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My research interests lie in the intersection of complex analysis, probability, and graph

theory, and my work splits in two directions. First, I explore questions pertaining to the

geometry of solutions to the Loewner differential equation. Secondly, I study questions

relating to discrete modulus on graphs, with a special interest in relating discrete objects to

continuous objects in complex analysis. I will begin by discussing my recent work related to

the Loewner equation, and then I will discuss my work regarding discrete modulus.

Introduction to the Loewner equation

The Loewner differential equation, introduced by C. Loewner in the 1920s, became an in-

tegral part of the random processes called Schramm-Loewner Evolution (SLE) that was

developed by O. Schramm in 2000 [S1]. SLE utilized the Loewner equation in a new way,

and as a deep understanding of SLE emerged, it became apparent that the deterministic un-

derstanding lagged behind. My research explores the nature of the correspondence created

by the Loewner equation between increasing families of 2-dimensional sets (called hulls) and

continuous 1-dimensional functions (called driving functions).

For a continuous driving function λ : [0, T ] → R and for z ∈ H = {z : Re z > 0}, the

chordal Loewner differential equation in H is the following initial value problem:

∂

∂t
gt(z) =

2

gt(z)− λ(t)
, g0(z) = z. (1)

In solving (1), we consider z to be a fixed complex number with t the (time) variable. (Our

notation gives away the fact that we will switch our view momentarily.) For each z ∈ H,

a unique solution to (1) exists on some time interval, and we let [0, Tz] be the largest such

interval. That is, Tz = inf {t : λ(t) = gt(z)} is the “killing time” for the point z. Collecting

together all the “killed points,” we define the hull Kt = {z : Tz ≤ t}. Then from the classical

theory, H \Kt is a simply connected domain and gt (the solution to (1)) is a conformal map

from H \Kt onto H. Often it is possible to define a continuous curve γ, called the trace, so

that Kt is the curve γ[0, t] with the holes filled in (or more precisely, Kt is the complement

of the unbounded component of H \ γ[0, T ].) Notice that we started with the function λ, a

one-dimensional object, and through the Loewner equation created Kt, an increasing family

of two-dimensional sets.

The process can be reversed. Suppose we start with an appropriate familyKt of increasing

sets in the plane. (The easiest case is when Kt = γ[0, t], where γ is a simple curve in H
with γ(0) ∈ R.) Then for each time t, there is a unique conformal map gt from H \Kt onto

H with the hydrodynamic normalization at infinity. We may ask how this family of maps



varies as t varies. After reparameterizing if needed, the maps gt will satisfy (1) for some

continuous function λ(t). Further, we can recover λ from the maps gt. (In the simple curve

case, λ(t) = gt(γ(t)).) See [La] for further background.

For κ ≥ 0, chordal SLEκ is the random family of hulls created by the Loewner equation

when the driving term is λ(t) =
√
κBt, where Bt is standard Brownian motion. For SLE, it is

possible to define the trace. That is, there is an almost surely continuous path γ : [0,∞)→ H
so that the hull Kt generated by λ(t) =

√
κBt is the curve γ[0, t] with holes filled in. Further,

SLEκ has three distinct phases of geometric behavior: (i) γ(t) is almost surely a simple curve

for κ ≤ 4, (ii) γ(t) is almost surely a non-simple, non-space-filling curve for 4 < κ < 8, and

(iii) γ(t) is almost surely a space-filling curve for κ ≥ 8. See [RS] and, for the case κ = 8,

[LSW].

A natural deterministic class of functions for the Loewner equation is Lip(1/2), that is,

functions λ which satisfy

|λ(t)− λ(s)| ≤ c |t− s|1/2 (2)

for all s and t in the domain of λ. The smallest c for which (2) is satisfied is called the

Lip(1/2) norm of λ, denoted ||λ||1/2. In [L1, MR], it is shown that deterministic functions

also have a phase transition. In particular, for ||λ||1/2 < 4, the Loewner hull driven by λ is

a simple curve, and for each c ≥ 4 there is an example of driving function λ with ||λ||1/2 = c

whose Loewner hull is non-simple.

Recent work regarding the Loewner equation

Loewner Curvature, with S. Rohde, [LRoh]

In this work, we interpret the deterministic phase transition in the Loewner theory as an

analog of the hyperbolic variant of the Schur theorem about curves of bounded curvature.

To accomplish this, we introduce a new notion, called Loewner curvature, and establish some

of its properties. In particular, we show that if the Loewner curvature of a curve is bounded

above by 8, then the curve can never hit back on itself or on the boundary of the domain.

Additionally, if we have bounds on the Loewner curvature, then we can specify a region of

the domain that must contain the curve.

