Partial Fraction Decomposition (PFD)

These notes teach the use of PFD for two purposes, antiderivatives and inverse Laplace transforms,
and will therefore be of interest at lesat at three levels: freshman calculus, sophomore ODE, and
beyond (having a second look at the material). This multi-level audience is intentional: | hope that
students keep and re-use this material and get directed into viewing the PFD as a multi-purpose tool
from the very onset.

| use the following font distinctions:

e Broad overview in this present (Helvetica style) font.

e Basic techniques for everybody in this font (Times style)

o Stuff specific to Inverse Laplace Transform in oblique font; should be ignored by freshman
readers

e Boldface and underline for emphasis

Use of complex numbers is encouraged thoughout and the corresponding material will be typeset
in gray rather than black (or color, if you have a color rendering device); omitting complex number
material is NOT encouraged, but is made possible due to the highlighting. Explanations are designed
to require just the bare minimum of prereq’s on complex numbers, but to teach all that is needed to
use complex numbers fearlessly wherever convenient.

Primarily, partial fraction decomposition is a method of algebraically transforming rational functions
into a certain standard form. This standard form characterizes the rational function according to the
question: Where does it ‘do bad things’ (like going to infinity)? Partial fraction decomposition is a
way of ‘fingerprinting’ rational functions for the purpose of FBI (Function Behavior Investigation).
It is for this reason that it is useful, e.g., in finding antiderivatives, or inverse Laplace transfroms
of a function. The idea that such ‘fingerprints’ identify the function stems from complex variables.
Without this background you may justly find it weird, but it's nevertheless a deep truth.

An example of a partial fraction decomposition is:
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The main task and main work will consist of understanding why we write it this way, and how
we can find this form. Once you have written the expression in this way, it can be integrated
by doing standard integrals, and likewise the inverse Laplace transform (ILT) can also be done
by referring to standard ILT’s from the table. Namely,
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or the ILT:
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— The first step is to obtain proper fractions; improper fractions, i.e., rational functions
whose numerator has a degree higher or equal to the denominator will be reduced by long
division, splitting off a polynomial (which can readily be integrated immediately). In the
case of ILT, this step should never be needed: Laplace transforms will go to 0 as s — 00,



so they will always be proper fractions already. Polynomials do not have any function
as an Inverse Laplace Transform. In case you learn about §(z), §'(x), 6"’ (x),... later: these don’t
qualify as functions, strictly speaking.

— Now you have to factor the denominator. This follows the general
Theorem: Any polynomial can be written as a product of linear and quadratic
polynomials.
This may be difficult to carry out in practice, and if you get stuck here, you can’t do
much about the integral (or the ILT) either. You will have to apply this theorem to the
denominator of the rational function. To do so was the first step in [implification (1) of
our example.

Let us pause a bit here: If you want to write a quadratic polynomial, e.g., 2 + 4z + 3 as a
product of linear polynomials, you can always use the quadratic formula to find the zeros of
that polynomial: 22 + 4z + 3 = 0 if and only if z = —3 or = —1. This is how you find
22 + 4z +3 = (z + 1)(z + 3). If the quadratic formula does not give any real zeros, as in the
case of 22 + 4z + 5, you leave the quadratic polynomial alone. (Real) zeros of the polynomial
will always correspond to linear factors.

In the case (1), you have no feasible systematic way to find zeros of the denominator z* 4+ z3 —
z? + x — 2. By guessing, you may however find that = 1 is a zero, and then you know

2t + 23 — 22+ — 2 = (z — 1)(poly’ of deg 3, to be found by long division)
=(z—1)(2®+ 222+ +2)

If you can guess another zero of the remaining factor (z3 + 222 + z + 2) — here, this would be
r=-2— youget (2> + 222+ +2) = (z+2)(z®+1)

