Comparing Various Notions of Minimality in Calculus of Varia-
tions
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(*) Here we denote as locally strong or locally weak minima those extremals for which the strong
or weak minimality property is only satisfied on sufficiently short segments. In other words every
sufficiently short subsegment will be a strong or weak minimal. (I have made up these definitions
of “locally strong” or “locally weak” ad hoc. They are not part of generally used mathematical
language.)

Such extremals that are merely “locally weak minima” or “locally strong minima” are NOT
relative minima in any functional analytic sense, but are saddle points. Genuine (relative) minima
are found in the gray areas of the diagram.
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o
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The length functional, defined for all C' curves connecting two given points in the plane.
The straight segment yieldss the absolute minimum of the length.

Travel time for light, defined for all piecewise C' curves
connecting two given points: The speed of light
in glass is less than in air; this causes the
refraction in the prism. The polygonal
path is a strong minimum, but not *
the absolute minimum.

The functional I[y] := f_ll(g)2 — g*) dt, defined for y € C'[—1,1] with y(—1) = y(1) = 0:

y* = 0 is a weak minimum, since for || < ¢ it holds: 9> — §* > (1 — €2)2. But even
short segments of y* = 0 aren’t strong minimals; indeed, choose 7(t) := esin? n(t — ty) on
[to, to + m/n] and § = 0 elsewhere: I[j] = gme?n(4 — 3e?n?), which is negative for large n.

The length functional, defined for all C' curves connecting two given /
points on the sphere: the great circle that connects the points ‘on the back
of the sphere’ in the figure is not even a weak minimum. The smaller circle
is shorter, but still e-close in C. Nevertheless, sufficiently short segments
of the great circle (short enough such as not to contain antipodes) are the
absolutely shortest connections between their endpoints. \

Choose the functional foﬂ (% — 9* — 2y%) dt on C}[0,7]. Then y = 0 is a critical point, but
is not even weakly minimal. For §(t) = esint, it holds I[g] = —gme?(4 + 3¢2). On short
segments however, it is a weak minimum, but not a strong one; the reason is the same as
in case @. To prove weak minimality, segments [to, %] C [0, 7] need to be so short that it
always holds t';l y2dt > 2 ftzl y? dt, and this happens if (t; — #9)? < 72/2.

This case is a curiosity for which I could only find a somewhat artificial example: A weak
minminal such that the functional can be made smaller by means of strong oscillations,
but only if these strong oscillations occur on long segments. I am giving an example with
vector-valued y = (y1,¥2), in which the functional itself is also more complicated than a
simple integral expression:
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on C;([0,7] — R?). We conclude I[y1,y2] > (3 — [93) (f 97), because C[0, 7] functions
satisfy [ 9% > [y?% hence (y1,y2) = (0,0) is weakly minimal.
It is not strongly minimal, because for §;(t) = esint, g2 = esinnt it holds 4I[j1,72] =

e2m — n2e*n?, which is negative for large n.

However, if we consider short segments [tg, 1] only, then the term ftil (2 — 2y?) dt will
become > 0, and oscillations in [ 2 cannot do harm to the minimum property.
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