
Differentiability Formalism and Sufficient Conditions for Weak
or Locally Weak Minima

If you only care for the sufficient conditions, but not for the differentiability formalism,
proceed through the 1st bullet, then skip to eqn (3)

Assume L ∈ C2([a, b]×G× Rn → R), where G ⊂ Rn is open, and consider the functional I
defined by

I[y] :=
∫ b

a
L(t, y(t), y′(t)) dt , I : C1([a, b] → G ⊂ Rn) → R (0)

is in C2. More precisely we claim that the 1st and 2nd derivatives are

DI[y]ϕ =
∫ b

a

{
Ly(t, y(t), y′(t))ϕ(t) + Ly′(t, y(t), y′(t))ϕ′(t)

}
dt (1)

and

D2I[y](ϕ,ψ) =
∫ b

a

{
ϕ(t)TLyy(t, y(t), y′(t))ψ(t) +

+ ϕ(t)TLyy′(t, y(t), y′(t))ψ′(t) + ψ(t)TLyy′(t, y(t), y′(t))ϕ′(t) +

+ ϕ′(t)TLy′y′(t, y(t), y′(t))ψ′(t)
}
dt

(2)

respectively.

• First we must show that the linear mapping ϕ 7→ DI[y]ϕ defined by (1) is continuous
from the space X := C1([a, b] → G) to R. This we need to show because the very defi-
nition of ‘derivative’, requires a continuous linear map as the analog of the Jacobi matrix.
This step is therefore preliminary to differentiability . It has nothing to do with continuous
differentiability, which is about continuity of the map y 7→ DI[y].

Note that the range R := {(t, y(t), y′(t)) : a ≤ t ≤ b} ⊂ [a, b] × G × Rn is compact for each
fixed function y. For sufficiently small δ, a closed δ-neighbourhood Rδ := {(t, u, v) : a ≤ t ≤
b , |u− y′(t)| ≤ δ , |u− y(t)| ≤ δ} of this range will therefore still lie in [a, b]×G× Rn, and
Rδ is still a compact set. In particular, given any such function y, the set

{(t, z(t), z′(t)) : a ≤ t ≤ b , ‖z − y‖ ≤ δ}

lies in the compact set Rδ. Here ‖ · ‖ of course refers to the norm in C1([a, b] → Rn), namely
‖ϕ‖ := max{|ϕ(t)|, |ϕ′(t)| : a ≤ t ≤ b}. The continuous functions Ly, Ly′ , Lyy, Lyy′ , Ly′y′ are
uniformly continuous on the compact set Rδ.

The continuity of the linear map DI[y] follows from

|DI[y]ϕ| ≤ |b− a|
(
max
Rδ

|Ly|+ max
Rδ

|Ly′ |
)
‖ϕ‖

(and the modulus of continuity is locally uniform).

The continuity (with locally uniform modulus of continuity) of the bilinear map (ϕ,ψ) 7→
D2I[y](ϕ,ψ) that is defined by (2) follows analogously.

• At this stage, we have not shown yet that DI[y] and D2I[y] indeed are the derivatives which
by name they claim to be, even though it is clear from the directional derivative arguments
that they are the only candidates for the job.
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• We next show the continuity of the maps y 7→ DI[y] and y 7→ D2I[y].

By uniform continuity of Ly and Ly′ on Rδ, we conclude that, given any ε, we can find η < δ
such that |Ly(t, y(t), y′(t))− Ly(t, z(t), z′(t))| < ε (and a similar formula with Ly′) provided
‖y−z‖ < η. Then |DI[y]ϕ−DI[z]ϕ| < 2ε|b−a|‖ϕ‖, i.e. the norm of the linear maps satisfies
‖DI[y]−DI[z]‖ < 2ε|b− a|, provided ‖y− z‖ < η < δ. An analogous argument can be made
for D2I.

