UTK — M231 — Differential Equations — Jochen Denzler
Notes on Chapter 4: Second Order Linear ODEs

What we are going to learn on (2nd order) linear ODEs makes much more sense as a whole than in the
piecemeal way in which you necessarily have to learn it. This is why | deviate from the book significantly, as
far as the presentation is concerned, even though the contents is basically the same.

We are dealing now with 2nd order ODEs, that is, ODEs containing second derivatives. So we look
for y, as a function of ¢, from an equality involving 3" and any or all of 3’, y, . In practice, we don’t
(and couldn’t) handle such a vast generality. For instance 2y" + siny” = y? + t2 is a legitimate 2nd order
ODE which we won’t touch. Rather, we want cases where we could isolate the highest (i.e., second)
derivative on one side of the equation. As, for instance, y" + sin(y) = cos(5t), which could be rewritten
as y" = —sin(y) + cos(5t).

Actually, this is still too general and too complicated; we will deal exclusively with linear second order
ODEs here.! Recall what we mean by a linear ODE (whatever its order):

An (O)DE is linear, if the unknown function (in other words: the dependent variable) occurs linearly
in the equation, that is, assuming the dependent variable is y and the independent variable is ¢ (the
unknown function being t — y(t)), we have only y,4',y" ..., possibly multiplied by given expressions of
t, and added together.

So the eqn should NOT contain: y?, y'?, siny, y -y', 1/(1 +y), ...

but ok are: 2, sint, et -y, ety'/(1 +t), ¥, ...

Therefore, a linear 2nd order ODE can be written as

y" +pt)y' + q(t)y = g(t) (1)

where p(t), q(t), g(t) are any given expressions involving only the independent variable ¢, but NOT y nor
its derivatives. Of course, some straightforward algebraic manipulations may be required first to bring
the equation into this form.

We need another two pieces of language:
(I) We call a linear ODE homogeneous, if g(t) = 0, i.e., if it fits into the paradigm y" +p(t)y'+q(t)y = 0.

WARNING: This is a hideous use of language, for which I decline responsibility, because I have not invented it.
The word homogeneous is used in a completely different meaning here than in sec 2.6!!! — If g doesn’t vanish,
we call the eqn (1) linear inhomogeneous, and the term g(t) will be called the inhomogeneity. Make sure you
understand these words, because almost the whole chapter hinges on them. Henceforth, homogeneous will
refer to the new meaning, unless explicitly specified otherwise. If need arises to distinguish the two meanings
of homogeneous, I’ll say “linear homogeneous” for the new meaning and “v = y/z-homogeneous” for the old
meaning.

(IT) We say that ODE (1) has constant coefficients, if both p(t) and ¢(t) (namely the coefficients of y’
and y respectively) are constant, i.e., just numbers, not actually depending on ¢. Otherwise we say the
ODE has variable (or nonconstant) coefficients. (The inhomogeneity g(t) is NOT anybody’s coefficient
and is therefore NOT required to be constant.)

So we will study 2nd order linear ODEs of type (1), and we will give a more thorough study to the
special case of 2nd order linear ODEs with constant coefficients, but only briefly mention the case of
non-constant coefficients.

Note that the above definitions generalize to higher order linear ODEs (we may occasionally mention them)
and also to lower (i.e., first) order ODEs. The latter is relevant, because we are going to compare the new
material with what we know about 1st order linear ODEs, and this backwards comparison is alas almost absent
in the book.

Examples:

y" +y' — 11ty = t? | 2nd order, linear inhomogeneous, variable coeff’s
y" + 5y' — Ty = sin 2t | 2nd order, linear inhomogeneous, constant coeff’s

y" + 3y’ — Ty = 0 | 2nd order, linear homogeneous, variable coeff’s
2y’ — 5y — 3t2 = 0 | 1st order, linear inhomogeneous, constant coeff’s

y' —t2y = 0 | 1st order, linear homogeneous, variable coeff’s
y" —22y" + 5y’ — Ty = €? | 3rd order, linear inhomogeneous, constant coeff’s

y™®) —ty" +2y' — 9y = 0 | 4th order, linear homogeneous, variable coeff’s

IThe only nonlinear 2nd order ODEs in this class is of a type discussed earlier; namely y" = f (y) coming from Newton’s

law of motion. The trick was to use y’ as an integrating factor; see my notes on Ch. 2, after 2.3.
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I urge you to refer back to this and the following two pages, possibly rereading it, whenever we have
covered a section of chapter 4 in the book, or whenever a homework trains one of the methods announced
here. This should make sure that all the details you are learning will stand in a larger context right away.

The basic principle about linear ODEs (actually about linear equations in general, never mind if they are
ODEs, PDEs, or systems of linear (algebraic) equations) is the superposition principle, which you will
learn soon. One of its variants says the following: The task to find all solutions of a linear inhomogeneous
equation can be split into two smaller tasks: (a) find all solutions to the corresponding homogeneous
equation, and (b) find some solution (maybe by guessing) to the inhomogeneous equation.

Now look at the section headings in the table of contents in the book:

First some ODE lingo: When they say ‘the general solution’ they do NOT really mean a single solution
(ranking much higher than a colonel or even a sergeant solution;—), but they really mean all solutions;
but since they give all of them in one single formula, they call it the general solution. So the general
solution of y'(t) = 2y(t) is y(t) = C e*! where any choice of a real number for C gives a solution.

Next a warning: Section headings in obese textbooks reflect serving sizes, even at the expense of doing
violence to the logical structure. This is a general warning, because it applies to (almost) all obese
textbooks. So let’s sort this out, because I’ll teach this chapter by logical structure, not by serving sizes.

LOGICAL STRUCTURE TEXTBOOK CHAPTER [and comments]

e The key example serves as an introduction Introduction: The Mass—Spring—Oscillator

e How to find all solutions to a linear homo-
geneous ODE with constant coefficients:
— The superposition principle and the Homogeneous Linear Equations: The General
auxiliary equation Solution
— auxiliary equations with real roots

— auxiliary equations with complex roots Auxiliary Equations with Complex Roots

e How to find some solutions to a linear
inhomogeneous ODE:

— Undetermined coefficients Nonhomogeneeous Equations: The Method of
(works for const coeff ODEs only) Undetermined Coefficients
— Variation of parameters Variation of Parameters
(works rather generally) [This is covered a bit later]
e How to put the preceding two bullets The Superposition Principle and Undeter-
together to get all solutions of an mined Coefficients Revisited
inhomogeneous ODE [But it's really all about the superposition principle]
e The key example in detail: Mechanical [ you may say vibration in mechanics — oscillation
(or electrical) oscillations is the same thing in more general context]
— Free oscillations (homogeneous ODE) A Closer Look at Free Mechanical Vibrations
— Forced oscillations (inhomog’ ODE) A Closer Look at Forced Mech’ Vibrations

On the next page, you'll find the same logical outline in table form. When you see how much work | have put
in these tables, you can guess how important | think it is that you understand how everything fits together.

This entire logical structure, namely the superposition principle (apart from the ‘how to’ recipes) is charac-
teristic of linear equations, be they ODEs or PDEs or systems of linear equations like you study in a Linear
Algebra / Matrix Algebra course.

Those of you who have taken M251 already, should discover similarities with material studied there. Those
who take M251 concurrently should watch out for these similarities. Those who will take M251 later should
make sure to refer back to these present notes to see the similarity at some future time. | have posted some
material form M251 on the web that stresses the analogy from the M251 point of view.
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So here we go again: How is the the task of finding all solutions to a linear inhomogeneous ODE split in

two separate, largely independent tasks?

