
Relativity: The Special
and General Theories

I include in these notes a course on the foundations of the general theory
of relativity. The backbone is adapted from a pair of wonderful courses
on special and general relativity given by Ian Benn at the University of
Newcastle, Australia many years ago (of which I have very fond memories).

Further sources of which I have made use include [1, 2, 3, 4, 5, 6, 7, 8].
The books [2, 6] are excellent sources for special relativity. The book [5] is
a highly regarded mathematics textbook on pseudo-Riemannian geometry
(and relativity). The books [3, 8] are popular starting points for studies in
general relativity, the former with more of a physics style, the latter more
mathematically inclined. The book of Hawking and Ellis [4] deals with
advanced material.

I note that basic concepts from pseudo-Riemannian geometry are taken
for granted in these notes. Commonly, these concepts are developed along-
side the development of the relativity theory. With the exception of the
asterisked sections (§3.1, §8.2 and §8.3), this may be put off until §9.

“Come with us now on a journey through time and space...”
— The Mighty Boosh1

Mat Langford

Knoxville, December 2020
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1. ARISTOTELIAN SPACETIME

1. Aristotelian spacetime

“Nature sets inanimate objects in motion until they reach
their natural state of rest” — Aristotle2

It is very intuitive to think of “events” as occurring at some point in
“space” at some instant of “time”. Since only differences in times are
meaningful, it makes sense mathematically to model time as a one dimen-
sional affine space, T . Since only relative positions are meaningful and since
“space” seems to have three independent directions, it makes sense to model
it with a three dimensional affine space, S.

Definition 1.1. A (real) k-dimensional affine space is a triple (A,A, −),
where A is a set of “points”, A is a k-dimensional (real) linear space (the
space of displacements), and

− : A×A→ A
(p, q) 7→ p− q

is a map which satisfies

(1) for all q ∈ A, the map p 7→ p− q is a bijection; and

(2) for all p, q, r ∈ A,

(p− q) + (q − r) = p− r .

This second condition is known as the triangle rule3.

Figure 1.1. The triangle rule

2384–322 BCE. Aristotle’s views have had a huge influence on later scientific and philosophical
thought, as can be seen, for example, from the sheer volume of modern scientific terminology first

coined in Aristotle’s works. The text in quotation paraphrases Aristotle’s views on motion from his

work Phusike akroasis (The Physics). The model of “Aristotelian spacetime” expounded below
is a modern mathematical charicature of this point of view.

3Of course, the rule dictates the notation, not the other way around: the affine structure
“−” is not the additive inverse of any “+”.
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RELATIVITY: THE SPECIAL AND GENERAL THEORIES

So we could model “events” as being points in the four dimensional affine
space A + T × S. This is the cartesian product of the underlying sets with
the “obvious” affine structure (modelled on T× S)4

(t, p)− (s, q) + (t− s, p− q) .

We may also equip T and S with Euclidean structures (i.e inner products
on their spaces of displacements) corresponding to the existence of clocks
and rulers respectively.

Physical objects such as electrons, galaxies, or apples may be modelled
by curves

C : T → S,

assigning to each time the5 point at which the electron, galaxy, or apple
lies in space. We call such curves (Aristotelian) observers, or particles.
The graph {(t, C(t)) : t ∈ T} is called the (Aristotelian) worldline of the
observer.

The spacetime A inherits the following canonical projections:

ΠT : A→ T

(t, p) 7→ t

and

ΠS : A→ S

(t, p) 7→ p .

Given t ∈ T , the set Π−1
T (t) ⊂ A, can be thought of as a set of simultane-

ous events (since each p ∈ Π−1
T (t) has the same “time coordinate”, t). Since

the set of simultaneous events corresponding to each time is determined nat-
urally by the structure of A, we say that A has an absolute simulteneity
or has absolute time.

Similarly, given x ∈ S, we can think of the set of events Π−1
S (x) as

occurring at the same point, x, in space. We say that A is equipped with
absolute rest, since an observer whose worldline coincides with Π−1

S (x)
would be considered, by everybody, to be stationary.