• Now we show that DI[y] is indeed the derivative of I at y, i.e., that∣∣∣I[y + ϕ]− I[y]−DI[y]ϕ
∣∣∣/‖ϕ‖ → 0 as ‖ϕ‖ → 0

Indeed
I[y + ϕ]− I[y]−DI[y]ϕ =

=
∫ b

a

(
L(t, y(t) + ϕ(t), y′(t) + ϕ′(t))− L(t, y(t), y′(t))

−Ly(t, y(t), y′(t))ϕ(t)− Ly′(t, y(t), y′(t))ϕ′(t)
)
dt

=
∫ b

a

∫ 1

0

d

ds

(
L(t, y(t) + sϕ(t), y′(t) + sϕ′(t))

−sLy(t, y(t), y′(t))ϕ(t)− sLy′(t, y(t), y′(t))ϕ′(t)
)
ds dt

=
∫ b

a

∫ 1

0

{(
Ly(. . . y + sϕ . . .)− Ly(. . . y . . .)

)
ϕ(t)

+
(
Ly′(. . . y + sϕ . . .)− Ly′(. . . y . . .)

)
ϕ′(t)

}
ds dt

Now if ‖ϕ‖ is sufficiently small, then all occurring arguments to Ly and Ly′ lie in the set Rδ,
where the functions Ly and Ly′ are uniformly continuous. Then for every ε, there exists some
η such that the differences in the big parentheses will be uniformly smaller than ε provided
only ‖ϕ‖ < η. We conclude that |I[y + ϕ]− I[y]−DI[y]ϕ| ≤ 2(b− a)ε‖ϕ‖, which was to be
shown.

By the same method it can be shown that D2I[y] is indeed the second derivative it claims to
be. Namely, the estimate needs to prove that∣∣∣DI[y + ψ]ϕ−DI[y]ϕ−D2I[y](ψ,ϕ)

∣∣∣/‖ϕ‖ ‖ψ‖ → 0

as ‖ψ‖ → 0, and two invocations of the fundamental theorem of calculus and the uniform
continuity of the 2nd derivatives of L on Rδ do the trick.

• So we have seen that I ∈ C2(X → R), where X is itself a Banach space, namely
X = C1([a, b] → Rn). This implies the same approximation of I by a 2nd degree Taylor
‘polynomial’ as in multivariable calculus, namely:∣∣∣I[y + ϕ]− I[y]−DI[y]ϕ− 1

2D
2I[y](ϕ,ϕ)

∣∣∣/‖ϕ‖2 → 0 as ‖ϕ‖ → 0 . (3)

Proof of (3):

I[y + ϕ]− I[y] =
∫ 1

0

d

ds
I[y + sϕ] ds =

∫ 1

0
DI[y + sϕ]ϕds
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Hence

I[y + ϕ]− I[y]−DI[y]ϕ =
∫ 1

0

(
DI[y + sϕ]−DI[y]

)
ϕds

=
∫ 1

0

∫ s

0

d

dσ
DI[y + σϕ]ϕdσ ds

=
∫ 1

0

∫ 1

σ
D2I[y + σϕ](ϕ,ϕ) ds dσ

=
∫ 1

0
(1− σ)D2I[y + σϕ](ϕ,ϕ) dσ

and
I[y + ϕ]− I[y]−DI[y]ϕ− 1

2D
2I[y](ϕ,ϕ) =

=
∫ 1

0
(1− σ)

(
D2I[y + σϕ](ϕ,ϕ)−D2I[y](ϕ,ϕ)

)
dσ

(4)

Using formula (2) for D2I and the uniform continuity of Lyy, Lyy′ , Ly′y′ on Rδ again, claim
(3) is immediate.

We therefore have a rigorous analog of the MV-Calculus argument for relative minima. Having
shown that, if L ∈ C2([a, b] × G × Rn → R), then I ∈ C2(X → R) (where X = C1([a, b] →
Rn)), we obtain from (3) the 1st part of the following result immediately:

Theorem:
(a) If L ∈ C2([a, b]×G×Rn → R) and y∗ satisfies the EL-eqn and if D2I[y∗](ϕ,ϕ) ≥ c‖ϕ‖2

with c > 0 for all ϕ ∈ C1
0 ([a, b] → Rn) in case of fixed boundary conditions, or else for all

ϕ ∈ C1([a, b] → Rn) in case of free boundary, then y∗ is a weak minimum of I given in (0).

(b) If however we only have the positive definiteness of Ly′y′(t, y∗(t), y′∗(t)) for all t ∈ [a, b]
(which implies the uniform positive definiteness in a neighbourhood Rδ), then y∗ is locally a
weak minimum, i.e., sufficiently short segments of y∗ are weak minima.