To define Loewner curvature, we first introduce a family of curves that have a certain

conformal self-similarity property. This family will be the curves of constant Loewner cur-

vature. We then show that every sufficiently smooth curve has a unique best-approximating

curve in this family. Thus we can define Loewner curvature by comparison with the curves

of constant Loewner curvature. As a tool, we show that the Loewner curvature can be

expressed as the following nice formula of the driving function: λ′(t)3/λ′′(t).



Figure 1: Simulations of the hulls generated by cW (t) for c = 0.8 (left), c = 1.2 (middle),
and c = 1.6 (right).

Regularity of Loewner Curves, with H. Tran, [LT]

This work relates the regularity of the driving function λ to the regularity of the trace γ. To

state it, we use the notation f ∈ Cn+α to mean that f ∈ Cn and f (n) is Holder continuous

with exponent α. We show that λ ∈ Cβ[0, T ] implies γ ∈ Cβ+1/2(0, T ] for all β > 2 (with a

slightly weaker statement when β + 1/2 ∈ N), and further, if λ is analytic on [0, T ], then γ

is analytic on (0, T ]. This extends [W], in which C. Wong proved the result for 1/2 < β ≤ 2.

Additionally, we analyze γ near t = 0 for λ ∈ Cβ[0, T ]. The problem with the smoothness

of γ at t = 0 is a feature of the halfplane-capacity parametrization, illustrated by our result

that for t near zero,

γ(t) = 2i t1/2 + a2t+ i a3t
3/2 + a4t

2 + · · ·+ a2nt
n + o(tn),

where the real-valued coefficients ak depend on λ′(0), · · · , λ(n)(0) and n ∈ N satisfies n <

β. However, under the simple change of parametrization Γ(t) = γ(t2) we prove that the

smoothness does extend to t = 0.

This work depends on a detailed study of the solutions f(u) = f(u, s, ε) to the ODE

f ′(u) =
−2

f(u)
+ λ′(s− u), f(0) = iε ∈ H

where 0 ≤ u ≤ s. This variant of the backward Loewner equation provides the connection

between λ and γ since f(s, s, ε) converges uniformly to γ(s) as ε→ 0+.

Loewner deformations driven by the Weierstrass function, with J. Robins, [LRob]

In this work, we study the Loewner hulls driven by a multiple of the Weierstrass function

W (t) =
∑∞

n=0 2−n/2 cos(2nt), which is a deterministic analog of Brownian motion. In com-

parison with SLE, we prove that this family exhibits a phase transition, as illustrated in

Figure 1. In particular, when c is small enough, the hull generated by cW (t) is a simple

curve in H ∪ {cW (0)}, and this is not the case when c is large enough.



To establish this result, we prove a lower bound on the growth of the Weierstrass function

near its local maxima, and then we utilize a comparison with the driving function κ
√

1− t.
Although the result is formulated for the Weierstrass function, it applies more generally to

any Lip(1/2) function with a lower Lip(1/2) bound near a local extremum.

Effect of random time changes on Loewner hulls, with K. Kobayashi & A. Starnes,
[KLS]

This work examines the geometric effect on the Loewner hulls when the driving function is

composed with a random time change, such as the inverse of an α-stable subordinator. In

contrast to SLE, we show that for a large class of random time changes, the time-changed

Brownian motion process does not generate a simple curve Loewner hull. We also develop

criteria which can be applied in many situations to determine whether the Loewner hull

generated by a time-changed driving function is a simple curve or not. In addition to

utilizing the developed criteria, the result about the time-changed Brownian motion relies

on a connection between Brownian motion and the 3-dimensional Bessel process.

Although generalizations of SLEκ to the case of the time-changed Brownian motion are

considered and numerically analyzed in [NRR, CMHA], our investigation in this paper pro-

vides the first theoretical account of geometric properties of random curves associated with

a large class of time-changed functions.

To further understand the effect of the random time-change, we also explore some ex-

amples of Loewner hulls generated by time-changed deterministic functions, including a

time-changed Weierstrass function. To aid our analysis of these examples, we prove a deter-

ministic result that a driving function that moves faster than atr for r ∈ (0, 1/2) generates

a hull that leaves the real line tangentially.

Tangential Loewner hulls, [L2]

In this work, we analyze driving functions that approach 0 at least as fast as a(T − t)r as

t → T , where r ∈ (0, 1/2), and show that the corresponding Loewner hulls have tangential

behavior at time T . This final-time result is a counterpoint to an initial-time result in [KLS].

The final-time question, however, is slightly harder to analyze due to the influence of the

past on hull growth.

We also prove a result about trace existence and apply it to show that the Loewner

hulls driven by a(T − t)r for r ∈ (0, 1/2) have a tangential trace curve. The result about

trace existence utilizes the notion of Loewner curvature introduced in [LRoh]. Although the

needed condition forces the driving function to be monotone, we give an example to show

that monotonicity alone is not enough to guarantee trace existence.