Now, Aristotle taught that objects not acted on by “forces” remained at
rest, whilst moving objects required external forces to keep them in motion.
So we refer to A as Aristotelian spacetime. Since Aristotle also believed
that the Earth is at rest at the centre of the universe, we could as well equip
A with a preferred stationary observer (the worldline of the Earth). This
corresponds to a preferred identification of S with its space of displacements,
R3.

4The symbol “+” means equal to by definition.
5Of course, this means that we’re thinking of these objects as being “pointlike”
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1. ARISTOTELIAN SPACETIME

1.1. Problems with Aristotelian Spacetime. In his Dialogue Concern-
ing the Two Chief World Systems, Galileo (via his protagonist Salviati) poses
the following thought experiment:

Shut yourself up below decks on some large ship... have
the ship proceed with any speed you like, so long as the
motion is uniform and not fluctuating this way and that.
You will discover not the least change in all the effects
named, nor could you tell from any of them whether the
ship was moving or standing still.

This argument refutes the idea of absolute rest, and hence, if we are to
accept Salviati’s point of view, we must reject Aristotelian spacetime as a
model for our world.

Galileo (and before Galileo, Copernicus) also refuted the idea that the
Earth is at the centre of the universe. Notably, he used6 experimental evi-
dence to support his refutation: observations of the moons of Jupiter.

6In vain, as summarized in his famous response to the church “E pur si muove”.
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2. GALILEAN SPACETIME

2. Galilean spacetime

“He who attempts natural philosophy without geometry is
lost.” — Galileo Galilei7

In order to incorporate the indistinguishability of rest and uniform mo-
tion into our spacetime model, we see that we need to banish the space
projection ΠS from the Aristotelian construction. We may keep the time
projection, however. So let’s consider some “four-dimensional space” of
events G equipped with an absolute time projection

ΠT : G→ T.

The presence of the time projection means that we retain absolute simul-
taneity: two events must be considered simultaneous if and only if they lie
in the same Π−1

T (t).

Such a construction can be modelled mathematically by an affine bundle.
We will require a little groundwork to define this object properly.

Definition 2.1. A fibre bundle is a quadruple (E,B, π, F ), where

(1) the total space E, the base space B, and the typical fibre F are
topological spaces, and B is connected;

(2) the bundle projection π : E → B is a continuous surjection; and

(3) each point p ∈ B admits a neighbourhood U ⊂ B and a homeo-
morphism (called a local trivialization) φ : π−1(U)→ U × F for
which πU (φ(q)) = π(q), where πU denotes projection onto the first
factor.

Note, in particular, that the fibres Ep + π−1({p}) are homeomorphic
to the typical fibre F .

We will often denote the fibre bundle (E,B, π, F ) by π : E → F , or
simply by referring to the total space E.

Roughly speaking, a fibre bundle (E,B, π, F ) is a space E which looks
locally like a product U × F of a small “patch” U of B with the fibre F .
“Globally”, the structure may be different from the product. Indeed, the
truncated cylinder S1× [−1, 1] and the Möbius band are both fibre bundles
over S1 with typical fibre the closed interval [−1, 1]. The latter is not globally
a product due to its “twist”.

It is important to note that, while the structure of a fibre bundle is
that of a local product (via the local trivializations), there is in general no
canonical choice of local trivialization.

71564–1642.
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RELATIVITY: THE SPECIAL AND GENERAL THEORIES

Modelling spacetime G as a fibre bundle ΠT : G → T over the one-
dimensional affine space T removes the Aristotelian notion of absolute rest.
However, we still want to be able to measure relative displacements and
distances between simultaneous events. So, for each t ∈ T (the base space),
the fibres Gt + Π−1

T (t) should be 3-dimensional affine spaces equipped with
a Euclidean structure on their spaces of displacements, Gt.

Definition 2.2. A vector bundle is a fibre bundle for which

(1) the typical fibre F is a linear space, and

(2) the map v 7→ φ−1(p, v) is a linear isomorhism between {p}×F and
Ep for each p ∈ E and each local trivialization map φ : U 7→ U ×F
about p.

By relaxing the linear structure to an affine one, we finally arrive at the
concept of an affine bundle.