As far as proving the 2nd part is concerned, we suppose that the support of ϕ has (small)
length h, and recall that by continuity, there is an upper bound M for Lyy and Lyy′ , and by
uniform positive definiteness, there is a lower bound m > 0 such that ϕ′(t)TLy′y′(. . .)ϕ′(t) ≥
m|ϕ′(t)2|.
For such ϕ, we estimate taking a worst-case (negative) scenario for Lyy and Lyy′ relying only
on Ly′y′ to give something positive in the end (more explanations after the formula):

D2I[y∗](ϕ,ϕ) ≥ −M
∫
ϕ2 − 2M

∫
|ϕ| |ϕ′|+m

∫
ϕ′2

≥ −M
∫
ϕ2 −M

(
2M
m

∫
ϕ2 +

m

2M

∫
ϕ′2

)
+m

∫
ϕ′2

≥ −M̂
∫
ϕ2 +

m

2

∫
ϕ′2 ≥

(m
2
− M̂h2

4

) ∫
ϕ′2

≥
(m

2
− M̂h2

4

)
(1 + h2/4)−1‖ϕ‖2

W 1,2

(5)

In line 2, we have estimated 2|ϕ|ϕ′| under the integral using the famous and immensely useful
inequality 2uv ≤ Au2 + v2/A. This inequality is true because (u

√
A− v/

√
A)2 ≥ 0

In line 3 we have introduced the abbreviation M̂ := M +2M2/m and then used the fact that
for ϕ supported on an interval of length h, the estimate

∫
ϕ(t)2 dt ≤ h2/4

∫
ϕ′(t)2 dt holds
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(as mentioned in the notes on pg 18, and reproved the pedestrian way in a lemma below).
This is why ‘small support’ always makes the tiniest platoon of

∫
ϕ′2 win against the largest

army of
∫
ϕ2.

In line 4, we have introduced a new norm ‖ϕ‖2
W 1,2 :=

∫
ϕ2 +

∫
ϕ′2.

We need to (and can) take h so small that m
2 − M̂h2

4 > 0, and then (3), together with the
EL eqn DI[y∗]ϕ = 0, ought to imply I[y∗ + ϕ] > I[y∗] (but doesn’t, yet. . . ).

A little nuisance arises here: Our positivity estimate forD2I[y∗] hinges on the fact
∫
Ly′y′ϕ′2 ≥∫

mϕ′2, and we cannot do better than this, under the assumption Ly′y′ > 0. All the other
terms merely bite a bit off the constant m, so D2I[y∗](ϕ,ϕ) ≥ m̃

∫
ϕ′2. So we haven’t squan-

derend anything essential in estimating the Lyy and Lyy′ terms and therefore cannot gain
by improving there. We were thus forced to introduce the new norm ‖ϕ‖W 1,2 , because an
estimate in terms of ‖ϕ‖ is just not available. But the error term in the Taylor polynomial
estimate (3) is ≤ ε‖ϕ‖2, where ‖ϕ‖ denotes our old C1 norm max{|ϕ|, |ϕ′|}. Now there is
no way how we could prove m̃

∫
ϕ′2 − ε‖ϕ‖2 > 0, because this estimate is simply not true.

Whatever small ε/m̃ is, we can still find ϕ such that m̃
∫
ϕ′2 − ε‖ϕ‖2 < 0. It seems we have

labored in vain.

All the estimates up to (3) were routine estimates in the sense that you just write down
what ought to be true in analogy to multivariable calculus, and it is indeed true by a very
straightforward argument. (Fair enough if it doesn’t seem routine or straightforward to you,
if you are still struggling to absorb the formalism, but trust me it is routine, once you master
the formalism.) But then it turns out, as it often happens when lofty function spaces are
used for down-and-dirty real problems, that the automatic machinery doesn’t quite do the
expected job, because the norm that the machinery likes is not the norm the question likes.
So we have to return and do some adjustments manually. Luckily, in this problem this is
easy: We need an improved variant of (3), namely:∣∣∣I[y + ϕ]− I[y]−DI[y]ϕ− 1

2D
2I[y](ϕ,ϕ)

∣∣∣/‖ϕ‖2
W 1,2

Note new norm ↗
→ 0 as ‖ϕ‖

↖ still old C1 norm!
→ 0 . (6)