In order to see how surprisingly strong this factorization theorem is, try the polynomial z*+1. Tt
has no real zeros, so applying our theorem to it cannot produce linear factors. So, if our boldfaced
theorem is true, it must be possible to write z* 41 as a product of two quadratic polynomials. If
you try to find how this will actually look: well, it will be quite sophisticated, you would probably
not guess it. You have to find numbers p1, g1, p2, g2 such that 22 +1 = (22+p1z+q1) (22 +paz+go)-
Can you do this, by expanding the right hand side and comparing coefficients of like powers of x? —
In principle you can; but don’t get dishearted: it takes some time to find the coefficients. If you have
actually carried it out, you’ll be in for a surprising and cute formula:'

We can now continue our itemized strategy of finding a partial fraction decomposition:

— Theorem: Any proper fraction of polynomials can be decomposed into partial
fractions according to the following example, which displays all features that
could occur: Given numbers a1, a2, p1,p2, 41,92, and any polynomial in the numerator,
numbers by, by, b3 ... can be found such that:

any polyn’ of degree less than the degree of the denominator
(z — a1)(z — a2)* (22 + p1z + q1) (22 + poz + ¢2)?

S WU I R O R
(x—a1) (z—a2) (z—a2)? (z-—a9)® (z—ag)t
bex + by bgx + bg bioz + b1y

2+pztq w2+pr+q (2?4 pez + qo)?

'Answer: (I+ 28\ — “x)(I 4+ xS\ + “x) = I + *x. At least, check this by expanding.

T’ll refer to
this as ‘the
big example’.

Make sure you
don’t overlook
the changes I
suggest below
for the
quadratic
terms. The
paradigm here
is correct, but
NOT best
possible for
quadratic
factors!



In other words:

— For every nonrepeated linear factor in the denominator on the left (here z —aq), you
get one simple fraction (here, b1/(z — a1)) on the right.

— For every repeated linear factor in the denominator on the left (here (z — a2)*), you
get as many simple fractions on the right as the power to which that factor was
raised, and their denominators echo the corresponding factor, but with increasing
powers from 1 up to the maximal power with which we started.

— For every nonrepeated quadratic factor in the denominator (here 22 + piz + q1), you
get one simple fraction with that very denominator. The numerator of that fraction
may be a linear polynomial now, not necessarily a constant:

(bez + b7)/(z® + prz + q1).

— For every repeated quadratic factor, you get similar fractions in the PFD, each with

a linear numerator, with increasing powers in the denominator.

What remains to be done is to see how yo can actually find b1,b2,.... This will be
described in a moment. Once you have accomplished this, you can find the antiderivative
(or the ILT) term by term. Actually, you may not find the last term (repeated quadratic
factor) routine at all, and you may not need to be able to handle this case in the practical
situations encountered at your level.

This ends the basic outline of partial fraction decomposition. We’ll make some improvements
over this basic outline later; but first let us discuss the way how you can actually find the
numbers by, bo, b3, . . ..

There is a simple-minded way that always works; however, in all but the simplest cases it will
be rather tedious. But you should have understood it and tried for yourself, before you venture
into the more sophisticated, but very fast way of doing it. For example, assume we need to find
b1, bo, bz such that

22+ 2z +2 by b b3

z(z —1)(z +2) T 71 z +2

(2)

holds identically (for all z). So we bring the right hand side on a common denominator, and
sort powers of z in the numerator:

b_1 + b2 + b3 _ bl(.T — 1)(1‘ + 2) b2$($ + 2) ng(.’L‘ — 1)
z z—-1 242 zz-1(+2) z@z-1)(z+2) z(@-1)(z+2)
_ bi(z? + 1 — 2) + by(z? + 27) + b3(z? — )
z(z —1)(z + 2)
z%(by + ba + b3) + (b + 2b2 — b3) + (—2b1)
z(z —1)(z +2)
2 + 2z + 2
z(x —1)(z + 2)

and this should =

So comparing coefficients in the numerator, you need

b+ bo+b3=1 —
b1 + 2by — bz =2
—2b; =2 —— by =-1

@®— 2by+3by= 3



Therefore we get by = —1, by =5/3, bg = 1/3.