Definition 2.3. Let (E, B, πE,F) be a vector bundle. An affine bundle
modelled on (E, B, πE,F) is a fibre bundle (E,B, πE , F ) such that

(1) the typical fibre F is an affine space modelled on F;

(2) for each p ∈ B, the fibre Ep is an affine space modelled on Ep; and

(3) the map v 7→ φ(p, v) is an affine isomorhism between Ep and {p}×F
for each p ∈ E and each local trivialization map φ : U 7→ U × F
about p.

We shall model Galilean spacetime by an affine bundle (G,T,ΠT , A)
over the one-dimensional affine space T with fibre the three-dimensional
affine space A. The affine structure on T allows us to measure temporal
durations between events but in order to measure spatial displacements we
must equip the space of displacements of A with a Euclidean structure.
(This in turn induces a unique Euclidean structure on each of the fibres for
which the local trivializations define isometries.)8

While each local trivialization provides a local product structure for
G, and hence a class of observers “at rest”, there are no canonical local
splittings, and hence no canonical (or absolute) notion of rest in Galilean
spacetime.

A Galilean observer will be modelled by a section of Galilean space-
time; that is, a continuous map O : T → G such that

ΠT (O(t)) = t .(2.1)

The graph {(t, O(t)) ∈ G : t ∈ T} is called the (Galilean) worldline of O.

8You shall be pleased to know that the mathematical structures of special and general rela-

tivity are actually simpler than that of Galilean spacetime!
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2. GALILEAN SPACETIME

The requirement ΠT (O(t)) = t ensures that all observers have “syn-
chronised their watches”, in the sense that their “personal time” (the curve
parameter) agrees with the “absolute time” singled out by the time projec-
tion.

Given two observersO and P , we can use the affine structure on the fibres
(the 3-spaces of simultaneous events) to define the relative displacement
r(t) + P (t) − O(t) of P with respect to O. This is well-defined, since, by
(2.1), P (t) and O(t) lie in the same fibre. The Euclidean structure then
allows us to define their relative distance, r(t) + |r(t)|. We could try to
define the relative velocity of P with respect to O in the obvious way:

v(t0) + lim
t→t0

r(t)− r(t0)

t− t0
.

However, whilst the denominator in the fraction on the right hand side of
the definition makes sense, the numerator does not, since we are trying to
take the difference of vectors in different spaces!

We need to add a little more structure to our model: an ability to
compare displacement vectors at different times. Let’s call such a structure a
parallelism for G, since, conceptually, it tells us when directions at different
times are “parallel”. In order that “metre sticks remain metre sticks”, we
should also require that the parallelism consist of isometries (they should
preserve the Euclidean structures of the fibres).

Definition 2.4. A parallelism for G is a collection of isometries τt2,t1 :
Gt2 → Gt1 for each pair t1, t2 ∈ T such that

τt1,t0 ◦ τt2,t1 = τt2,t0

for any three times t0, t1, t2 ∈ T .

If G is equipped with a parallelism τ , then we can define the relative
velocity of an observer P with respect to another observer O by

v(t0) + lim
t→t0

τt,t0(r(t))− r(t0)

t− t0
.

If the velocity of P with respect to O is constant, in the sense that

τt,t0v(t) = v(t0) for each t, t0 ∈ T ,

then P is said to be in the same inertial class as O. If the relative velocity
is zero, then we may say that O and P are comoving, since their relative
displacement remains constant.

Conversely, one may obtain a parallelism by setting up a family of co-
moving observers. Indeed, let O = {Ox}x∈A be a family of co-moving
observers that foliate G. That is,
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RELATIVITY: THE SPECIAL AND GENERAL THEORIES

(1) each pair of observers Ox, Oy remains equidistant:

|Ox(t2)−Oy(t2)| = |Ox(t1)−Oy(t1)| for all t1, t2 ∈ T

and

(2) every event in G lies on the worldline of exactly one observer from
the family.

Then we may define a parallelism by “transporting along the foliation”.
That is,

τt2,t1(Ox(t2)−Oy(t2)) + Ox(t1)−Oy(t1) .