Phase transition for a family of complex-driven Loewner hulls, with J. Utley,
[LU]

In [T], H. Tran extends the Loewner theory to the situation when the driving function is

complex-valued. In this case, the Loewner map gt : C\Lt → C\Rt relates two Loewner hulls,

the left hull Lt and the right hull Rt. Tran proves that there exists σ > 0 so that when the

Lip(1/2) norm of the driving function is bounded by σ, then Lt is a simple curve. However,

his work does not identify the optimal value of σ, and he raises the question whether it

matches the optimal value in the real-valued case of σ = 4 from [L1].

Our work in [LU] answers this question, showing that the optimal value of σ is strictly

less than 4. In fact, we show that it is bounded above by 3.73. We accomplish this through

a careful study of the left and right hulls generated by driving functions of the form c
√

1− t
and c

√
τ + t for c ∈ C. Although we calculate implicit solutions in a similar fashion to

the real-valued case studied in [KNK], analyzing these equations is more complicated in our

situation and we utilize the notion of holomorphic motion to aid our analysis.

Additionally, we show that the complex-valued case allows for geometric behavior that

is not possible in the real-valued case. In particular, it is possible for the domain of the

Loewner map C \Lt to be disconnected, and this behavior arises at the phase transition for

the driving function c
√

1− t, except when c is real-valued.

Introduction to discrete modulus

Let G = (V,E, σ) be a finite weighted graph, which is also referred to as a network, with

vertex set V , edge set E, and edge weights σ : E → (0,∞). Let Γ be a family of objects in

G, such as a collection of paths in G or a collection of spanning trees in G. (A spanning tree

is a connected subgraph that contains every vertex and has no cycles.) The usage matrix N
is a |Γ| × |E| matrix with N (γ, e) giving the usage of edge e in object γ. In the case that γ

is a path or a spanning tree, then N (γ, e) = 1{e∈γ}.

A density ρ : E → [0,∞) on G is called admissible for Γ if

`ρ(γ) :=
∑
e∈E

N (γ, e)ρ(e) ≥ 1 for all γ ∈ Γ.

When Γ is family of paths or spanning trees we consider `ρ(γ) to be the length of γ under

ρ. In this setting ρ is admissible for Γ if every path or spanning tree has length at least 1.

For 1 ≤ p <∞, the (discrete) p-modulus of Γ is defined as

Modp(Γ) := inf
∑
e∈E

σ(e)ρ(e)p,

where the infimum is taken over all admissible densities ρ. Further background on the

discrete modulus can be found in [ABPPCW, ACFPC, APC].



There is a close connection between the discrete 2-modulus and discrete harmonic func-

tions. For a network G = (V,E, σ), when v, w ∈ V are adjacent, we will use the notation

vw to refer to the edge incident to v and w. A function f : V → R is discrete harmonic at

v ∈ V if

f(v)
∑

w: vw∈E

σ(vw) =
∑

w: vw∈E

f(w)σ(vw),

or in other words, the value of f at v is a weighted average of the values of f at the neighbors

of v. Viewed from the electric network perspective, a discrete harmonic function is called

the voltage function, and from its discrete gradient, we obtain the current flow.

Recent work regarding discrete modulus

The scaling limit of fair Peano curves, with N. Albin & P. Poggi-Corradini,
[ALPC1]

It was shown in [LSW] that the scaling limit of random Peano curves arising from uniform

spanning trees of planar grids exists and is SLE8. In this work, we study random Peano

curves which are generated by random spanning trees that are not necessarily uniform. In

particular, we are interested in studying the limiting behavior of laws on spanning trees that

arise in the context of spanning tree modulus. The latter random trees are called fair trees,

because rather than having the same probability of being sampled, they are sampled in such

a way to yield the same (if possible) edge probabilities. This work draws on the two papers

[ACHPCST, ALPC2] that initiated the study of fair trees.

Fair Peano curves are random Peano curves arising from fair trees. In our main result,

we show that if we simply follow the same construction as in [LSW], then the resulting fair

Peano curves have a deterministic scaling limit, and further, the limit is not a continuous

spacefilling curve. This is partly due to the fact that the number of fair trees is much smaller

than the number of uniform trees in this case. As a result, when mesh size of the grid is small

we show that the fair trees have a diagonal structure with high probability, as illustrated in

Figure 2.

Minimizing the determinant of the graph Laplacian, with N. Albin & P. Poggi-
Corradini, [ALPC2]

In this work, we study extremal values for the determinant of the weighted graph Laplacian

under simple nondegeneracy conditions on the weights. The weighted graph Laplacian is

the |V | × |V | matrix D −W , where D is the diagonal degree matrix, with Dkk equal to the

sum of the edge weights incident to vertex vk and W is the symmetric weight matrix with

Wjk = σ(vjvk). Kirchhoff’s matrix tree theorem gives a way to compute the determinant of

the weighted graph Laplacian using weighted spanning trees.