This method is available in all cases, but it involves as many equations in as many unknowns
as the degree of the denominator. Looking back to the big example on page 2, observe in the long
formula, how you will automatically introduce as many unknowns by, bo, ... as the degree of the
denominator. In that example, this degree was 11. In the numerator you would obtain 11 equations
by comparing the coefficients of the powers 20, z!, z2, ..., 2'°. And higher powers would not
occur in the numerator, because we are dealing with proper fractions. Solving 11 equations for 11

unknowns would be A LOT of work.

In contrast, here is a shorter method, which will most easily apply to linear nonrepeated factors.
With a slight modification for linear repeated factors, it will only give the coefficient of the
highest power (in the big example given above, it would therefore only yield b; and b5). By means
complex numbers in intermediate calculations, the method can also be used for quadratics in the
denominator. In the big example, it would therefore also produce bg, by and big, b11. So let’s see
how this method works for (2), where indeed we have the best possible situation: non-repeated
real factors.

We determine by, be, bs in turn from (2), not together. To this end, we multiply (2) by the
corresponding denominators respectively, namely by z, £ — 1 and = + 2. This is done in separate
independent steps starting over from (2) each time. A nice side effect of this procedure is that
mistakes in the calculation of one coefficient will not affect the other coefficients, whereas in the naive
coefficient comparison method one mistake poisons the whole calculation. For b1, multiplication by
z transforms (2) into

22+ 2z + 2 by bs
o revre - . 3
@—D(z+2) 1+(m—1+x+2> ’ 3)
We (pretend to) plug in = 0 into this equation, and get
02+2-0+2
—————=b;+(...):0
O0O-10+2) ()

i.e., —1 = b; immediately. The method is called cover-up method, because it can be done
without a lot of writing already from (2): To obtain by, you look at the left hand side, cover up
exactly that term in the denominator that goes with b; on the right hand side, and then you plug
in that number for  which would have made vanish the covered-up factor in the denominator.
Similarly you would get be if you multiply eqn. (2) by (z — 1) and after a cancellation of (z — 1)
on the left pretend to plug in z = 1. (Do it, and also do it similarly to get bs.)

I have been careful to say we pretend to plug in, rather than ‘we plugin’. The reason is that z =0
is not legitimate to plug in into (2), exactly because of the vanishing denominator. Therefore,
equation (3), which was obtained from (2), is also not legitimate to be used for z = 0. What we
actually mean to do here is to calculate the limit as £ — 0. But the actual calculation of this
limit will now (i.e., after having multiplied by z) amount practically to plugging in z = 0.

There is kind of a philosophical message coming together with the partial fraction decomposition.
You should consider as distinctive marks those points z of a rational function f where its denom-
inator vanishes. If ever rational functions were wanted by the sheriff for wrongdoing, their vertical
asymptotes would be the information given on the public announcement :-) With some embellish-
ments added, there will be a result in advanced calculus to the effect that the behavior of a rational
function near these points identifies that function nearly as uniquely as a fingerprint. (To be precise,
it is a theorem from complex variables, and the fingerprinting is only possible if complex x are taken
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into account. Restricting oneself to real numbers is like watching a movie through a crack in the
wall where you only see a small part of the screen.) To write a rational function in terms of partial
fractions means to write it in such a way as to display certain of its essential features the most visibly.
Displaying essential features as clearly as possible will simplify any scrutiny, in particular the search
for an antiderivative or an ILT. And the cover up method is so smart and efficient just because it
uses those numbers for & where the essential things happen, namely where the denominator of the
rational function vanishes. By focusing on the essential points (in the example x = 0, z = 1 and
x = —2) — ‘essential points’ in the literal as well as in the figurative sense — we avoid unnecessary
calculations and retreive by, by and bs exactly at those places where they naturally belong.

Now let’s throw in some improvements:

(i) We want to see how to use the cover-up method with repeated factors.

(ii) We want to see a variant for quadratic factors that usually should supersede what we did
in the big example.

(iii) We want to use the cover-up method with complex numbers to deal with quadratic factors
as well.

(iv) We'll see a ‘haphazard’ method than can be very neatly used to check for miscalculations.
It can also be used for calculating coefficients in a way that takes advantage of special
opportunities.

