine respectively are combined according to
the law of Pythagoras into a total amplitude
R =+A%2 + B2

Now that you have understood how to turn an expression of the form A cos wt+ B sin wt into an equivalent
one of the form Rsin(wt + ¢), let us resume our discussion of the oscillator. Our first refinement is to

add a small friction (air resistance) to the model. The ODE then reads
my" +by' +ky=0
with b sufficiently small (namely b < v4mk, i.e., % < 2wp); its general solution is

yn = Ae "2 coswit + Be P2 sinwit = Re™"/?™ sin(wit + @)

(FDO)
with

So the frequency w of the Free Damped Oscillator is slightly smaller than the
e one of the undamped oscillator (which was wp): the friction slows the oscillation

down. But of course, the main effect of the friction is to decrease the amplitude
of the oscillation as time goes by.

Notice that we are only discussing the case of small damping here (namely b < v/4mk). It is characterized
by complex conjugate roots of the auxiliary equation and actually shows oscillatory solutions. The case
of large damping (namely b > v/4mk) yields real roots in the auxiliary equation, and the solutions will
no longer oscillate. The shocks in your car are (hopefully) designed that way. This large damping case
(as well as the borderline case b = v/4mk) is discussed in the book, but I leave it out here. If you really



understand the weakly damped case discussed in these notes, you can study the strongly damped case
on your own, even without the book; whereas, if you don’t, there’s no point anyway in smiting you with
a second example, and I’d rather suggest you focus on the weakly damped case.

We now discuss the forced oscillator, i.e., we apply some external force to the system; and here, we are
going to assume that this force is of the form Fjsin~yt with a frequency v. We will mainly study how
the system reacts to forcing with different frequencies . In electronic circuits, Fpsin~yt could be an
input voltage (AC), and v would likely be 27 x 60/second. There are other important cases, in which
the forcing is periodic, but not given by a trig function, like the zigzag function whose graph looks like
this: /\/\/\/ However, it was claimed by the French mathematician Fourier in 1807, that “every”

periodic function with frequency «y can be written as a linear combination of (infinitely) many sine and
cosine functions with different frequencies: namely v, 27, 3v,.... This surprising claim caused much
dispute at the time, but has been found true in the decades following (subject to a bunch of footnotes
making that claim technically precise). With Fourier’s observation in mind, and using the superposition
principle, a discussion only of forcing terms of the form Fj sin~t is actually of a much broader use than
one would anticipate at first sight.

For the forced oscillator, we have the ODE
" ! _ . _ FO iyt —iyt
my" + by +ky—F0s1n'yt—2—i(e —e™ )

and we continue to assume small damping 0 < b < v/4mk. We need to look for a particular solution
yp of the inhomogenuous equation. The general solution is then y, + yp = yp + Re U/?™m sin(wit + ¢).
The second term goes to 0 as t — o0, i.e., it will become negligibly small after a long period of time
has elapsed. In the following, we do not focus on initial behavior of the system, but on the long term
behavior (i.e., after the contribution from y, has faded away). This is given precisely by the particular
solution y, alone, and we now study how to find it:

As we have a somewhat messy calculation awaiting us (mainly due to the fact that we have to carry
through the parameters m,b, k rather than replacing them by numbers especially preselected for con-
venience), it is convenient to use the complex method of undetermined coefficients and to try y =
Aiet + A_e . Plugging this into our equation, we find

, : F -
Ay <m(t’y)2 + b(iy) + k) = 2—? hence A, = 2( ; (mk 2))
mT W
A —F, ~f
A (m(—i'y)2 + b(—ivy) + k) == hence A_ = m

2( Ly +ilk -v)

You may find that I have written the result for A; and A_ in somewhat too messy a way. If you do
the calculation for yourself, you will see that I have deliberately divided numerator and denominator by
m, which turned a simple fraction into a fraction of fractions. But I have a good reason for doing this:
I prefer not to have the parameters b and k standing alone, but always combined with m in the form
b/m and k/m. This resumes the wisdom of exposition mentioned on the first page, namely that the
equations should highlight practically conspicuous quantities. Remember that k/m = wg, the square of
the frequency of the free undamped oscillator, and that b/m determines how fast the damped oscillations
decay; indeed it is the combination b/m that occurs in the exponential e~(6/m)(t/2) ip the solution of the
free damped oscillator (FDO). So it is the quantities b/m and k/m that tell us what the oscillator would
be capable of doing if left alone. The behavior of the forced oscillator will depend a lot on whether our
forcing frequency = is close to the oscillator’s “own” frequency wg or not.