Find all solutions to a linear inhomogeneous ODE,
e.g., 2nd order: y" + p(t)y' + ¢(t)y = g(t)

Ve

Find all solutions to the corresponding
linear homogeneous ODE,
e.g., 2nd order: y" + p(t)y' + q(t)y =0

How will we do it?

e If we have constant coefficients, a routine

method is available, which is discussed in
Sec 4.2-3. The method says, roughly, and
still subject to some embellishments: “So-
lutions to this type of equations will be
y = €™, you only have to find r by plugging
in.” You have already encountered a sample
of this method, out of context: it was hwk
1.2#20. This is an instance of “educated
guessing”: The education tells you to guess
some kind of exponential, but you still need
to figure out r.

For very particular types of variable coeffi-
cients, a similar routine method is available.
We don’t discuss this type (so-called Euler
equations) in detail here. But you have al-
ready encountered a sample of this case as
well, out of context: it was hwk 1.24#21.

For the general case of variable coefficients,
the task may be difficult, and we just don’t
have a general method. However, power se-
ries methods (see Chapter 8) are very help-
ful in the practically important cases, and
if you ever run across “Bessel functions”
(quite likely) or “hypergeometric functions”
(less likely), this is the context where they
arise. [Not covered in this class.]
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Find some solution to the original linear
inhomogeneous ODE,
e.g.,2nd order: y" + p(t)y' + q(t)y = g(t)

How will we do it?

o If all you need is just some solution, guess-

ing or eyeballing may be a useful method
already.

A jazzed-up version of guessing is educated
guessing: For constant coefficients, with
only sine, cosine, exponentials and powers
as inhomogeneity, it works fine. Section 4.4
does it, under the name Method of un-
determined coefficients. Here, “unde-
termined coefficients” refers to coefficients
in the (guessed) solution, whereas “con-
stant coefficients” refers to coefficients in
the equation.

For other inhomogeneities (even with con-
stant coefficients), and also for variable co-
efficients (even with nice inhomogeneities),
educated guessing rarely works. The
method of choice is called variation of pa-
rameters (Sec. 4.6). I won’t summarize its
contents here. Be it known however that it
requires to solve the corresponding homoge-
neous equation first.
_|

You could of course use this method also
for the simpler cases mentioned before; but
“undetermined coefficients” will be faster,
where it works.



I stressed above that “2nd order” is not the key issue here, but “linear” is. Therefore, all of the above
also applies to 1st order linear equations, and therefore you should be able to recognize some known stuff,
if you try to treat first order linear equations by the methods outlined above. Probably, as you begin,
you will not find much that looks familiar. But let’s have a closer look:

A first order linear inhomogeneous ODE looks as follows:
y' +p(t)y =g(t)

v

pN

When you try to find an integrating fac-
tor, you indeed don’t care about the in-
homogeneity g(t) yet. But do you re-
ally solve the homogeneous ODE, ie.,

Yy +pt)y=07

When you try to find some solution to your 1st order
linear inhomogeneous ODE y' + p(t)y = g(¢), physics
will often guide you; in practice, finding some solution
means to find the simplest solution. Find here the
physical meaning of these simple solution:

The answer is yes, and this is your
homework N4#1:

Let wp(t) be an integrating factor for y' +
p(t)y = g(t). Recall: What is the differen-
tial equation you needed to solve to find u?
What is the formula for u? Now show that
the reciprocal of p, i.e., 1/u, is a solution
of the corresponding linear homogeneous
equation y' + p(t)y = 0. Show that actually,
for every constant C', C'/u is a solution.

In other words, by finding an integrating fac-
tor u, you did indeed solve the linear homo-
geneous equation, namely the solutions are

C/u(d).

e The case of constant coefficients is
well-known to you already: vy’ + ky =
0: Radioactive decay y' + ky = 0
or Malthusian growth y' — ky = 0.
Indeed, as promised on the previous
page, “Solutions to this type of equa-
tions will be y = e™, you only have to
find r by plugging in.” Here, the r is
of course —k, or k, respectively.

e You haven’t seen a first order analog
of hwk 1.2#21, because that analog
would not be of practical interest.

e The general case of variable coeffi-
cients may be difficult for higher or-
der, but in 1st order we are lucky, be-
cause the linear homogeneous first or-
der ODE y' + p(t)y = 0 is separable.
The power series methods of Chapter
8 announced for 2nd order, still apply
for 1st order, but they are not used:
they would be overkill.

Also for the linear inhomogeneus ODE, you have
encountered the case of constant coefficients:

y' =k(a—y), equivalently o' +ky=ka.

It is Newton’s law of cooling, and it also represents fall
under linear air resistance. Again the exponentials appear
in the general solution.

e But if all you need here is just some solution, one

such solution is easy to guess in this case, and it
has the benefit of being special from a physics point
of view: take the constant function y = a. It’s the
equilibrium solution, where nothing changes; in the
cooling example, it’s when the coffee has room tem-
perature, in the parachute example, it’s the speed
where air resistance balances gravity.

We also had a cooling example with the inhomo-
geneity a sine function. That was example 2 in
section 3.3 (p. 109-111): They don’t write down
the equation clearly in the texbook, but rather just
plug the data into the solution formula (shame on
them!). If you do write down the equation, as dis-
cussed in class, you have y' + ky = a + bcoswt
(just with different symbols). And the particular
solution they discussed in that problem was the
one where the exponential term from the general
solution had long decayed: It had the structure
y(t) =?1+72 coswt+73 sinwt, where each ‘?’ stands
for a certain number that depends on the given pa-
rameters. When we did the problem, the values for
each ‘?” just popped out of the calculation at the
end. Educated guessing would be (a) to guess ex-
actly this formula, but with the ‘?’ really unknown.
Then to plug this formula into the equation and de-
termine for what values of the ‘7’ you get indeed a
solution.

We’ll discuss what variation of parameters does for
first order linear ODEs, when we come to that
method. You haven’t seen it yet.
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The Superposition Principle is the basic principle that is characteristic for linear equations. Linear combina-

This principle is responsible that the task of solving linear ODEs can be split into two parts tions: Same
as outlined above. It comes in two variants that you should put together in your mind, even i‘:lg; Zslglgbra
though they are separated by several chapters in the book: There the y;
Thm: If the functions y; and yo are solutions to a linear homogeneous (OD)E, then any EV::: :}?2;70;1
linear combination c1y; + cay2 (with ¢1,ca constants) is also a solution. (You find this on functions. And
p. 161 in the book.) yes, in Linear
Algebra, th
Thm: If y, is a solution to the linear homogeneous ODE ha%z ;agenezl_
ized notion of
y" +pt)y' +4q(t)y =0 (2) vectors that
encompasses

functions as a
special case. And
this analogy is

and y; is a solution to the linear inhomogeneous ODE (note: same stuff on the left, only change
is the inhomogeneity!)

y' + p(t)yl +q(t)y = g(t) (3) the very reason

. . . . . i why they have

then yn + y; is also a solution to the linear inhomogeneous equation (38). Conversely, if you such a general
have found some particular solution y, to the inhomogeneous equation (3), by whatever method, concept there.

then any other solution y; to (3) differs from y, by a solution of the homogeneous equation (2).
(You find this on p. 187 in the book, somewhat differently worded.)

Note that these theorems hold for linear ODEs of any order.

Homework N4#2: Take the linear inhomogeneous equation (3a) Mv' = —9.81M — kv, with given
numbers k¥ and M, and write down its general solution v;. Write down the general solution v to the
corresponding linear homogeneous equation (2a) Mv' = —kv as well. Also find a particular solution v,
to the inhomogeneous equation (3a) by means of physically motivated guessing: Which constant function
is a solution to the inhomogeneous equation? Verify the theorem in this concrete example.