(i) Repeated Factors
Example: We want to calculate the PFD

£E2+5LE+3 by b b3 by
= 4
(x+2)(z—1)3 w+2+m—1+(x—1)2+($—1)3 (4)

We get by = %gﬁ = —3/(—27) = 1/9 by cover-up. To get bs by cover-up, we multiply
eqn (4) with the highest power of (z —1) that occurs, namely with (z —1)% and then take lim,_,;
(‘pretend to plug in z = 1 after cancellation’). This gives us

> +5x+3 b
(x+2)  z+2

(z—1)2 +ba(x —1)2 +b3(x — 1) + by

and letting z — 1, we get 2243 = by, ie., by = 3.

We CANNOT get b by multiplying with (z — 1)2, because then the term by/(x — 1) remains on
the rhs and prevents taking z — 1. The only way to get b3 with cover-up is to move by/(x —1)3
to the left hand side first. b3 is like a mouse hiding behind the elephant b4, and you won’t find
the mouse unless the elephant has been moved aside:

22+ 5z +3 3 by by b3
+ @1y (5)

G+2)@—1° @—17 242 z-1

We do this only after having found that by = 3. The fact that we have also found b; already
is irrelevant, and this is why I have chosen not to plug in b; = 1/9. Now you put the lhs on a



common denominator, and I promise you ahead of time that a factor £ — 1 can be split off in
the new numerator. Indeed

2?2 +52+3 3 (z2 4+ 5z +3) — 3(z + 2) ?+2z-3  (z—-1)(z+3)

(z+2)(x—183 (z—1)3 (z+2)(z—1)3 T @ +2)@—-13 (z+2)(z—1)3

and with the now re-calculated lhs, we get from (5):

(z +3) b b b
G DE -1 ~a+3 " o-1" @o1p (©)

Now we multiply with (z — 1)2 and after cancellation we get: Ezigg = (...)(x — 1) + b3, hence
with z — 1 we see b3 = 4/3. — How did I know ahead of time that I'd get a factor (z —1) in the
new numerator? Well, if I couldn’t have canceled this extra factor (z — 1) from the numerator,
the rhs would have given a nice number as £ — 1, but the lhs would go to oo as £ — 1. So the
two sides couldn’t be equal! The observation that | could predict before the calculation that (z —1)
would factor off and cancel on the Ihs has two applications: If it didn't, | would immediately detect
that a miscalculation must have occurred and would look to fix it before going further. Moreover,
in a more complicated example the new numerator might be a polynomial of degree 3 or more (in
our example it was quadratic). Then | might have no means to find out whether | can factor the
numerator, or might not see it by eyeballing. It is crucial then that | know ahead of time that | can
pull out this factor; and | will do it by means of a long division.

Of course, to get by, you now move b3/(z — 1)? to the left. ..

(ii) A better paradigm for quadratics

Example: Suppose we have to find the PFD of m_;;ﬁ’—ﬁ;}c(w.

According to the method laid out in the big example, you’d do the following

x4+ 3z — 10 _ by n box + b3 bsx + b5
(z—2)(22+22+4)2 (z-2) (22+2x+4) (22+21+4)? )
by box + b3 bizx + bs

= -

(z—2) (z+1)2%2+3 ((xz+1)2+3)?

Whatever you do with the PFD once you have it, be it antiderivatives or ILT, you will always
want to complete the squares in the quadratic terms in the denominator, so this is what I have
done. But now I suggest another small modification: You better try

z*+ 3z — 10 ! cox+1)+cs ca(x+1)+cs
(x—2)(x2+2z+4)2  (z-2) (z+1)2+4+3  ((z+1)2+43)?

(8)

It looks different, but in the end it amounts to the same. However, (8) rather than (7) is the form
you will want for integration and ILT anyway. Moreover, it is somewhat easier for calculation,
if you use the complex cover-up method I'll show you in a moment.

