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Problem 39:
Given a commutative ring R with identity, we consider the set Seq(R) consisting of all sequences
s = (s0, s1, s2, s3, . . .) where each si is an element of R. For instance, with R = Z, the following are
elements of Seq(Z): (0, 1, 4, 9, . . .), or (1, 0,−1, 0, 1, 0,−1, . . .). Generally, we will denote by si the
ith entry in the sequence s, where we begin to count entries at number 0. We define the following
operations on Seq(R):

The sum a + b of two sequences is defined componentwise: a + b = (a0 + b0, a1 + b1, a2 + b2, . . .).
The Cauchy product of two sequences is defined as follows:

ab = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .)

such that (ab)n =
∑n

i=0 aibn−i = a0bn + a1bn−1 + . . . + an−1b1 + anb0.

(a) Make sure that you understand the definition: To this end, calculate the Cauchy product ab
of the sequence a = (1, 1, 1, 1, 1, 1, . . .) with b = (0, 1, 2, 3, 4, 5, . . .) in Seq(Z). Which number is the
the entry (ab)30?

(b) Now show that Seq(R) with these operations is a commutative ring.

We call this ring R[[X]] (The ad-hoc name Seq(R) was just for the set.)

Problem 40:
In the ring Z[[X]], show that the element a = (1, 1, 1, 1, . . .) is invertible and give its inverse.

Problem 41:
We consider the subset Seq0(R) of Seq(R), consisting of those sequences that have only finitely
many non-zero entries. For instance, the sequence (1, 2, 0,−7, 3, 0, 0, 0, 0, . . .) is in Seq0(Z). Such
sequences can be written in abbreviated form as finite sequences by omitting the trailing zeros:
(1, 2, 0,−7, 3). Show that Seq0(R) is a subring of Seq(R). In particular, to gain sufficient under-
standing concerning the closure of multiplication, calculate the Cauchy product of (1, 2, 0,−7, 3)
and (2,−1, 4).

Problem 42:
In the ring Seq0(R), we denote the element (0, 1) as X. Calculate X0, X2, X3 etc., and write
(1, 2, 0,−7, 3) as a linear combination of powers of X.

Problem 43:
From now on, we will take the liberty of writing the elements of Zn as 0, 1, 2, . . . , n−1, rather than
[0], [1], [2], . . . , [n− 1] when no confusion arises. Calculate (1 + 2X)3 in the ring Z3[X].

Comments:
The usual symbol for the ring Seq0(R) is R[X], and this ring is called the polynomial ring with
coefficients in R. Even though we can and will later plug in elements of R for the symbol X, as
you would when viewing polynomials as functions of a variable, it is crucial that you do NOT view
the ring of polynomials over R as a subring of the ring of functions from R to R. It MAY NOT
BE one!!!

The usual symbol for the ring, consisting of the set Seq(R) and the addition and multiplication
defined here, is R[[X]], and it is called the “ring of formal power series with coefficients in R”.
(Name to be explained in lecture. Just take note here: unlike the power series you may have
encountered at the end of Calculus II, you are NOT expected to plug anything in for X here, and
therefore no convergence issues arise.) And one of the reasons I introduce this example is to stress
the previous remark about polynomial rings, where plugging in ring elements for X is not part of
the definition of R[X] either.



Problem 44:
In the polynomial ring Z6[X], find two polynomials p and q, such that deg(pq) < (deg p) + (deg q).
Note that Z6 is not an integral domain; so the purpose of this problem is to show that the assumption
that the coefficient ring be an integral domain is really needed for the degree formula to hold.

Problem 45:
In the ring Z[X] take the polynomials a = X3 + X2 + 2X + 1 and b = 2X2. Show that it is
not possible to find polynomials q and r in Z[X] such that a = bq + r and deg r < deg b. If
the coefficients are taken from a field, the euclidean algorithm asserts that such a division with
remainder is possible. So this problem serves as an illustration that the requirement that the
coefficient ring be a field is really needed for the euclidean algorithm.

Problem 46:
In the ring Q[X], find a GCD of a = X3 − 7X2 + 3X + 3 and b = X3 − 6X2 + X + 7. Also write
the GCD thus obtained as a linear combination of a and b.

Problem 47:
In the ring Z13[X], find a GCD of the “same” polynomials a = X3 − 7X2 + 3X + 3 and b =
X3 − 6X2 + X + 7, and write the GCD thus obtained as a linear combination of a and b.