There is one more fundamental ingredient which you need to understand about 2nd order ODEs (and
this one has nothing to do with linearity): If you have a 2nd order ODE y" = f(t,y,y’), in order to find
a solution y, you must get rid of two derivatives, i.e., you have to do two integrations; this is true at least
in principle, even though in practice, it is much more difficult than just integrating twice. Whatever you
do in practice to solve the 2nd order ODE (you may not even see the integrations), the two integrations
will be responsible that the general solution contains two undetermined constants C; and Cs.

Accordingly, the initial value problem for 2nd order ODEs contains two initial conditions: you prescribe,
for some to the value y(tg) = yo of the function, and its derivative y'(tp) = yor- yo and yor will be given
numbers (in Newton’s law of motion, they would be initial position and initial velocity, respectively). I
have chosen to attach the prime in yo to the index, rather than using the more common notation yg, to
make sure gy looks like a number to you, not like a function.

Remember the Euler method for 1st order IVPs y' = f(t,y), y(to) = yo. The ODE permitted us to
calculate the rate of change (derivative) of the unknown function y at the initial time ¢y, by merely
plugging in: y'(to) = f (o, yo), and from this rate of change of y, we can get a good approximate value of
y at a short ‘time’ h later:

y(to + h) = yo + hy'(to) = yo + hf(to,yo) -

For 2nd order y" = f(t,y,y'), we can similarly get the 2nd derivative (derivative of the derivative, or,
rate of change of the derivative) by plugging in: y"(t9) = f(to, Yo, Yo ), and this information helps us to
approximate not only y at a short time h later, but 3’ as well:

y(to+h) = yo+ hy'(to) = yo + hyo
y'(to + h) = yor + hy" (to) = yor + hf(to,yo, yor)

— As for 1st order equations, the IVP for 2nd order equations has a unique solution, under mild hy-
potheses. We specify the details only for linear equations:2

2The theorem for nonlinear equations is no more complicated that in the 1st order case, but the notation needed to
write it down may cause confusion; this is the only reason why I omit it
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Thm: If p and q and g are continuous in a neighborhood of ty, then the IVP
y" +p®)y +at)y =g(t), y(to) =yo, ¥'(to)=yo

has exactly one solution. The mazimal interval of existence of this solution is (at least) as large as the
largest interval containing ty on which p, q, and g are continuous.

This, too, holds for higher order linear ODEs, with obvious modifications. The last sentence, which
specifies how large the interval of existence is, has no analog for nonlinear equations. In nonlinear ODEs,
the solution may exist only on a short interval that could not be anticipated from looking at the equation
alone. You have seen this phenomenon for 1st order already: reread the middle of p. 2 of my notes on
Chapter 1, if you don’t remember.

Hwk: N4#3: Determine the maximal interval of existence of the solution to the IVP

1
' -y + gy =¢, y)=1, y(1)=17

(Careful, don’t overlook a little detail.)

N4#4: We’ll soon need complex numbers. To make sure you can calculate with them, do the following
two (If you have difficulties with these, alert me immediately):

2 2 2
(a) Bvaluate 1+ 2+ 2 for 2 = 1+ (b) Bvaluate 3=75; + 575;

We now study the task of finding all solutions to a linear homogeneous equation (program of left column
on p. 2 of these notes): Consider three examples:

Example 1: (from hwk 1.2#20a - constant coefficients) — Confronted with the ODE y" + 6y’ + 5y = 0,
Ann has the wise hindsight / idea to try y = €™ and see if for any r that is a solution. She comes up
with two solutions: y;(t) = e~¢ and y»(t) = e~5¢.

Example 2: (from hwk 1.2#21a - a certain, particularly convenient type of variable coefficients) —
Confronted with the ODE 3t2y" + 11ty’ — 3y = 0, Bob has the wise hindsight / idea to try y = " and
see if for any r that is a solution. He comes up with two solutions: y;(t) = t~1/3 and y»(t) = t 3. Bob
also notices that y3(t) = 0 is another solution.

Example 3: (new) — Confronted with the ODE #%y"” — ty’ + y = 0, Charles has the wise hindsight /
idea to try y = rt and see if for any r that is a solution. He comes up with infinitely many solutions: For
every r, y-(t) = rt is a solution.

Who has made more / most progress towards finding all solutions of his/her ODE?

If you merely count solutions, you think Charles is the winner, because he has infinitely many solutions,
whereas Ann has two and Bob has three. However, I want to convince you that Ann and Bob are tied
for a win, and Charles gets the third place. The reason is that, without extra work, we can immediately
create infinitely many solutions from Ann’s two solutions, namely y = c1y1 + coy2 = cie”t + cae™?, and
that this collection of solutions comprises all solutions of Ann’s ODE. The same thing applies to Bob’s
solution, and his extra solution y3 = 0 isn’t even needed nor does it contribute. It is redundant, because
we get ys3 for free out of y; and yo: namely, y3 =0=0-y; + 0 - ys.

Charles’s infinitely many solutions is just what you get “for free” from a single one, namely y; = ¢t. His
set of solutions falls short of being all solutions. For instance, y(t) = tInt¢ is another solution, which
Charles hasn’t even come close to finding.

It is therefore our next goal to study when two solutions y; and ys to a linear homogeneous 2nd order
ODE are such that their linear combinations ¢;y; + coys already make up all solutions of the ODE. The
answer to this question can be given very quickly (for 2nd order): It must NOT be the case that one
solution is a multiple of the other. But you won’t take my word for it: think of the implications of this
statement: I am claiming that if you have found two solutions of a linear 2nd order homogeneous ODE,
subject only to the condition that one shouldn’t be a multiple of the other, then there couldn’t be any
other solution but those that are linear combinations of the two solutions you happen to have already!!
How could I make such a bold claim, without even looking at the specific lin’hom’2nd order ODE, nor
at your specific solutions?
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I’ll do this argument parallel, for the general case, and for the special case of Bob’s example. The special
case is meant to show you immediately what is given and what is to be determined.

Let y; and y» be solutions to any given lin’hom’ Let y1 = ¢t~ 1/3 and y» = t—3 be Bob’s two solu-

2nd order ODE tions to the lin’hom’2nd order ODE
"+ o)y +qt)y=0 11 1
y" +p0)y +a(t)y v+ 5y — 5y =0

In order that any solution y of this equation be
expressible in the form y = c1y1 + c2y2, it is cer-
tainly necessary that for any given initial values
y(to) = yo, y'(to) = yor, the solution to these ini-
tial values is so expressible; in other words, given
any to, Yo, Yo, we must be able to find ¢, ¢ such

In order that any solution y of this equation be
expressible in the form y = ¢t /3 + ot 3, it
is certainly necessary that for any given initial
values, e.g., y(1) = 5, ¥'(1) = 3, the solution
to these initial values is so expressible; in other

that words, we must be able to find ¢;, ¢o such that
y(to) = c1y1(to) + c2y2(to) = Yo y(1)=5=c11""3 41 3 =¢; + ¢
o/ (to) = c19} (o) + cayh(to) = yor Y1) =3 =314+ o(=3)17 = Fha — 30,

To solve these equations for ¢, ca, if possible, the following calculation does the job in an organized way:
Get ¢; by subtracting y2(to) times the second equation from yh(¢y) times the first equation. (The ¢y
terms cancel in this procedure.) You get

c1 (yl(to)yé(to) - (to)y2(t0)) = yoys(to) — Yo y2(to)

and similarly, subtracting yj (o) times the first from y; (o) times the second equation,

c2 (yl(to)yé(to) ] (to)yz(to)) = yory1(to) — you1 (to)

These equations can be solved for ¢;, ¢, if the stuff in the parenthesis is different from 0 (and in that
case, plugging into the original equations confirms that we have indeed a solution). We still need to show
conversely that, if the stuff in the parenthesis does vanish, there are indeed right hand sides yg, yo for
which we cannot find solutions ¢;, ¢c2. ’ll omit the (straightforward, but a bit lengthy) discussion of these
cases. If you have studied the theory of systems of linear equations, you will be familiar with the result
anyway.