The parallelism τ identifies G with the affine space T × A, every point
p = Ox(t) identified with (t, x). This affine space also has a space projection
Ox(t) 7→ x, and can be thought of as O’s personal Aristotelian spacetime.
Of course, any observer can set up their own personal point of view in this
way.

The (strong) Galilean principle of relativity asserts that there is a
special inertial class of observers with respect to which physical laws hold
good in their simplest form9. Observers in this special inertial class are
called inertial observers.

We interpret this as meaning that we should equip Galilean spacetime
with a parallelism τ and a preferred inertial class10 of observers (respect to
which the Galileo–Newtonian laws of physics should be formulated).

2.1. Inertial coordinates. Any observer O can define coordinates on G
adapted to his worldline. Choosing a time origin t0 ∈ T , he defines a time
coordinate t : G → R using the projection map and the affine structure on
T :

t(p) = ΠT (p)− t0 .

Choosing an orthonormal basis {e1, e2, e3} for Gt0 he defines three space
coordinates xi : G→ R using the Euclidean affine structure and the Galilean
parallelism:

xi(p) +
(
p−O(ΠT (p))

)
· ei(t) ,

where ei(t) + τt0,t(ei) is the parallel translate of ei, and · is the inner product
on the fibres.

9Albert Einstein, The Foundation of the General Theory of Relativity
10According to Mach, the inertial class is determined by the distribution of all the matter in

the universe. Mach justifies this point of view with the following question: If there is but a single
particle in the universe, how can it distinguish rotation from non-rotation? Linear acceleration

from rest?
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2. GALILEAN SPACETIME

Of course, these coordinates depend on the choice of observer and his
choices for t0 and {e1, e2, e3}. If Ô is a second observer, then she may define
her own “hat” coordinates by choosing her own time origin t̂0 ∈ T and
orthonormal basis {êi}3i=1 for Gt̂0

:

t̂(p) = ΠT (p)− t̂0
x̂i(p) =

(
p− Ô(ΠT (p))

)
· êi(ΠT (p)) .

where êi(t) is the parallel translate of êi.

Let’s assume that the relative velocity of Ô with respect to O is uniform,
in the sense that v(t) = τt,t0(v0) for some v0 ∈ Gt0 (this is the case, e.g., if

both O and Ô are inertial observers).

We can relate the two time coordinates as follows:

t̂(p) = ΠT (p)− t̂0 = ΠT (p)− t0 + (t0 − t̂0) = t(p)− a ,

where we’ve defined a + t̂0 − t0.

Since any two orthonormal bases are related by an orthogonal trans-
formation, we have êi(t0) = B(ei(t0)) for some orthogonal transformation
B ∈ O(Ft0).

Now, since the relative velocity of the two observers is uniform, we have,

(t0 − t1)v0 = τt0,t1

(
Ô(t0)−O(t0)

)
−
(
Ô(t1)−O(t1)

)
⇒
(
Ô(t1)−O(t1)

)
· ei(t1) =

(
Ô(t0)−O(t0)

)
· ei(t0) + (t1 − t0)v0 · ei ,

which gives the component equations(
O(t1)− Ô(t1)

)i
=
(
Ô(t0)−O(t0)

)i
+ (t1 − t0)vi0 .

Now, putting this together, and writing ΠT (p) = τ , we obtain

x̂i(p) =
3∑
j=1

Bij

(
xj(τ)−

(
Ô(t0)−O(t0)

)i
− (τ − t0)vi0

)

=
3∑
j=1

Bij

(
xj(τ)−Aj − t(p)vj0

)
,

where we have defined A + Ô(t0)−O(t0). Therefore, observers in the same
inertial class may relate coordinates via a transformation of the form:{

t̂ = t− a
x̂i =

∑3
j=1Bij(x

j −Aj − tvj0) .

These transformations form a 10-parameter group, which we call the
Galilean group. The assertion that the laws of physics should be the same
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RELATIVITY: THE SPECIAL AND GENERAL THEORIES

for inertially related observers therefore requires, in particular, that any
coordinate formulation of these laws should be invariant under the action of
the Galilean group.