— Why did I choose (z+1) rather than z in the numerator for the quadratics? — Simply because
(z + 1) is what arose in the denominator when I completed the squares. If the denominator had
been 22 + 5z + 7 = (z + 3)? + 3, T would have taken cy(z + 2) + ¢3 in the numerator.

— Why does it amount to the same? — If you tried it like (7) and got by = 11/12, by = —4/12
(as you would indeed), then I would get, from (8) that co = 11/12, ¢3 = —15/12, because



%(m +1) - % = %x — %. We get different coefficients, but the same result, just differently

written. (Of course your b; would be the same as my c;.)
— Why do I prefer (8) over (7)? — Suppose I want to integrate [ ”z—i)lgﬂ dz: Then I take it

apart in the very form in which I obtained it from PFD (8), as ¢ [ —)2)— dz+cs [ m dz,
and each term is a standard integral (the substitution v = x + 1 applies). However, if I had
written my PFD in the style of (7), taking it apart into bo f m dz+b3 [ m dz would
NOT help at all, because the first integral is not so standard: the substitution v = z + 1
would give [ 1:‘2—;13 du, and I would just have to take it apart again, which amounts exactly to
moving from (7) to (8) anyway. This is not a big deal, but it is a small improvement. Another
improvement shows up below (item (iii)), when I can calculate the ¢; more easily form (8) than
I could calculate the b; from (7).

Tbe same preference app]ies when I need t;he PFD to do an ILT:

L7 sff'1+3 (t) = et cos/3t, but L™ GTi)? 71753} (t) needs to be taken apart in a ‘non-obvious’
way:
1 s+1 -1 B
1{m}(t) =L {m}() {m}(t) = e ' cos V3t+(1/V3)e tsin V3t .

With (8) you get the correct splitting automatically.

(iii) The complex cover-up method for quadratic terms

Complex numbers can be used to factor quadratics into two linear factors, even when this cannot
be achieved with real numbers. For instance, 22 +4z+13 = (2+2)2+9 = (z+2+3i)(z +2 — 3).
In principle you could therefore avoid quadratics altogether and obtain a PFD with linear terms
alone, e.g.,

o +z+7 B 4z +7 _ > +z+7
(z—1)(22+42+13) (z-1)((=z+2)2+9) (z—-1)(z+2+3)(z+2— 3)
by by b3

z—1 +:1:—!—2—}—32' +$+2—3i

We do NOT want to be so radical, because UNLESS YOU ARE GOOD WITH COMPLEX VARIABLES,
AND I MEAN REALLY GOOD, YOU DON’T EVER WANT TO WRITE DOWN THE LOGARITHM OF A
COMPLEX NUMBER, and logarithms is what would show up if you took the integral.

Likewise, you may shy away from £~ *{1/(s + 2 + 3i)}(t), even though it would be perfectly ok
to use L71{1/(s+a)}(t) = e with a = 2+ 3i and use the Euler formula to get real trigs from
the complex exponential.

The basic rule about complex numbers and complex variables for users who have studied only real
variables is quite simple: All the practical calculation formulas (algebra, product rule, chain rule,
integration by parts) work just as well with complex numbers as with real numbers. Being ruthless und
unworried wins the day. There are however a few hard hat areas, where you must not go, unless you
have learned complex variables well: You do not want to have logarithms, inverse trigs or roots (non-
integer powers) of any expression that takes non-real values (i.e., that involves complex numbers).
Keep out of this hard-hat area and you can safely enjoy the benefits of complex numbers. The most
important role of complex numbers in calculus stems from the Euler formula ® = cosz + isin .

This note is only for advanced readers who do know complex variables well: Review the cover-up
method and notice that you are actually calulating the residues of the poles of the rational function.