Remember that we argued: “If any solution y can be written as a linear combination y = c1y1 + c2y»
of the two given solutions y;, y2, then this must be true in particular for the solution for any given
pair of initial conditions”. Checking this latter condition reduced the problem to a system of linear
(algebraic) equations. But as a matter of fact, the ‘particular’ above represents indeed the full generality:
If you wonder if some particular solution yj to the lin’hom 2nd order ODE can be represented as linear
combination ci1y1 + cay2, then you choose your favorite to, calculate yx(to) =: yo and y}(to) =: yor and
reason: “We have just determined how to write the solution with initial conditions yo, yor as a linear
combination. We know that there is exactly one solution to these initial conditions, so this one solution
is indeed yp,.

Let’s give a name to the ‘stuff in parenthesis’ above:

Definition: The Wronskian Wy1,y2] of two solutions of a 2nd order linear homogeneous ODE is the
function given by the formula

Wl pel) = O00) ~ v 0me) = | Y0 120

If you know about determinants, you will recognize the second equality sign as justified. If you do not
know about determinants, take the second equality sign as a definition of the rightmost term and be
advised that this rightmost term is called a determinant.

Definition: Let p and q be continuous in some interval I. We call a pair of solutions {y1,y=} to
y" + )y + q(t)y = 0 a fundamental solution set for this ODE (in the interval I), if Wy1,y=2](to) # 0
for some tg € I.
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Theorem: In this case, W[y1,y2](t) # 0 for every t € I. Every solution of the ODE can be written as
a linear combination of y1 and ya, if and only if {y1,y2} is a fundamental solution set.

Definition: Instead of saying “{y1,y2} is a fundamental solution set”, we also say that the solution set
{y1,y2} is linearly independent, or that the solutions y; and y, are linearly independent.

All the arguments about fundamental sets of solutions carry over to higher order lin’hom’ ODEs. A set
of n solutions {y1,...y,} to a lin’hom’ n*® order ODE is a fundamental system, if the Wronskian

i () ya(t) Yn(t)
(1) yh(t) Yn(t)
Wlyt,...ya)(t) = : : - :
IO BT () W 1)

doesn’t vanish. (Note that higher derivatives occur; just as many as you need for specifying enough initial
conditions.) This formula involves an n X n determinant; if you know how to evaluate such determinants,
you can check solution sets for higher order ODEs for being a fundamental system. If you have never
learned about higher order determinants (which is quite likely unless you have covered them in matrix
algebra already), consider this equation as a shorthand for a messy formula, which I don’t write down,
because you won’t need it in this class. [But I do want you to take knowledge just of the plain fact that
such a generalization to higher order ODEs is available.]

Finally: How do we find solutions?
After these preparations, we can reveal quite swiftly the available techniques to find solutions:

Alas there is no general technique for all lin’hom’ 2nd order ODEs; however, for the very important case
of constant coefficients, there is a straightforward technique:

Thm: For linear homogeneous n*®* order ODEs with constant coefficients, the following routine pro-
cedure will always find a fundamental set of solutions: Plug in y = €™ and determine r from the (n*®
degree algebraic) equation ensuing.

(a) If there are n different real solutions r, then the corresponding functions y = e form a fundamental
set of solutions.

(b) other cases to be discussed soon.

Hwk: Find the solution to the IVP
y' = 2+h)y +y=0, y0)=1, y'(0)=3

for any given h > 0.

Let us continue the discussion of how to find solutions for constant coefficient equations. For an nt" order
lin’hom’ ODE with constant coefficients, the educated guess y = et leads to an algebraic equation: we
have to find the zeros of an n'" degree polynomial in the variable r. If we are lucky (case (a) above),
this auxiliary equation has n different real solutions. What else could happen? Essentially, two things:
(b) We can have complex solutions 7 of the auxiliary equation, (c) we can have multiple solutions. For
sufficiently high order these problems can occur together (multiple complex solutions), but for 2nd order
ODEs, we get r from a quadratic equation, so there are only two solutions: they are (a) either both real
and different, or (b) both complex conjugates, or (c) one double solution (real).

We deal with these problems in turn.

Example: 3" — 4y’ + 5y = 0. Try y = €™, get the auxiliary equation r? — 4r + 5 = 0. The quadratic
formula yields the two complex solutions ry /o = 2 % i.

e The good news is: The general solution is still y = ¢;e2+)t 4 et according to the same principle
as for real solutions r.

e The bad news is: You probably have no idea what e to some complex power actually means, and
therefore the previous result is probably (?) meaningless.

e The other good news is that you will learn to make sense out of a formula like y = ¢;e2+9t 4 ¢ye(2=9t,
A little algebra will make the complex numbers disappear from this formula again, and then you get a
(manifestly) real solution.

Actually, you can check that for this same example y"' — 4y’ 4+ 5y = 0, there is another fundamental set of
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solutions that does not use complex numbers: Namely y; = e?! cost, y» = e* sint. How does this relate
to the strange fundamental set of solutions I proposed above, namely y, = e?+9t y_ = £(2-9t ?

The way to make sense of e* for complex z is by using the Taylor series of the exponential function:

; 22 28 2"
e =1+Z+§+§+...+m+...

You know this formula for real z already. But the right hand side makes sense for complex z as well;
so this series now defines e* for all complex z. (It can indeed be shown that the series converges for all
complex z.) And what is even better, all the nice algebra rules like e2t® = e®e® remain true, even if a,b
are complex. Using them, you can slightly rewrite y, and y_: y, = e?!e?, y_ = e?!e~%. So the 2! that
comes up in the formula for y;, y» is already appearing. We are left with understanding e® and e~%.
These fellows seem to have something to do with trig functions!!! You are about to witness a miracle:

Once you do complex numbers, you find that
the exponential function and trig functions are closely related!

The precise nature of this relationship can again be found by means of power series: Using the power
series for the exponential function, you get

w4 @) @) (@)t (it)° (it)"
e =1+4+1it+ 21 + 30 + m + 5l + ...+ ol + ...
14t 2 Bt P (it)"
t2 t4 t2k t3 t5 t2k+1
=(1- =+ = —+...+ (-1 )it =4 (D) P————— + ...
( gttt gt )“(t st Tt gyt )

=cost +isint

This formula is so important that, if the phone rings at 3am and someone asks you “e®?”, you are expected
to reply “cost + isint” still half asleep, turn over and continue sleeping as if nothing had happened.
1

Similarly, you get e~# = cost — isint, and consequantly cost = £ (e + e), sint = 3 (e — e™*).

Conclusion: If the auxiliary equation has a pair of complex solutions r4 = a =+ bi, then you get corre-
sponding solutions of the lin’hom ODE with constant coefficients y; = €% cosbt, y» = €® sin bt, because

cpela+tt o _ea=bit — cat (¢ eitt | ¢ e=ilt)
= e (cy(cosbt + isinbt) + c_(cos bt — isinbt))
= e ((cy + c_) cosbt +i(cy — c_) sin bt)
= ¢1e% cos bt + coe sin bt

Note: When you learned calculus, complex numbers were typically excluded. The earliest reason
for this exclusion is the difficulty to graph functions of a complex variable. Much of calculus tolerates
complex numbers with indifference. For some parts (roots, logarithms, integrals) complex numbers would
cause difficulties inappropriate for 1st year level. Power series in contrast don’t merely tolerate complex
numbers, they actually beg for them: You have just seen some of the goodies you get from admitting
them. What you need to learn about complex numbers in calculus at this level is the following: Basic
algebra rules as well as rules for the derivative (product rule, chain rule, derivatives of basic functions)
remain true even if complex numbers are involved. And of course you need the relation between trigs and
the exponential. However, you avoid logarithms of complex numbers until you understand the pitfalls
they pose (which requires some of M 443).