This is much stronger than (3) because we divide by a potentially much smaller expression.
It is also non-routine, because it blends different norms. Luckily the proof follows readily
from (4): For all ε > 0 there exists η < δ such that

|I[y + ϕ]− I[y]−DI[y]ϕ− 1
2
D2I[y](ϕ,ϕ)| ≤

∫ 1

0
(1− σ)(εϕ2 + 2ε|ϕϕ′|+ εϕ′2)dσ ≤ ε‖ϕ‖2

W 1,2

if ‖ϕ‖ < η < δ. Now we can indeed use (5) with (6) instead of (3) and argue I[y∗ +ϕ] > I[y∗]
for ϕ with small C1 norm and small support. Hence y∗ is locally a weak minimum, as claimed.

Let’s review the small parameters we have used: Given y∗ (solution of the EL eqn) we called
R its ‘range’ in [a, b] × G × Rn. First we chose δ so that still Rδ ⊂ [a, b] × G × Rn, and we
have uniform continuity of L and all its derivatives up to order 2 on Rδ. We get a large
constant M bounding the continuous functions Lyy and Lyy′ above, and a small constant m
giving a lower bound for Ly′y′ . From the onset, we commit at least to ‖ϕ‖ < δ, but we
will later require a smaller bound ‖ϕ‖ < η. From M and m we choose a small h, so that
m/2− M̂h2/4 > 0, and then we choose an ε so that m̃ := (m/2− M̂h2/4)(1 + h2/4)−1 > ε.
For this ε, we find η < δ so that ‖ϕ‖ < η guarantees that the ratio in (6) is less than ε. This
gives I[y∗ + ϕ]− I[y∗] ≥ (m̃− ε)‖varphi‖2

W 1,2 > 0.
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Let’s prove the lemma we used: Without loss of generality, we take the interval of length h
to be [0, h].

Lemma: If ϕ(0) = 0 = ϕ(h), then
∫ h
0 ϕ

2 ≤ h2/4
∫ h
0 ϕ

′2.

Proof: Since ϕ(0) = 0, we get by menas of the Cauchy Schwarz inequality (refer to it below)

|ϕ(t)| = |
∫ t
0 1 · ϕ′(s) ds| ≤ (

∫ t
0 12 ds)1/2(

∫ t
0 ϕ

′2(s) ds)1/2 ≤ t1/2(
∫ h
0 ϕ

′2(s) ds)1/2

We use this for 0 ≤ t ≤ h/2. For h/2 ≤ t ≤ h, we integrate from t to h and get

|ϕ(t)| ≤ (h− t)1/2(
∫ h
0 ϕ

′2(s) ds)1/2

instead. We conclude

ϕ(t)2 ≤ min{t, h− t} ×A where A :=
∫ h

0
ϕ′2(t) dt

Integrating this over [0, h] we get∫ h

0
ϕ(t)2 dt ≤ h2

4

∫ h

0
ϕ′2(t) dt

Note: A better constant is possible using a more sophisticated proof technology. Indeed,∫ h
0 ϕ(t)2 dt ≤ h2

π2

∫ h
0 ϕ

′2(t) dt. But the best possible constant was not our concern.

The Cauchy Schwarz inequality: For any inner product, the following inequality holds
(and is called the Cauchy Schwarz inequality):

|〈u, v〉| ≤ ‖u‖ ‖v‖ with ‖u‖ :=
√
〈u, u〉

It has a very simple albeit tricky proof: Since 〈tu+v, tu+v〉 ≥ 0 for every number t, and since
we can calculate 〈tu+v, tu+v〉 = t2〈u, u〉+2t〈u, v〉+〈v, v〉, we have a quadratic polynomial in t
that is never negative. Therefore, if you try to find zeros t1, t2 with the quadratic formula, the
term under the square root in the quadratic formula must be ≤ 0. This latter condition is the
Cauchy Schwarz inequality. For continuous (or merely square integrable) functions defined
on an interval (or any domain in Rn), we have the inner product 〈u, v〉 :=

∫
u(x)v(x) dx, and

then Cauchy Schwarz reads∣∣∣∣∫ u(x)v(x) dx
∣∣∣∣ ≤ (∫

u(x)2 dx
)1/2 (∫

v(x)2 dx
)1/2

Jochen Denzler, Feb 2006,
Lecture on Calculus of Variations
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