You may henceforth rename the cover-up method into residue method.

could do this
in principle,
but that’s
more complex
variables than
is convenient



So here is how you can do the PFD for our example with the complex cover-up method:

2+ r+7 e ez +2) tes

@-D(@+22+9) z-1' (@+22+9

You multiply the whole equation with the quadratic and then take the limit + — —2 + 3:
(‘pretend to plug in —2 + 37 for z’). This is the same idea as for the linear terms, because
—2 + 3i is what makes the quadratic in the denominator vanish. (With the same rationale, you
could have chosen —2 — 3i instead of —2 + 3i; one is as good as the other.) So we get:

x2+:v-|-7_ cl

@-1) _m_l(($+2)2+9)+62($+2)+c3

and by pretending to plug in —2 + 3: for z, we get:

(—2+3)2 +(—2+3))+7
(—2+3i)—1 N

co(—2 +3i +2) +c3

and c¢; drops out because £ = —2 + 3 makes (z + 2)? + 9 vanish. Note also how the 2 cancels
because I have followed the model (8) rather than the model (7). This will save us one division
by a complex number. However, we have to suffer through the evaluation of the left hand side,
there is no free lunch. We expand in such a way as to get a real denominator:

(=24 302+ (-24+3)+7  (4—-12—-9—-2+43i+7)(-3-37) _ (-99)(-3—3i) 27 —27

(—=2+3i) -1 N (=3 + 3i) (=3 — 3i) 18 18

So we have found that —% + %z = c3 + c2(37). Now this is one equation for two unknowns ca,
c3. We know however that ¢; and c¢3 must be real numbers. (We could have calculated them
in principle with the naive method from pg. 3, and we would never have encountred complex
numbers.) This is why we conclude —% = c3 and %z = ¢2(37). Our calculation was a bit more

involved than in the case of real number cover-up, but in return it also gave us two coefficients!

If you had chosen z = —2 — 3¢ instead of x = —2 + 3¢, the very same calculation would have
ensued, except for a single easy change, throughout: all i’s would have been replaced with —’s
in each step. You would have gotten —3 — 34 = c3 — c2(37) instead of —3 + 37 = ¢3 + ¢2(3i), and
this is your second equation, in case you didn’t like my little shortcut with saying co 3 must be

real.

In principle you can now use the ‘move the elephant to the left so you can see the mouse on
the right” method together with complex cover-up if you have repeated quadratic factors in the
denominator. I’ll forego working out an example.

(iv) Haphazard methods and error checking

Let’s have another look at example (4):

w2+5x+3 o b1 + bQ + b3 + b4
(x+2)(z—-1)3 z+2 z-1 (z—-1)2 (z—1)3

We want to find by, by, b3, by from this single equation. Is it really a single equation?? Not at
all, it’s actually infinitely many equations!!! Because it has to be true for every x you choose
(as long as it makes sense to plug this z in. Plug in z = 0 and get one equation, namely
3/(—2) = b1/2—by+ b3 —bs. Plugin z = —1 and get another equation. Choose any four z’s you



like or find convenient; this way you get four equations to determine the four unknowns. Your
neighbor may have made different choices and gotten different equations, but his/her solutions
would be the same as yours. Since you can take any z, it’s a haphazard method. If you can
choose nice numbers, you get nice equations.

We did calculate (most of) the b; above by different methods: b = é, by =3,b3= %, and if we
had persevered, we would have found by = —%. To check for mistakes we now take the equation
from our haphazard choice x = 0, plug in the b; we calculated and see if the equation is satisfied.
The odds are that if we made a mistake, it will show up now. Or else, suppose we had found
the moving over of terms tedious and had not persevered through b2. We could then find it by
using the haphazard equation from z = 0 (or any other, if you prefer).

The haphazard method is not efficient as an all-purpose tool. Rather it is an opportunitic tool
that may be good for mopping up if only one coefficient is left to be calculated, or when the
routine method would be tedious, and when nice numbers are available.

Note that the cover-up method is a way of choosing exactly those numbers z which seem to be illegal
because they make the denominator 0. This however is exactly the wisdom of the FBI (Function
Behavior Investigation). You snoop around exactly at those locations where the function is doing
something bad. This way you collect the needed information most quickly. Strictly speaking, you do
not really go to the illegal places, you just get close to them in the sense of a limit. This is how FBI
still stays on the legal side. ..