We are left with one more difficulty: what happens if the auxiliary equation has repeated roots? Example:
y" —2y' +y = 0 leads to the auxiliary equation 7> — 2r + 1 = 0 which has the repeated solution r = 1.
This is the case h = 0 of hwk problem N4#5. (The homework assumed h > 0.) T'll explain the method
later, but will give the result first, as part (¢) of the now completed theorem:

Thm: (completion from page 7)
For linear homogeneous n'® order ODEs with constant (real) coefficients, the following routine procedure
will always find a fundamental set of solutions: Plug in y = e™ and determine r from the (n'" degree
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algebraic) equation enswing.

(a) If there are n different real roots r, then the corresponding functions y = €™ form a fundamental set
of solutions.

(b) If some of the roots r are complex, these will automatically come up in pairs of complex conjugates
r = axbi. To them, there corresponds the pair of solutions e cosbt, e** sin bt of the ODE.

(c) If some root r is repeated (double root), solutions for the ODE are €™ and te™. If the same r occurs
with higher multiplicity than two (say k-fold), then k solutions for the ODE are e, te™, ..., tF~1lert,
The set of solutions found according to the above procedure is a fundamental set.

This merits an example that contains all bells and whistles at the same time. Alas 2nd order is too
small to attach so many bells and whistles. The examples you encounter will be much simpler, but the
complicated example given here is more helpful to understand the theorem:

An ODE of 14th order:
y M) 44 (13) 1489 (12) 4 424 (1) 1 7614 (19) 4+ 5014(9) +3750y®) +496y(7) — 5856y (®) —8448y5) —36352y (V) +-86016y" —40960y" = 0
This leads to the auxiliary equation:
P4t 448712 4427 1 761910 450170 4- 375078 + 49617 — 585675 — 8448r° — 363521 + 8601672 — 409607 = 0

Of course you are not expected to find the roots of this mess; however, a symbolic algebra package like
Maple or Mathematica will discover that the whole mess can be factored nicely:

(r+2)r*(r —1)°(r* + 2r +5)(r* +16)> = 0

So here is how you get a fundamental set of 14 solutions to the ODE:

factor | contributes | corresponding solutions to ODE
r+2 single root r = —2 y1 =e 2t
r2 double root r = 0 ys = €% =1,
y3 = te®t = ¢
(r=1)3 triple root r = 1 ys = €,
Ys = teta
Yo = t2et
(r> +2r +5) | complex roots r = —1+2i | y7 = e~ cos 2t, ys = e 'sin 2t
(r> +16)® | complex roots r = +4i, yo = €% cos 4t = cos4t, yio = el sin4t = sin 4,
each with multiplicity 3 y11 = tcosdt, y12 = tsin4t,
Y13 = t2 cos 4t, Y14 = 2 sin 4t

Let me briefly explain why part (c) of the theorem is true; in other words, why, if there is a double root
r, te™ is a solution, in addition to e™. There is a number of explanations. The naivest explanation
is just: plug in the alleged solution and see that it works. But here is a simple argument: If ry and
ro + € are different roots of the auxiliary equation (but very close to each other), we have the solutions
y = c_e™ + cyelrot9)t for any choice of constants ¢y and c_. If ro and rg + € are the only solutions
to the auxiliary equation (i.e., if we have a second order equation), then we are actually talking about
the ODE y" — (2r9 + €)y’ + ro(ro + £)y = 0 here. But the following argument does not rely on such an
assumption.

In particular, we may choose ¢, = 1/e and ¢ = —1/e. This gives the solution y, := (e{"ote)t —emot /. We
have chosen the constants in such a way as to find a solution that has a limit as e — 0. It is reasonable to
believe, and can be proved formally, that the limit of the solution y. as € — 0 is a solution to the equation
with double root ro. (In the absence of further roots, this would refer to the ODE y” — 2rgy’ + r3y = 0.)
If you remember the limit definition of the derivative, you observe indeed that

e(rote)t _ grot d

lim y. = lim et = tem!

e—0 e—0 £ dr r=ro

Basically the same idea, only more elaborate, explains why t2e™f is another solution in case rq is a triple
root of the auxiliary equation.
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You may wish to observe the same phenomenon again, in the hwk I assigned you above (N4#5). You
had to find the solution to the IVP

y'—2+hy' +y=0, y0)=1, y'(0)=3

The solution is a bit messy, and you may have sorted the terms together differently. In any case, one way
of writing the required solution is:

y= %e(l +3)t {(eFt + e_Ft) + % (eFt - e_Ft)}

with /- -+ a shorthand for y/h + ’1—2. You need I’'Hépital (or the series expansion technique) to carry out

limy_,¢ in the second term of the sum, whereas the limit is straightforward for all subexpressions in the
first term of the sum. The limit is y = £e’{2+ 4t} = ¢ + 2te’. This is indeed the solution of the IVP

y' =2y +y=0, y0)=1, y'(0)=3

as you can easily check by plugging in.

Take a deep breath and look back to page 13 what we have accomplished:

We have discussed the superposition principle, which first explains why the task of finding all solutions
to a linear inhomogeneous ODE splits into two tasks as outlined on page 13. We have studied how the
task of finding all solutions to a linear homogeneous ODE can be accomplished in the case of constant
coefficients. There again, the superposition principle played a key role, because the method of educated
guessing (“maybe some €™ is a solution”) could produce only a few solutions, and the superposition
principle spawns all the other solutions out of these. You are already prepared for some review problems.

We next switch over to the right column of page 13, where we want to find just some solution of the
inhomogeneous equation. Again, the method of educated guessing works wonders in some important
cases. But we will also need some more sophisticated techniques to deal with the less simple cases. We
start with the case of constant coeflicients again:

The method of educated guessing for a particular solution y, of the linear inhomogeneous equation with
constant coefficients is outlined in the book, under the name “Method of undetermined coefficients”. It
goes as follows: If the right hand side g(t) is an exponential function, you “guess” a constant multiple
of that same exponential function as a particular solution. There are some ramifications: If the rhs is a
trig function (sin or cos only) or a polynomial, then try a similar trig function or a similar polynomial,
respectively, as a particular solution. Details to follow. And there is a technique for trouble shooting,
because it may not always be quite that easy. But while the overall technique seems so surprisingly
successful, you should also be aware of its limitations. If the rhs is something more complicated (as, eg.,
tant, vt2 + 1, arcsint) don’t bother with trying “similar” expressions for solutions. That will usually
not work. The scope of the technique is limited, and it deserves mentioning only because this limited
scope does cover some of the very important cases.

Let’s see our first example: y” + 5y’ — 14y = e'. You guess y, = Ae’ with yet unknown A, plug it in, and

bingo, you find it works for A = —1/8. Next, y" + 5y’ — 14y = 4e~3!. You guess y, = Ae~%!, and you find

it works with A = —1/5. If you have a sum of two exponentials on the rhs, as in y" + 5y’ — 14y = el +4e3¢,
1.t _ 1,3t

you can now predict, based on the previous two results, that y, = —ge" — ge°" is a solution.

Now let’s see a potential troublespot: y" + 5y’ — 14y = e%; you try y, = Ae*® of course, but, too bad,
you get 0 x A = 1, and you won’t find an A that satisfies this equation. The reason for the trouble is
that e2! is already a solution ot the homogeneous equation y" + 5y’ — 14y = 0, because r = 2 is a root
of its auxiliary equation r? + 57 — 14 = 0. The trouble shooting advice tells you, that in this case, you
should try ate?!, and that this will succeed, unless r = 2 happens to be a double root of the auxiliary
equation (which is not the case in this example). Guess how you would find a particular solution for
y" — 4y' + 4y = 17, where r = 2 is indeed a double root of the auxiliary equation: Try Ae? and see
the attempt fail. Try Ate?* and see this better attempt fail again. Try At2e?! and succeed!