2.2. Galileo–Newtonian mechanics. Galilean velocities add in the ob-
vious way: for any three Galilean observers, O,P,Q, the velocity of Q with
respect to O is the velocity of Q with respect to P plus the velocity of P
with respect to O. That is,

Q̇O = Q̇P + ṖQ ,

where, for example,

Q̇O(t0) + lim
t→t0

τt,t0 (QO(t))−QO(t0)

t− t0
,

and

QO(t) + Q(t)−O(t)

are the relative velocity and displacement vectors of Q with respect to O.

In particular, (relative) velocities are observer dependent. On the other
hand, within an inertial class, the acceleration (of any observer) does not
depend on the choice of inertial observer: let O,P , and C be observers,
such that O and P are in the same inertial class. Define the relative
acceleration of C with respect to O by

C̈O(t0) = lim
t→t0

τt,t0

(
ĊO(t)

)
− ĊO(t0)

t− t0
,

and similarly for P . Then C̈P = C̈O.

The absolute acceleration (or, simply, the acceleration) Ö of an ob-
server O is taken to be its acceleration with respect to the inertial observers.

Now, if we define a mechanical particle to be a pair (C,m) consisting
of an observer C and a number m > 0 (called the inertial mass of C),
then, according to Newton, we should attribute any non-inertial behaviour
of the particle to the existence of a force, f , via Newton’s second law of
motion:

mC̈(t) = f(t) ,(2.2)

where C̈ is the absolute acceleration of C. We remark that this equation
is really the definition of the concept of a force (acting on C). The picture
is completed if we are able to develop an understanding of the nature of f
(independently of C).

The preceding discussion should sound very familiar (albeit written, per-
haps, in an unneccessarily complicated way!), and the Galileo–Newtonian

14



2. GALILEAN SPACETIME

formalism we have set up has been a very successful description of mechani-
cal phenomena. However, as it stands, it has two major problems. The first
of these involves gravitation, and the second involves electromagnetism.

Exercises.

Exercise 2.1. Let O,P , and C be observers, such that O and P are in the
same inertial class. Define the relative acceleration of C with respect to
O by

C̈O(t0) = lim
t→t0

τt,t0

(
ĊO(t)

)
− ĊO(t0)

t− t0
,

and similarly for P . Show that

C̈P = C̈O .

Exercise 2.2. Prove that for any three Galilean observers, O,P,Q, the
velocity of Q with respect to O is the velocity of Q with respect to P plus the
velocity of P with respect to O. That is,

Q̇O = Q̇P + ṖQ ,

where, for example,

Q̇O(t0) + lim
t→t0

τt,t0 (QO(t))−QO(t0)

t− t0
,

and

QO(t) + Q(t)−O(t)

are the relative velocity and displacement vectors of Q with respect to O.

Exercise 2.3. Show that, for an arbitrary observer x, and a particle (C,m),

m
(
C̈x(t) + ẍ(t)

)
= f(t) ,

where C̈x is the acceleration of C with respect to x and ẍ is the absolute
acceleration of x.
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3. NEWTONIAN GRAVITY

3. Newtonian gravity

“Amicus Plato – amicus Aristoteles – magis amica veritas”
— Isaac Newton11, Quaestiones Quaedam Philosophicae [Cer-
tain Philosophical Questions] (c. 1664)

It can be argued that Newton’s greatest achievement was his universal
law of gravitation, which unified the celestial motions of stars with the ter-
restrial motions of apples by asserting that the force exerted on a particle,
C say, with gravitational mass µ > 0 by a second particle, D say, with
gravitational mass Ω > 0 is given by the famous law

f(t) = −G µΩ

r(t)3
r(t) ,(3.1)

where r + C −D is the relative displacement of C from D, r(t) = |r(t)| is
their relative separation, and G is the gravitational constant, which may be
set12 to 1 by choosing appropriate units. We think of D as generating the
gravitational field g = −Ωr/r3 on spacetime, where r(p) + p−D(ΠT (p))
is the displacement vector of an event p from D and r(p) its norm. So we
have the more general form of (3.1):

f(t) = F(C(t)) + − µg(C(t)) ,(3.2)

where g is some gravitational field on spacetime (generated by some massive
body, say).