The denominators of Ay and A_ can be written in polar coordinates, as we have done before:

.k 2\ _ i _((b.)? k 221/2 _ m
E’y+z(a—7)—re with r—((av) +(E_7) , 0 =arctan T

This trick speeds up the remaining evaluation of y, significantly:

_FO
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i(vt+0) —i(vt+0)y — “70 =0 —(Z =
(e +e ) - cos(yt + 6) - sin (7t (2 0))




Now have a look at this result from an input-output point of view: The forcing (inhomogeneity) is our
input into the oscillator (the spring mechanism, or an electronic circuit). The solution of the ODE is how
the oscillator responds to this forcing, namely its output:

——[Bw(i-c0)

Input Output

The input amplitude Fy transforms into an output amplitude Fy/(mr), so you have an amplification
factor 1/(mr), which we’ll discuss in a moment. Moreover, there is a phase shift 5 — 6, which may well
be non-zero. If your input forcing tries to push the oscillating mass up, that doesn’t mean the mass will
go up immediately. It may very well lag behind. How much it lags behind will depend on the relation
between the forcing frequency « and the oscillator’s own frequency wg, as we will now see: We recapitulate
the formulas for the amplification factor and the phase shift from above, and we plot them, as functions
of the forcing frequency.
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The following things can be learnt from the diagram and its formulas:

Resonance:
The amplification is particularly large, if the forcing frequency -y is close to the frequency wq of the unforced

oscillator. The precise frequency of maximal amplification turns out to be 7, = y/wZ — 2(3%)? (a brief

calculus minimax problem). The amplication at this frequency is (%wl)_l, i.e., inversely proportional to

the damping parameter % Therefore this resonance effect is less pronounced if there is a large damping,
but becomes very strong as the damping goes to 0. — For very high forcing frequency, the input is
essentially absorbed by the oscillator, i.e., the amplification factor goes to 0.

Phase shift:

For very high forcing frequency, the oscillator shows a phase shift of 7, i.e., it always moves in the opposite
direction from the one in which you push. The phenomenon is a bit similar to the situation when the
weather changes much more rapidly than your usual time of changing clothes: you may end up wearing
a sweater today (based on your experience that you had been freezing yesterday), but it is already hot
again today. So you decide to wear a T-shirt tomorrow, but tomorrow it will turn out to be darn cold



again :-) In contrast, if the forcing frequency is very low, compared to the frequency of the unforced
oscillator, then the oscillator will have no trouble following the forcing, and the phase shift is nearly 0.
At resonance (v = wp) the phase shift is 7/2.

Near resonance transition region:

You can view this transition region best, when looking at the phase shift. If you have small damping,
the phase shift changes very swiftly near the resonance frequency. The oscillator has a very clear-cut and
decisive distinction between what it considers as ‘fast’ forcing (phase shift almost ) and ‘slow’ forcing
(phase shift almost 0). It is only a small interval around the resonance frequency where there is an
intermediate phase shift. If you have a larger damping, this transition region becomes wider. The more
strongly damped oscillator is much less picky about the precise forcing frequency than the oscillator with
very small damping.

Stronger damping:

Whereas there is a clearcut distinction b >/< v/4mk for the general solution yp of the homogeneous
equation (namely, the free, or unforced, oscillator), the particular solution y, of the forced oscillator does
not require a similar distinction of three cases. The only change that may be perceived as qualitatively
significant is at b = v2mk, i.e., % = /2wy, at which parameter the amplification curve ceases to have a

maximum .