So here is the method:
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If you want a particular solution for

Y™ + gy + L+ @y + oy = g(t)

with constant coefficients qo, ¢1, .., go—1 and if g(t) = ae™, then a special solution is y, = Ae™ where
you only need to determine A by plugging in. This works, unless e™ solves the homogeneous equation
already (i.e., unless r is a root of the auxiliary equation). In this case, you need to know what multiplicity
r has, as a root of the auxiliary equation. If it has multiplicity s, then you know already that e, te,
..., t*71em solve the homogeneous equation; a particular solution for the inhomogeneous equation is
found in the form y, = At*e™.

If you have a sum of different terms g (t£)+g2(¢)+. .. on the right hand side, and if you can find a particular
solution y,; for each term g;(t) separately, then their sum yp1 + yp2 + ... is a particular solution for the
right hand side g1(¢) + g2(t) + .... This is a variant of the superposition principle, and we immediately
use it to discuss what happens if g(t) involves trig functions (sin and cos):

Example: y" 4+ y' + 5y = 20cos3t. You use 20cos3t = 10e®* + 10e~" and employ the method for
exponential right hand sides (justly unworried about the complex exponent): you need an Ae®* term
(with A} yet to be found) to produce the 10e** on the right hand side. And you need an A_e 3
to produce the 10e=3% on the right hand side. You get the equations A[(3i)? + (3i) + 5] = 10 and
similarly A_[(—=3i)? + (—=3i) + 5] = 10. A little arithmetic produces Ay = 10/(—4 + 3i) = —2(4 + 3i),
A_ =10/(—4 — 3i) = —2(4 — 3i). This gives you the solution y, = —2(4 + 3i) €3 — 2(4 — 3i) e 3. Of
course you’d be required to rewrite this whole thing as a real expression:

2 L 2 )
Yp = —3(4 + 3i) 3% — 3(4 —3i)e 3%
2 2 16 12
= —3(4 + 3i)(cos 3t + i sin 3t) — 3(4 — 3i)(cos 3t — isin 3t) = % cos 3t + =3 sin 3t

The alternative (for those who dislike complex numbers and are willing to pay with extra memorization
for it): If you have a right hand side of acosft, try y, = Acosft + Bsin St and determine A, B by
plugging in. If you have a right hand side of asin ft, again try y, = A cos 8t + Bsin ft. That will work,
unless +if are roots of the auxiliary equation for the homogeneous equation. Then you have to try
At® cos Bt + Bt® sin 8t with s the multiplicity of £i3 as a root of the auxiliary equation.

You have the whole collection of possibilities tabulated in the book. Note that in this table, everything
is a special case of case (VII). The right hand sides you can handle are no more and no less than:
polynomial p,(t) (possibly p, = 1)
x exponential e*! (possibly a = 0, reducing the exponential to 1)
x sin Bt or cos Bt or a linear combination thereof (possibly 8 = 0, reducing the cosine to 1)
and linear combinations of such terms of such terms. The trial function is then
t* x exponential e®* (possibly a = 0, reducing the exponential to 1)

X (Pp(t) cos ft + Qn(t) sin ft)
with P,(t), @, (t) polynomials of the same degree as p, (A, B, if this degree is 0)

where s is the multiplicity of a £ i as a root of the auxiliary equation for the homogeneous ODE. If
a+1if is not a root of that equation, then s = 0. — The book has a number of useful examples. However,
they are a bit bashful in really exploiting the relation between trigs and exponentials and relegate the
usage of complex numbers in undetermined coefficients to a group project. | will not exercise this kind of
restraint and urge you to become familiar with usages of complex numbers and Euler's formula. Doing so is
certainly in line with practice in electrical engineering as well as with efficient calculation skills in mathematics.
It conceptually unifies two otherwise separate cases. Complex numbers abound in mathematics, are useful
in engineering other than electrical as well, and in physics. — They will also help in some partial fraction
decompositions to be encountered later this semester.

Let us now look at an example with all bells and whistles attached. Given sufficient time (and encour-
agement to persevere), you could be required to do such an example. Make sure you understand all
steps.

Sample Problem: Solve the IVP

y" —3y' +2y =5cost +9(t? —1)e 2 + 8 tsin2t, y(0)= —
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Solution: We first have to get the general solution, then we have to determine the constants from the
initial conditions. The problem to find all solutions to this linear inhomogeneous ODE splits into several
parts (because of the superposition principle):

a) Find the general solution y, for the homogeneous equation y"' — 3y’ + 2y =0

(a)

(b) Find a particular solution yp; for the inhomogeneous eqn y"' — 3y’ + 2y = 5cost

(¢) Find a particular solution y,» for the inhomogeneous eqn y"" — 3y’ + 2y = 9(t* — 1)e2
)

(d) Find a particular solution y,3 for the inhomogeneous eqn y"" — 3y’ + 2y = 8¢t sin 2¢

We address them in turn:

(a) For the homogeneous equation, we try y, = e" and get the auxiliary equation 73 — 3r + 2 = 0.
Too bad that it is a cubic equation, but there is some hope to guess one solution by eyeballing.
Indeed r = 1 works. So we can carry out a long division of polynomials and find r® — 3r + 2 =
(r —1)(r?> + r — 2). We can now find all roots: 73 —3r + 2 = (r — 1)%(r + 2).

We conclude: r =1 is a double root, r = —2 is a single root.

Yp = clet + CQtet + 036_2t

(b) In order to find a particular solution of ¥ — 3y’ + 2y = 5cost = (e + e~ %),
we have the choice between the real method and the complex method; in either case we notice that
r = %4 is not a root of the auxiliary equation, so s = 0 in this case. The real method says: Try
y = Acost + Bsint and determine A and B. The complex method says: Try y = A e + A e~
and determine A, and A_. When done, write the (apparently) complex solution in terms of real
trigonometric functions; the coefficients thus obtained will automatically turn out real, unless you
have made a miscalculation. T’ll choose the real method here; it’s probably a bit shorter.

Plugging y = Acost + Bsint into y"' — 3y’ + 2y = 5cost and collecting terms cost and sint
respectively yields
(2A —4B)cost + (4A + 2B)sint = 5cost

and therefore we need 24 — 4B = 5 and 4A + 2B = 0. Solving these two equations yields: A =
B=-1.

We conclude:

1
DR

1
Yp1 = Ecost—sint

(c) In order to find a particular solution of y'" — 3y’ + 2y = 9(t? — 1)e~2¢,
we note that the m = —2 that is relevant due to the exponent in e~2¢ is already a root of the
auxiliary equation in (a), namely a single root (s = 1). The polynomial in front of the exponential
is of degree 2. So we have to try y = t° Py (t)e~2¢ = t(at? + bt +c)e 2 with undetermined coefficients
a,b,c. A bit of hard labor to do here:

2

y = (at® + bt? + ct)e= %
y' = (3at® + 2bt + c)e~2t — 2(at3 + bt2 + ct)e™ 2
y" = (6at + 2b)e~2t — 2-2(3at? + 2bt + c)e~ 2t + 4(at® + bt + ct)e
y" = 6ae~ % — 3 - 2(6at + 2b)e 2t + 3 - 4(3at® + 2bt + c)e 2 — 8(at> + bt? + ct)e 2t
Therefore: y"' — 3y’ + 2y =
= (—8a + 6a + 2a)t*e=2t + (—8b + 36a + 6b — 9a + 2b)t?e~2¢
+ (=8¢ + 24b — 36a + 6¢ — 6b + 2¢c)te =2t + (12¢ — 12b + 6a — 3c)e 2t = 9t2e =2t — 9e—2¢

