A limit theorem for the trajectory of particle moving in random medium

Vlad Vysotsky

University of Delaware

A limit theorem for the trajectory of particle moving in random medium

University of Delaware

<回> < 回 > < 回 > < 回 >

Motivation: the Lorentz model (1905)

A spherical particle is driven through a random medium by a constant external field *a*.

The medium is a set of immobile identical spherical obstacles whose centers form a Poisson point process in \mathbb{R}^d , $d \ge 2$.

At collisions with obstacles, the particle inelastically reflects with the restitution coefficient $\alpha \in [0, 1]$:

$$\mathbf{v} \mapsto \mathbf{v} - (1 + \alpha)(\mathbf{v}, \nu)\nu,$$

where v is the velocity of the particle and ν is the unit normal to the obstacle.

(日本) (日本) (日本)

New model: Markov approximation of the LM

Motion in \mathbb{R}^d , $d \ge 1$, under a constant external field *a*. Initial position X(0) = 0, nonrandom initial velocity v_0 .

Assumptions:

By η_n denote the length of the trajectory between *n*th and (n + 1)st collisions.

A1: $\{\eta_n\}_{n\geq 0}$ are i.i.d. exponential r.v.'s with mean λ .

By v_n denote the velocity of the particle at *n*th collision. *A2:* At collisions, $v_n \mapsto v_n - \frac{1+\alpha}{2}(v_n + |v_n|\sigma_n)$, where $\{\sigma_n\}_{n \ge 1}$ are i.i.d. random vectors unif. distrd. on the unit sphere $S^{d-1} \subset \mathbb{R}^d$.

A3: $\{\eta_n\}_{n\geq 0}, \{\sigma_n\}_{n\geq 1}$ are independent.

V. ('06), Ravishankar and Triolo ('99) for $\alpha = 1$.

・ロン ・回 ・ モン・ モン・ モー うらつ

Velocities at collisions v_n form a *Markov chain*:

$$\mathbf{v}_{n+1} = \mathbf{v}_n - \frac{1+\alpha}{2} \big(\mathbf{v}_n + |\mathbf{v}_n|\sigma_n \big) + \mathbf{a} F \Big(\mathbf{v}_n - \frac{1+\alpha}{2} \big(\mathbf{v}_n + |\mathbf{v}_n|\sigma_n \big), \eta_n \Big),$$

where the nonrandom function $F: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}_+$ is defined by

$$\int_0^{F(v,z)} |v + at| dt = z.$$

A limit theorem for the trajectory of particle moving in random medium

University of Delaware

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The main result

By X(T) denote the position of the particle at time T. Choose a basis of \mathbb{R}^d such that a = (0, ..., 0, |a|).

Theorem (V., '06)

Suppose that $0 < \alpha < 1$ and $a \neq 0$. Then there exist constants $c_v > 0$ and $c_1, c_2 \ge 0$ (depending on $|a|, \alpha, \lambda$ and d) such that for any initial velocity $v_0 \in \mathbb{R}^d$,

$$\frac{X(sT) - c_v asT}{\sqrt{T}} \stackrel{\mathcal{D}}{\longrightarrow} \left(c_1 W_1(\cdot), \dots, c_1 W_{d-1}(\cdot), c_2 W_d(\cdot)\right)$$

in $C([0,1] \to \mathbb{R}^d)$ as $T \to \infty$, where $W_i(\cdot)$ are independent Wiener processes.

A brief sketch of the proof

Let N(T) be the number of collisions before T, then $\frac{N(T)}{T} \rightarrow c > 0$ a.s.

By τ_n denote the moment of the *n*th collision.

Consider a new Markov chain $\Phi_n := \begin{pmatrix} v_n \\ \sigma_n \end{pmatrix}$. Now

$$X(sT) = \sum_{i=1}^{N(sT)} X(\tau_k) - X(\tau_{k+1}) + o(\sqrt{T})$$

=
$$\sum_{i=1}^{N(sT)} g(\Phi_k, \Phi_{k-1}) + o(\sqrt{T})$$

=
$$\sum_{i=1}^{N(sT)} \widetilde{g}(\Phi_k) + o(\sqrt{T}) = \sum_{i=1}^{csT} \widetilde{g}(\Phi_k) + o(\sqrt{T})$$

A limit theorem for the trajectory of particle moving in random medium

University of Delaware

Relations between the models

Collisions in the Lorentz model:

$$\mathbf{v}\mapsto\mathbf{v}-(1+lpha)(\mathbf{v},
u)\mathbf{v}=\mathbf{v}-rac{1+lpha}{2}\Big(\mathbf{v}+|\mathbf{v}|\sigma\Big),$$

where σ is a unit vector such that ν is directed along the bisectrix of the angle between v and σ .

It is easier to describe a collision by σ rather then by ν .

Lemma

We have¹
1.
$$\eta_0^{LM} \stackrel{\mathcal{D}}{=} \eta_0$$
 for \mathbb{R}^d with any $d \ge 2$,
2. $(\eta_0^{LM}, \sigma_1^{LM}) \stackrel{\mathcal{D}}{=} (\eta_0, \sigma_1)$ for \mathbb{R}^3 .

¹under condition that $|v_0|^{\perp} > (r+R)|a|$, where r and R are the radii of the particle and an obstacle.

A limit theorem for the trajectory of particle moving in random medium

University of Delaware

The Markov approximation model is the limiting case of the LM:

The following approach is by Gallavotti and Lanford ('70s).

Recall that r and R are the radii of the particle and an obstacle. By ρ denote the intensity of the Poisson point process which defines positions of obstacles.

Consider the Grad limit: $r + R \rightarrow 0, \rho \rightarrow \infty, (r + R)^{d-1}\rho = const.$ The last condition implies that the mean free path $\lambda(r + R, \rho)$ also stays constant, denote $\lambda(r + R, \rho) =: \lambda$.

We believe that

$$X_{\rho,r,R}^{LM}(\cdot) \stackrel{\mathcal{D}}{\longrightarrow} X_{\lambda}^{MALM}(\cdot).$$

A limit theorem for the trajectory of particle moving in random medium

Some references

- K. Ravishankar and L. Triolo (1999) Diffusive limit of the Lorentz model with a uniform field starting from the Markov approximation. *Markov Proc. Rel. Fields*, **5**, 385–421.
- Vysotsky V. Limit theorems for stochastic models of interacting particles. Ph.D. Thesis, St.-Petersburg, 2008.
- Vysotsky V. (2006) A functional limit theorem for the position of a particle in a Lorentz type model. *Markov Proc. Rel. Fields*, **12**, 767–790.
- Vysotsky V.V. (2006) A limit theorem for the position of a particle in the Lorentz model. J. of Math. Sci., 139, 6520–6534.

・ 同下 ・ ヨト ・ ヨト