Suppose that a particle C is moving in a gravitational field as above. A
passer-by, x, notes a relative acceleration C̈x of C with respect to herself.
Assuming that gravity is the only force present, in the form of a gravitational
field g, she deduces that

m(C̈x(t) + ẍ(t)) = − µg(C(t)) ,

where m is the inertial mass of C and ẍ is the acceleration of x with respect
to the inertial class. Rearranging, we obtain

C̈x(t) = −
(
ẍ(t) +

µ

m
g(C(t))

)
.(3.3)

Now x might hope to use (3.3) to measure her own (instantaneous) accelera-
tion ẍ with respect to the inertial class as follows: she takes two cannon balls,
C and D, of respective inertial masses ` and m, and respective gravitational
masses λ and µ. Then, by dropping the cannon balls (from a conveniently
oblique local tower perhaps) at time 0, she may determine the gravitational

111643–1727.
12Later we will change it to some integer multiple of π.

17



RELATIVITY: THE SPECIAL AND GENERAL THEORIES

field g by eliminating her acceleration from the two equations resulting from
(3.3). She obtains

C̈x(0)− D̈x(0) = −
(
λ

`
− µ

m

)
g(x(0)) .

Thus, if x can measure the relative instantaneous acceleration of C and D
with respect to herself, as well as the difference between their respective
gravitational to inertial mass ratio, then she may determine g, and hence,
by (3.3), her own absolute acceleration, so long as the difference in mass
ratios of C and D is non-zero.

Unfortunately, her hopes are dashed by her observation that all cannon
balls appear to experience identical acceleration, and hence apparently have
the same mass ratios. The Eötvös experiments13 verified that the mass ratio
of any “ordinary” matter is always, in appropriate units, equal to unity (to
one part in 20 million!)14.

In summary, the motions of freely falling15 particles with respect to a
uniformly accelerated frame are indistinguishable (by means of local experi-
ments) from the motions of freely falling particles in a corresponding gravi-
tational field. This is called the equivalence principle.

The assertion of the equivalence principle suggests that the preferred
class of observers should be the freely falling observers (rather than the
inertial ones). That is, the laws of physics should look the same to all freely
falling observers (henceforth freefallers).

The observer x could brush the problem aside by viewing her (unknown
and indeterminable) acceleration ẍ with respect to the inertial class as part
of the gravitational field g(x): since

C̈x(t) = −
(
ẍ(t) + g(C(t))

)
,(3.4)

we may rewrite (3.2) as the observer-dependent equation

fx(t) = −µgx(C(t)) + −µ(ẍ+ g(C(t)))

and hence recover (assuming µ = m)

mC̈ = fx.

Now, since the inertial observers were precisely those curves satisfying C̈ =
0 with respect to the chosen parallelism, the relative acceleration of two
inertial observers is zero, and hence Newton’s law of motion certainly looks
the same to all inertial observers. This won’t be the case for freefallers,

13Eötvös (1885, 1889).
14By the 1980s, the methods were improved to obtain an accuracy to 1 part in 100 billion!
15That is, not undergoing non-gravitational forces.
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3. NEWTONIAN GRAVITY

however, since the difference in acceleration of two freefallers is in general
non-zero.

In the following section, we will see that it is possible to modify the
Galilean parallelism so that all freely falling observers satisfy the modified
second law C ′′ = 0 (with the dashes appropriately interpreted). Later, we
shall see that Galilean relativity cannot be adjusted to accommodate the
electromagnetic force.

3.1. The Newtonian connection*. We wish to reformulate the Galileo–
Newtonian framework using the tangent bundle to G instead of its spaces of
displacements.

Recall that any observer O can set up coordinates {t, xi}3i=1 for Galilean
spacetime adapted to his worldline using a parallel orthonormal frame {ei}3i=1.
These coordinates provide G with the structure of a smooth manifold. If we
denote by {∂t, ∂xi}3i=1 the corresponding coordinate basis vectors and iden-
tify T with R using the time origin, then we find that the tangent vector C ′

to any other observer C : R→ G decomposes as

C ′(t) = (∂t + ĊiO∂xi)
∣∣
C(t)

,

where ĊiO are the components of ĊO with respect to the frame {ei}3i=1.