So we conclude:
27a=9, —-36a+18 =0, 6a—12b+ 9¢c= —9,therefore: a:g, b==, ¢c=-—
and

1
Yp2 = gt(t‘2 +2t—1)e™?
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(d) In order to find a particular solution of y"' — 3y’ + 2y = 8e *sin2t = £ (e(71+20¢ — g(-1-20)t), There
we note that the 7 = —1 + 24 that is relevant due to the exponent here is not a root of the auxiliary —always used
equation in (a), so here we have s = 0 and our trial function is y = e7*(A4 cos 2t + Bsin 2t); or else, Egu]:se;(})f:e
if you prefer to take the complex approach, you take y = A, e(-120t 1 A_e(~1-20t_ Either choice think if the
is fine; in contract to (b), I choose the complex approach this time. The reason is that it saves me rhs is
repeated application of the product rule when calculating y’. 1 anticipate this will outweigh the € ‘sin2t

extra labor of returning the (apparently) complex result into a manifestly real form. You can do zﬁgzkwould
the real trial function and compare. whether
r=—lisa
Yy = A+e(71+2i)t + A_el-1-20)¢ root. — No
yl — A+(—1 + 2i)6(71+2i)t + A_(—l _ 21:)6(71721'))5 way!! Trigs
. - . . are
ylll — A+(—]. + 21,)36(_14_2’)75 + A_(_]_ _ 27/)36(—1—21)15 imaginary

y" =3y +2y=A, ((—1 +2i)% —3(-1+2i) + 2)6(’1“"” + A_cc = —4iel 1120t | 4je(~1-20)t  exponentials

in disguise,
50 you have
Note that I have used the lazybones notation cc as a shorthand for “complex conjugate”: The to check if

stuff behind A_ is the complex conjugate of the stuff behind Ay; it suffices to evaluate one of 7=-1+2
them, and the other arises by changing all i to —i in the end. A brief piece of arithmetic gives 1520t 1

hi thi
(—1+ 2i)® — 3(—1+ 2i) + 2 = 16 — 8i, s0 we have margin note
will
A, (16 —8i) = —4i, A_(16+8i)=4i , hence A, =(1—2i)/10, A_ = (1+2i)/10 eliminate
this kind of
Therefore mistake this
year.
1-2i o 142 , ~t
Yps = T’e(—“r?”t + %e(—l—”)t - i—o ((1 — 2i)(cos 2t + isin2t) + (1 + 2i)(cos 2t — i sin 2t))
—t —t
= 61—0(2 cos 2t + 4sin 2t) = %(cos 2t + 2sin 2t)

We have now found the general solution of the ODE:

t t —op 1 : L2 oy, €’ :
Y =Ynh+Ypt T Yp2 +Yp3 = cie" +cate’ +cze” =" + 3 cost—sint+ gt(t +2t—1)e > + ?(0052t+2s1n2t)
We need to determine c;, ¢z, c3 from the initial values at ¢ = 0. Plugging ¢ = 0 into the general solution

(and its derivatives, which we therefore have to calculate first), we get

1 1 —t
y' =ciel +ca(t + 1)et — 2cz3e % — 5 sint —cost + 2 (-2 =t +6t—1)e > + %(3 cos 2t — 4sin 2t)

1 1 -t
y" = ciel + ot + 2)e’ + deze? — 5 Cost+sint+ 2 (4% — 4¢> — 14t + 8) e + %(—11 cos 2t — 2sin 2t)

y(0)=01+03+%+% :%

<
| =
(=}

y'(0)=01+202—|—403—%+§—%: %
These linear equations can be solved by successive elimination and substitution, with the result:

7 1 2
2= —7,0=—¢

30 5 5

C1 =
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The method of Variation of Parameters is a method to find solutions to a linear inhomogeneous
ODE of any order. For first order, it is equivalent to the method via integrating factors we studied
earlier; this equivalence is however a bit disguised, and we will exhibit it below. For higher order with
constant coefficients, it is mainly used when the right hand side (inhomogeneity) is not among the
special cases (i.e., exponentials, and their offspring sin and cos, and polynomials) that can be handled
by undetermined coefficients. The method of variation of parameters is also applicable in the case
of nonconstant coefficients. However, it requires knowledge of a fundamental set of solutions to the
homogeneous equation, and we have no general method to find such a fundamental system, except in
first order, or for constant coefficients. If we have a fundamental system for the homogeneous equation,
we can handle any inhomogeneity and any order, and the only difficulty that could prevent us from
evaluating the solution all the way is an integral, which we may or may not be able to evaluate explicitly.

Let me first introduce the method for 1st order, where it can be motivated by your previous experience.
Take for instance the equation

y' + (tant)y = sin®t  as an example for the general 3’ + p(t)y = g(t)

You have seen previously that for 1st order linear ODEs, the reciprocal 1/u of an integrating factor u
is a solution of the homogeneous equation. In our example, u(t) = -, and yx(t) = 1/u(t) = cost is

indeed a solution of the homogeneous equation y' + (tant)y = 0. When we multiply our ODE with the
integrating factor, we get

1
costy

1
) = . sin?t  orin the general case  (uy)' = u(t)g(t)
cos

(

or

sin” ¢ 1
y = cost / st dt or in the general case y(t) = o) / u(t)g(t) dt

So, whereas the general solution of the homogeneous equation is Cu~", solutions of the inhomogeneous
equations are v(t)u~', with v being given by some integral, namely v(t) = [ u(t)g(t) dt.

-1

As a cookbook recipe, the method of variation of parameters says therefore: Take the homogeneous
solution (here Cpu~! = C cost), replace the constant of integration by an unknown function v, plug the so
obtained function into the inhomogeneous equation and you will obtain v’. You just need to integrate to
find v and thus a solution to the inhomogeneous equation. The origin of the name for the method is now
clear: the constant of integration is referred to as a parameter (a parameter in the general solution of the
homogeneous equation). It is changed into a (nonconstant) function, i.e., it is made to vary. Sometimes
the method is also called “variation of constants”, for the same reason.

Let’s see how this method works on our example g’ + (tant)y = sin®¢. First solve the homogeneous
equation y' + (tant)y = 0 (say, by separating variables): You find the general solution of the homogeneous
equation yy(t) = Ccost. Following the method of variation of parameters, you try the substitution
y(t) = v(t) cost on the inhomogeneous equation; here is what you get:

v'(t) cost + v(t)(—sint) + tantv(t)sint = sin® ¢

=0

The first two terms come from gy’. Note that the underbraced terms cancel, precisely because cost was

a solution of the homogeneous equation, and so you are left with only +', but no v. You get v' = SC“O“SQ tt,

which you can solve by direct integration: v(t) = [ Sé(‘)‘: tt dt =1In % —sint + C. The actual evaluation

of the integral was of course a quite non-obvious job, and I have deliberately chosen the example so you
are prepared for being able or unable to actually evaluate it.

In a moment, we’ll see how the method works just as well for 2nd order.
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A brief remark: Variation of parameters is another instance of the superposition principle, but in a rather
sophisticated way, so that you are not expected to actually see the superposition principle acting here. Take it
on good faith from me that using variation of parameters means chopping up the inhomogeneity into a sum
of small pulses and using the superposition principle on this sum:

g = g + g2 + g3 + ga + gs

= + + |\| + I\I + H
(In contrast to the picture, variation of parameters really chops up the inhomogeneity not in five pulses, but in
infinitely many infinitely short pulses, by which a limiting process similar to the Riemann integral is intended.
| am not going to elaborate on details how variations of parameters arises from this idea of chopping up the

inhomogeneity and using the superposition principle. This would take at least one session, which the syllabus
doesn't afford, and is probably not appropriate to work out in an introductory course anyway. )

Let me now exemplify the method in an example of 2nd order:

1-1)?°
t

1-t)y'" +ty —y= sint in the interval —oo <t <1

You first need the solutions of the homogeneous equation (1 — t)y"” + ty' —y = 0. If it were constant
coefficients, you could do it routinely; here you are dependent on undeserved luck, or advanced methods.
I have particularly prepared the luck for you so I can give you two functions, which you can readily check
to be solutions to the homogeneous equation: y;(t) = t, y2(t) = e'. As you cannot rely on the results
about constant coefficients, you should make sure that these two solutions are linearly independent, or, in
other words, form a fundamental system of solutions. Their Wronskian is W = y1y5 —yjys = (t—1)et #0
in the interval —oo <t < 1.