One very convenient haphazard ‘number’ you may not think of at first is co. This is of course
another of these limit tricks, where you just get very close to what would be illegal to plug in:
Here is how it works: Multiply the equation with z, and then take the limit £ — oco. In our
example (4) you get 0 on the left hand side, because the numerator has degree 2 (multiply it with
x, get degree 3), whereas the denominator has degree 4 (still higher than 3). On the rhs, b3 and
by get killed for the same reason, and all that remains is by limg_, wL—FZ +bolimy 00 757 = b1 +bo.
So we get the equation by + by = 0, a very easy equation indeed.

Some practice problems

Here are a few examples for practising integrals ............. ... oL, (or ILT’s):
They are chosen rather on the difficult side, and more with integration than ILT’s in mind.

@ /o1 eES o {33 : 1} “

(t)

/4 2?2 +2zx+3 " = s2+25+3
9 (x—1)%2(z2+1) (s —1)%(s?2+1)

2 +1

Lyt 41 s*41
© | G £1{2+1}<t)

/1 dz this is a tough one, because of -1 1
o z2+1 the difficulty of factoring



© /1 zdz  this one is much easier — simplify the not simpler = { s } )
o z*+ 1 integral by a substitution first! for ILT st+1
Loz+1 [ s+1
s L7 ———=¢(t
) /0 Pzl {82+s+1}()

Solution to practice problems

Not all intermediate steps are carried out, but essential steps are given.

(2)
I 1 _ e br +c
z3+1 (x+1)(w2—x+1) S+l x2-z+1
with a = % (cover up method), b= —3, ¢ = 5 (solve linear equations for unknown coefficients;

or move over a/(z + 1) to the other 31de and simplify then you can read off b, ¢; or else use x = 0
and z — oo according to the haphazard method). Complex cover-up may be overkill here. Must
complete square in denominator and separate fractions in order to reduce to standard integrals:

1( —z+2 )_1 —z+2 \ _1( —(z—3) N 3
3\e?2—z+1) 3\(z-5)2+3) 3\ (=z-32+3 (@-1)2+32
The ansatz above made no use of the improvement (ii) from page 6 for the quadratics. With the

improvement, the separating of fractions just done would have been obtained immediately out of the
PFD.

1 1 3
/ / -3 dz =
0x3+1 3 m—l—l (z—3)2+3 (z—35)2%+3
2

1 = Lo 3\, (3 _ 17!
=3 ([ln(x +1)]p — [5 ln((ﬂc - 5)2 + Z)]o + 273 arctan \/5/;] O)
= % (ln2 +0+ \/?;arctan(%) - arctan(_%)> — % <ln2 i g\/g>

Likewise, for the ILT:

72 +2x+3 4 3 1 z—1
/ (z —1)2 +1)dw_/2 <($—1)2_($—1)+x2+1>dx_

—3 1 * 1. 17
@-1 In|z — 1|+ §ln(m2 +1) — arctanxL = 2+ arctan2 — arctan4 + — 5 lnE
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Likewise, for the ILT:

£ { 6o } w=s {=mfo- {hore e

= (3t — 1)e! + cost — sint

()

2 +1 2 +1 3 2
For ILT this was a trick problem, because there is no such function whose Laplace transform is

(s*+1)/(s? +1): every function’s Laplace transform has limit 0 as s — 0, but (s* +1)/(s> + 1)
doesn’t. If you forgot this, you would have run into trouble when s? couldn’t be found in the

1 .4 1 1 92 1 9
/idﬂﬂz/ (332—14- )d:z::——l—{—Zarctanl:z—g
0 0

table of ILT’s. If at some time you have learned about pulses like §(-) and their derivatives, which strictly
speaking are not functions, then you can do the ILT and it is not a trick question any more.

(d)

Factorization of denominator: see footnote and text on page 2. If you know that €™ = —1,
you can see that z* + 1 = 0 has the solutions z = ¢/* = cosn/4 + sinm/4 = (1 + i)v/2/2,
t=e ™t = z=¢e"/*=_ . and z = e 3"/* = ... Pairing complex conjugate ones

1= ((x . em/4)(x . e—i7r/4)) « ((x . e3z’7r/4)(x . e—sm/z;))
into quadratics that will have real coefficients after evaluation is another way of obtaining the

factorization from page 2.