We need a way to differentiate tangent vector fields like C ′, and this
boils down to equipping the tangent bundle TG with a connection ∇. Now,
we want ∇ to be compatible with both the Galilean parallelism and the
Euclidean connection on the fibres, and these two conditions require, re-
spectively, that

∇∂t∂xi = ∇∂xi∂t = 0

and

∇∂xi∂xj = 0

for each i, j = 1, 2, 3. This leaves one coefficient, ∇∂t∂t, undetermined, and
this is just what we need to accomodate the equivalence principle!

Using the compatibility conditions, the acceleration of C becomes

C ′′ + ∇C′C ′ = ∇∂t∂t + C̈iO∂xi ,

where C̈iO are the components of C̈O with respect to the frame {ei}3i=1. If
we set

∇t∂t = Γi∂xi ,

where the components Γi are given by

Γi(p) = (Ö(t) + g(O(t)))i , t = ΠT (p) ,
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then, by (3.4), freely falling observers are precisely those observers which
satisfy the equation

C ′′ = 0 .(3.5)

We note that, even though we used coordinates adapted to a particular freely
falling observer to construct ∇, equation (3.5) is freefaller independent.

Now, by the equivalence principle, we may assume that gO + Ö+ g is a
gravitational field. Thus, according to Poisson, we should rewrite

∇∂t∂t = − gradφO

for some gravitational potential φO : G→ R, where grad is the fibrewise
gradient operator, which differentiates in the direction of the fibres16. Defin-
ing the mass distribution ρ + −div g, we obtain Poisson’s equation

ρ = ∆φO ,(3.6)

where ∆ + div grad is the fibrewise Laplacian.

We remark that there is no post-Newtonian physics going on here: the
Newtonian connection is simply a convenient (and elegant) way of repack-
aging Newtonian physics in such a way that Newton’s second law looks the
same to all freely falling observers.

Exercises.

Exercise 3.1. Show that the Newtonian connection is independent of the
choice of freely falling observer.

Exercise 3.2.

(1) Let {t, xi}3i=1 be coordinates adapted to the worldline of an observer
O. Show that the only non-zero components of the curvature tensor
of the Newtonian connection are

Rm(∂t, ∂xi)∂t = −Rm(∂xi , ∂t)∂t = HessφO(∂xi) ,

where HessφO is the fibrewise Hessian of the gravitational potential
φO determined by O.

(2) Deduce that the Newtonian connection is not compatible with any
metric on TG.

This seems to rule out the possibility of constructing a sensible Newtonian
connection in special relativity.

16And we identify gradφO with a tangent vector field according to the above procedure.
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4. Electromagnetism in Galilean spacetime

“It appears, from all that precedes, reasonably certain that
if there be any relative motion between the Earth and the
luminiferous ether, it must be small; quite small enough en-
tirely to refute Fresnel’s explanation of aberration.” — Al-
bert A. Michelson17 and Edward W. Morley18 (On the Rela-
tive Motion of the Earth and the Luminiferous Ether. Amer-
ican Journal of Science, 1887, 34 (203): 333–345).

In the 19th century, the nature of electromagnetic interaction came to
be rather well understood, with the discovery and formulation of Maxwell’s
equations and the Lorentz force law.

We modeled a force acting on an observer by a “time-dependent vector
field” (i.e. a map f : T → G satisfying f(t) ∈ Gt), guiding the observer’s
motion according to Newton’s second law. The second law asserts that all
non-inertial motion is to be attributed to a force, but says nothing about
the nature or origin of the force. Newton’s universal law of gravitation
provided an explanation for the gravitational force, by asserting that the
gravitational force acting on a massive particle arises from the “space-time
dependent vector field” g +Mr/r3 via the rule f(t) = −mg(C(t)).

Let us define a vector field on Galilean spacetime to be a map V : G→
G satisfying V (p) ∈ GΠT (p) for each p ∈ G (i.e. at each point p ∈ G, we
attach a vector V (p) from the space of displacements corresponding to the
space of events simultaneous with p).