Just as an aside, let me note that things would be vastly different, if I had chosen the left
hand side to be (1 — t)y” — ty' — y (just one sign change), or (1 — t)y" — 2ty’ + y. Just so
you really see it’s a carefully arranged piece of luck, not a routine matter to solve variable
coefficients ODEs. — Moreover, I fed our example with the simple solution c;it + caet to
a symbolic algebra package (Mathematica Version 4.1), which of course tried its advanced
methods, ignorant that I hade fine tuned the example to get simple solutions, and it came up
with the following useless wisdom:

y=cie7T(2,t — 1) + cot — 1)2La,guerre_172(t -1

involving two functions I" and Laguerre unknown to you. After insisting with the Mathematicaese
translation of “are you sure you can’t simplify this; try harder to simplify”, it came indeed up
with y = ¢1t, so it lost the solution e. Seems pretty strange; probably a bug. Just so you see
the limitation of these computer packages, marvelous as they are. (Mathematica Version 4.2
gives the same result, but refrains from simplifying the Laguerre term, which is better than

a wrong simplification, but short of the useful correct simplification; Maple (Release V) gives
the correct result right away. So does Mathematica 5.0)

Another thing you may stumble over here is that I told you that the Wronskian of solutions of
an ODE either vanishes everywhere or nowhere. Now you have W = (t — 1)e?, which vanishes
at ¢ = 1 and nowhere else. The apparent contradiction is resolved by the fact that the
statement about the Wronskian came with the assumption that all coefficients are continuous
and that the coefficient of the highest derivative is 1. To ensure the latter, you must rewrite
the ODE as y" + 15y’ — &5y = (1 — t)¥2L and you see that ¢ = 1 is not permissible. Note
that ¢ = 0 is also (kind of) a problem; but I have tacitly used the fact that S(¢) := sint/t can
be extended continuously into 0 with the definition S(0) := 1.

Returning to our main task after having gone off on tangents a bit, the general solution of the homogeneous
equation is y, = c1t+cae’. We try to find a solution y,, of the inhomogeneous equation; and the variation
of parameters principle tells us to try y, = vy (£)t + va(t)e’, with yet unknown functions v; and vy. At
first sight, two problems arise, but at second sight, it turns out that they are each other’s solution!

o If we plug y, = vi(t)t + vo(t)e! into (1 —t)y" +ty' —y = (1?)2 sint, we get one equation, which is

certainly not good enough to determine two unknown functions v; and vs.
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o If we plug y, = v1 ()t +v2(t)e’ into (1—t)y" +ty' —y = (1?)2 sint, we get an equation involving second

derivatives of v; and wvs, so it is not clear whether finding v; and vy is actually easier than the original
ODE.

The way that makes these two problems each other’s solution is the following: We realize that, whatever
the yet unknown solution y, may turn out to be, there will be different choices of v, va representing it:
For instance, if y, should turn out to be (just making this up) #2, this could happen with v; = ¢, vy =0,
or also with v; = 1, va = e (#2 —t), or in infinitely many other ways: you choose your favorite v, and I
can adapt vy accordingly. Therefore, we may impose an extra condition on vy, vy that will not affect the
solution y, but will fix v; and v,. This extra condition will be designed just in such a way that second
derivatives of v; and vy cancel. Here’s how we do it in practice:

1=ty +ty —y ==V ging with y = v ()t + va(t)et
y' = vl ()t +vi(t) - 1+ vh(t)et + va(t)e
Before taking the next derivative, we impose the extra condition
vi(t)t +vh(t)et =0
which just gets rid of the v}, v} before they have a chance to get differentiated again:
y' =wv1(t) - 14 vy(t)et
y" = vl (t) - 14w (t) -0+ vh(t)et + va(t)et
If you plug all this into the left hand side, you'll find that all terms v, /, without a derivative cancel!®
V()1 = t) + vh(8) (1 — t)et = U= ging

The extra condition and the condition obtained from the equation are good enough to determine v; and
vy by merely solving an algebraic system of linear equations:

tvy (t) + elvh(t) =0 ol (¢) = sint
? _ (l_t)Z . =>”‘=>{ }() t_
e'vy(t) = =5~ sint 2

Hence it
vy (t) = / st dt + Cq nothing can be done with this integral

—t
va(t) = —/e’tsintdt = %(cost+sint) + C»

and the general solution is

: —t
y=t (/%ﬂtdt+01> +eét (%(cost+sint)+02>

You automatically retrieve the contribution of the homogeneous solution from the integration constants
in v, v9, even if you were initially modest enough to look for a particular solution only.

Let’s do a 3rd order example: The only new thing is that you now have to impose two extra
conditions, such as to kill the v;- in every but the last step of differentiation.

17 4II 5/ 2:
YAy 5y 2y = Gy

The auxiliary equation 73 + 4r? + 5r 4+ 2 = 0 has a double root —1 and a single root —2. The general
solution of the homogeneous equation 3"’ + 4y + 5y’ + 2y = 0 is therefore y;, = cie™ + cote™ + cze™2¢.

3This was to be expected: If you first track the undifferentiated vy /2 only, you will retrieve exactly such terms as if you
had erroneously treated v; and v as constants; and as c1t + caet solves the homogeneous equation, all the undifferentiated
v1/9 terms cancel after plugging them into the left hand side of our ODE, as if the v; /5 had been constants.
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We therefore try y = vy (t)e™t + v (t)te™t + v3(t)e~2 for the inhomogeneous equation:

y =wvi(t)e”t +va(t)te™t + v3(t)e 2
require this to be =0

y' = —vi(t)e™t +va(t)(1 — t)e™ — 2u3(t)e 2t + o) (t)et + vh(t)te "t + vh(t)e 2
require this to be =0

' = vy (H)e~t +va(t)(t — 2)e~t + dvs(t)e=2  — vl (t)et + vb(£)(1 — t)et — 20l (t)e 2t
y" = —vi(t)e P+ va(t)(3 —t)e t — 8uz(t)e H +vi(t)e t + vh(t)(t — 2)e ! + 4v(t)e 2t

YAy 5y 2y = v e+ (O - e+ vt = =

It’s a bit of work to solve these three equations for vy, vh, v4, but it can be done in a straightforward way.

e~ vl (t) + te~toh(t) + e Zwh(t) =0
—e~ i (t) + (1 — t)e~twh(t) — 2e~ 2wk (t) =0
e~ (8) + (¢ — 2)eT oy (t) + de™ b (1) = 2=

Add the first and second equation, also add the second and third equation, to eliminate v].

e fvy(t) — e ug(t) =0 - ot 2
—e b (1) + 2 2tvl (1) = et—{—2€—t and by adding them e “ug(t) = o
Substituting back yields
_ 2 _ —2(t+1)
B Ul e B A e

The integrals for vo and vz are best treated with the substitution u = ef, but alas you won’t have much
luck with the one for v;.

—2(t+1)et
vg = 2(e’ — arctane’) + Cs , vo =In(1 +€*) +C,, v = /% dt + C
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