- axr +b 4 cx+d
i+l 2242241 22—V2z+1

The amendment (ii) from page 6 has been neglected here, out of a fluke. So we’ll have to rewrite
the numerators after finding the coefficients.

With real-variable tools alone, there is probably no shortcut to solving the equations for a, b, ¢, d:

b+d=1

0
Z: €39 e, 1,
1. _ _ 2”& d=b
AR v R
‘T3' c—a - :}a:\/i/él-_:—c
T at+c=0

Alternatively, complex cover-up can be considered to obtain the PFD. Note also that the hap-
hazard choices £ = 0 and z — oo yield the convenient equations b+d =1, a + ¢ = 0 very
quickly.

/1 (x/§/4)m+1/2dx_ﬁ/1< T +/2/2 V2/2 )dx_
0 4 Jo B

22 + 2z + 1 ($+\/§/2)2+1/2+(z+\/§/2)2+1/2
V2 ) G z+v2/2]"
:?[ln(@-l-\/i/?) +1/2)]0+TlarctanT/2] =
V2 V2

=35 In(2 + v2) + e (arctan(l +2) - %)
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Similarly,

/ (- \/_/4)x—l—1/2 o f T —2/2 v2/2 e —
0 B 12)

—V2z+1 (:1:—\/5/2)24—1/2_(3:—}/5/2)24-
:_i[ln(u_wm +1/z)];+@ B e I
0

= —% In(2 — v2) + g(arctan(—l +V2) + %)

Now In(2 + v2) —In(2 = v2) = In 84'&% In ?4'1 In((v/2 + 1)?). You are certainly not

expected to know that arctan(v/2 + 1) = 37/8, arctan(v/2 — 1) = /8, but these are true, and
so the final result can be simplified to

/01 e _ % {In(v2 + 1) + m/2)

zt+1

Likewise for the ILT"

af 1 V2 [ (s+V2/2) + (vV2/2) V2] (s -v2/2) — (vV2/2)

£ {34+1}(t)_ i~ {(3+ﬁ/2)2+(\@/2)2}(t) e {(s—x/ﬁ/2)2+(x/§/2)2}(t)
V2 2t/2 2 - V2 2t/2 2 - V2

= T (e vt/ (cos %t—i—sm %t) — e‘[/ (cos %t — sin %t))

Since in this particular example, there is a simple pattern in terms of complex numbers (namely
the four zeros of the denominator mentioned above), which in the real PFD produces a pattern
that is more dazzling than simple, the very best option in this example is to go complex all the
way, as was considered but not pursued on pg. 7. Namely write

- a n b n c n d
st 1 g/t g _ ein/d g — e3im/4 g — e 3im/4

and get a, b, ¢, d by the very simplest version of cover-up (but with complex numbers), and
I’Hépital rather than algebra: a = lim,_, ir/a(s — €/4)/(s* + 1) = lim,_, ir/a 1/48% = Le™37/4
and similarly b = 1e37/4 ¢ = 1%/t = leim/4 g = le=in/4 The ILT will involve only
exponentials, which you convert to real trigs using Fuler’s formula. While this method only
uses ingredients available to you by the time you do ILT’s and Euler’s formula, the wisdom to
choose this particular route of calculation would usually only be gained by a deeper knowledge
of complex variables. So you shouldn’t feel you yourself ought to have done it this way.

I leave the rest of the ILT’s for you to figure out and stick with the integrals only. Note that in
(e) we have no shortcut for ILT’s, because there is no substitution rule for ILT’s.

()

subst. u = :c2- /1 ﬂ = [1 arctan(l‘2) 1 = arctan 1 — arctan = z
' ' 0 zt +1 2 0 2 8

(f)

1oz 41 1 +1/2 1/2 1 T
= dz= =_1 —
/0 P2zl /0 ((:v+1/2)2+3/4+(x+1/2)2+3/4) e 2 n3+6\/§
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