Figure 2: A sample of a fair tree when mesh size is 1/200, with coloring to show the diagonal
nature of the tree branches. Image created by David White.

We derive necessary and sufficient conditions for the determinant of the Laplacian to

be bounded away from zero and for the existence of a minimizing set of weights. These

conditions are given both in terms of properties of random spanning trees and in terms of a

type of density on graphs. This work is a partner project to the previous work, as it provides

some of the background for fair trees needed in [ALPC1].

Convergence of the probabilistic interpretation of modulus, with N. Albin &
P. Poggi-Corradini, [ALPC3]

Many objects in complex analysis are approximated by discrete analogues. In this work, we

establish the convergence of three discrete objects, discrete modulus, discrete paths that are

extremal for the modulus, and discrete harmonic functions, to their continuous counterparts,

the continuous modulus, the extremal curves (also known as horizontal trajectories) for the

modulus, and harmonic functions.

Given a Jordan domain Ω ∈ C and two arcs A,B on ∂Ω, the modulus of the curve

family connecting A and B in Ω is famously related, via the conformal map φ mapping

Ω to a rectangle R = [0, L] × [0, 1] so that A and B are sent to the vertical sides, to the

corresponding modulus in R. Moreover, in the case of the rectangle the family of horizontal

segments connecting the two sides has the same modulus as the entire connecting family.



Pulling these segments back to Ω via φ yields a family of extremal curves connecting A

to B in Ω. We show that these extremal curves can be approximated by some discrete

curves arising from an orthodiagonal approximation of Ω. Moreover, we show that these

curves carry a natural probability mass function (pmf) deriving from the theory of discrete

modulus and that these pmf’s converge to the uniform distribution on the set of extremal

curves.

The key ingredient is an algorithm that, for an embedded planar graph, takes the current

flow between two sets of nodes A and B, and produces a unique path decomposition with

non-crossing paths. Moreover, some care was taken to adapt the recent result [GJN] for

harmonic convergence on orthodiagonal maps, to our context. As a consequence of this

work, we also obtain a rectangle packing, analogous to the famous square uniformization of

O. Schramm [S2].

Recent graduate and undergraduate mentoring

Since tenure, I have supervised two Ph.D. students, one Masters student, and five under-

graduate research students. Doctoral student Andrew Starnes studied multiple Loewner

hulls [St] and worked with postdoc Kei Kobayshi and myself on [KLS] (described above).

David Horton’s Ph.D thesis contained a further study of Loewner hulls driven by Weier-

strass functions. In her Masters project, Lindsay Grinstead explored discrete modulus from

various viewpoints. After she graduated, Jessica Robins and I completed the project [LRob]

about the hulls driven by the Weierstras function (described above). Undergraduate stu-

dents Bridget Jones and Hannah Clark worked to create and numerically analyze examples

of space-filling curves generated by Loewner equation. Gavin Glenn generalized the results

in [LRob] for his undergraduate math honors thesis project. Most recently, Jeffrey Utley

worked on the project [LU] involving complex-valued driving functions (described above),

and he developed software to simulate left and right hulls driven by complex-valued functions.

Future Plans

I look forward to furthering my work with the Loewner equation and with the discrete

modulus, as well as engaging in new directions. Future plans include

• Deeper understanding of Loewner hulls driven by complex-valued drivers.

The work in [T, LU] only scratches the surface of our understanding of Loewner hulls

driven by complex-valued driving functions and opens up numerous fascinating ques-

tions. Where does the phase transition identified in [T] occur? In [LU], we identify

one possible difference between the real-valued setting and the complex setting; are

there other differences? Further, the results identified so far are all deterministic; what

behavior results from random driving functions?



• A new setting for fair Peano curves. One reason the scaling limit of the Peano

curves in [ALPC1] turned out to be deterministic is because the family of fair spanning

trees is much smaller than the family of all spanning trees. With N. Albin and P.

Poggi-Corradini, we plan to study a different approach that is expected to give rise to

a much richer family of spanning trees. This may result in a non-deterministic scaling

limit for the associated Peano curve. In particular, we will utilize σ-weighted uniform

spanning trees, which are random spanning trees γ whose probability is probability is

proportional to
∏
e∈γ

σ(e).

• Explore new directions. In Spring 2022, I will be participating in the semester

program “The Analysis and Geometry of Random Spaces” at MSRI, for which I am

a co-organizer. This experience will give me ample opportunity to explore new topics

and possible collaborations.
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DMS-1100714.
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