I put the word “same” in quotes, because this is an abuse of language. The coefficent −6 in b
of problem 46 is the integer −6, whereas in problem 47, the ‘same’ −6 is a shorthand for the
element [−6]13 = [7]13 ∈ Z13. But it’s nevertheless common language usage to consider the ‘same’
polynomial in different rings.

Problem 48:
In a polynomial ring R[X] (R is a commutative ring with 1), choose two polynomials p1, p2.
Consider the set

I〈p1, p2〉 := {r1p1 + r2p2 | r1, r2 ∈ R[X]}

of all linear combinations of p1 and p2. (This is a set of common interest in algebra, but the
notation I have used for it is different from the usual notation.)

Show that I〈p1, p2〉 is a subring of R[X] (it may not have a multiplicative identity, though).

Problem 49:
Continuing the previous problem, show that I〈p1, p2〉 even is an ideal. — “Ideal” is a new concept
for you, and here is the definition: A subring S of a commutative ring T is called an ideal if it has
the property: For any s ∈ S and any t ∈ T , it holds st ∈ S.

Rmk: The same set of problems 48, 49 could be done with any number of given polynomials
p1, p2, p3, . . ., including the possibility of only a single polynomial.

Problem 50:
Give an example of a polynomial in Q[X] that is not prime (i.e. can be factored), but has no root
in Q. What is the smallest degree such a polynomial can have (explain why)?

Problem 51:
Show that the polynomial p = X2 + X + 1 is irreducible in Z2[X].

(Obviously p is not a constant polynomial, but: ) show that the polynomial function Z2 → Z2, x 7→
p(x) is a constant function.

Problem 52:
Show that the polynomial p = X4 + 1 is irreducible in Q[X], but not in R[X] nor in C[X]. Give a
complete factorization in R[X], and a complete factorization in C[X].

Also give three different incomplete factorizations (product of two quadratics) in C[X] (for later
use).



Problem 53:
In the fields Zp for p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, find one solution of the equations x2 + 1 = 0,
x2 − 2 = 0, x2 + 2 = 0 each, or conclude that none exists. Basically that’s trial and error, and I
have filled in all but three of the “doesn’t exist” cases, and a few of the existence cases, to save you
work. Note also that in the example p = 29, to find solutions, I only needed to test 1, 2, 3, . . . , 14,
since 15 ≡ −14, 16 ≡ −13,. . . .

p x2 + 1 = 0 x2 − 2 = 0 x2 + 2 = 0
2 1 0 0
3 dne dne
5 2 dne dne
7 dne

11 dne
13 dne
17
19 dne dne 6
23 dne dne
29 12 dne dne

Once this is accomplished, use the information, and wisdom gleaned from the very last part of the
previous problem, to factor X4+1 completely in Zp[X] for the prime numbers p = 2, 3, 5, 7, 11, 13, 17
(and more of them, if you are bored, or want to get bored).

Background info: a simple result from the theory of quadratic residues (in elementary number
theory), or in other terms, a simple argument about groups, which we have alas no time to go into,
implies in particular: if p is an odd prime such that there is no element in Zp whose square is −1,
and also no element whose square is 2, then there does exist an element whose square is −2.

Accepting this fact, you can conclude that at least one of the factorizations of X4+1 into quadratics
(in Q[X]) found in problem 52 can serve as a model for factorization in Zp[X]; in other words: X4+1
can be factored nontrivially in *every* Zp[X].

Problem 54:
We have seen that the mapping F [X] → Fct(F→F ), which assigns to each polynomial the corre-
sponding polynomial function F → F cannot be one-to-one, if the field F contains finitely many
elements. (Simply because in this case there are still infinitely many polynomials, but only finitely
many functions F → F ).

Now show conversely that, if F contains infinitely many elements, then the mapping F [X] →
Fct(F→F ) is indeed one-to-one.

Problem 55:
We have seen that a polynomial of degree n in F [X] can have at most n roots in F (or any extension
field of F ). This assumed that F be a field. In contrast, consider the polynomial ring Z25[X].

How many roots does the polynomial X2 have in Z25?

Give several essentially different factorizations of X2 in Z25, thus showing that the unique factor-
ization property may fail in R[X], if R is not a field.

Problem 56:
In Z2[X], consider the ideal I of all multiples of the irreducible polynomial X3 + X + 1. Denoting
the equivalence class [X]I in Z2[X]/I as j, list all elements of Z2[X]/I, and give their multiplication
table. In particular, find the inverse of 1 + j in the field Z2[X]/I.