In the 19th century, it was discovered that magnets affect the motion
of charged particles, with the force exerted depending not just on position,
but also on the particle’s velocity. The culmination of these and other
experiments was the formulation of Maxwell’s equations and the Lorentz
force law.

According to Maxwell, the electromagnetic force is determined by elec-
tric and magnetic fields E and B via the Lorentz force law (which we
will come to below). These “fields” are vector fields which solve Maxwell’s
equations: 

div B = 0
∂B

∂t
+ curl E = 0

div E = ρ
∂E

∂t
− curl B = −j ,

(4.1)

171852–1931.
181838–1923.
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where ρ : G → R is some specified function (called the charge density),
and j is some specified vector field (called the current density). The
operators div and curl are interpreted via the divergence and curl operators
on the spaces of displacements, Gt, at each time t ∈ T . In order to make
sense of the time derivative ∂t, we need to specify a parallelism for the fibres
Ft at each time, and this amounts to choosing an inertial class of observers,
or equivalently, some inertial coordinates (t, x1, x2, x3) (with respect to some
inertial basis {e1, e2, e3}). We then define, for example,

∂B

∂t
+
∂Bi

∂t
ei(t) ,

where Bi are the components of B with respect to the basis: B = Biei.

Observe that, in the absence of charges, ρ, and currents, j, the electric
and magnetic fields both satisfy the wave equation:

∂2E

∂t2
−∆E = 0 and

∂2B

∂t2
−∆B = 0 .

Many experiments of the late 1800s provided evidence that light (and its
recently discovered relatives) exhibits properties of such waves in the elec-
tromagnetic fields.

The Lorentz force law ties the electromagnetic fields to the Newto-
nian formalism by asserting the existence of charged (massive) parti-
cles (C,m, q), where (C,m) is a massive particle and q ∈ R is its electric
charge, upon whom the electromagnetic force acts via the expression

f(t) = q
(
E(C(t)) + Ċ(t)×B(C(t))

)
,

where × is the cross product on the fibres and Ċ is the velocity of C with
respect to the “laboratory frame”.

When we equate the force to the acceleration via Newton’s law, we find
that

(4.2) mC̈ = q
(
E(C(t)) + Ċ(t)×B(C(t))

)
,

where C̈ is the acceleration with respect to the inertial frame.

Something is amiss: the left hand side of (4.2), does not depend on
the inertial class but the right hand side does! So the Lorentz force law can-
not take the same form for all inertial observers. That’s not all: it is readily
verified that Maxwell’s equations are not invariant under the Galilean trans-
formations (and hence do not take the same form for all inertial observers
either)! So the Maxwellian electromagnetic theory appears to violate the
Galilean principle of relativity.

What’s worse, the famous experiments of Michelson and Morley at the
end of the 19th century found no observer dependent variation in the velocity
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of light (which, as we have mentioned, exhibits properties of electromagnetic
waves). This observation is a violation the Galilean law of addition of ve-
locities, and is thus fundamentally incompatible with the Galilean structure
of spacetime.

Exercises.

Exercise 4.1. Show that Maxwell’s equations are not invariant under Galilean
transformations.

Exercise 4.2. Show that, in the absence of charges, ρ, and currents, j, the
electric and magnetic fields both satisfy the wave equation:

∂2E

∂t2
−∆E = 0 and

∂2B

∂t2
−∆B = 0 .
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5. Minkowskian spacetime

The views of space and time which I wish to lay before
you have sprung from the soil of experimental physics,
and therein lies their strength. They are radical. Hence-
forth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union
of the two will preserve an independent reality. — Her-
mann Minkowski19, 1908

To measure the speed of light, in units of metres per second, say, we
would have to time light over a set distance. So we assume that we know
how to measure time in seconds and distance in metres. The anomaly of the
constancy of the speed of light must then correspond to some inconsistency
in this presupposed method for measuring velocities.

Now suppose that you are working as a patent clerk in Geneva. Then
you know there is nothing wrong with your measurement of seconds: you
are wearing a Swiss watch! Supposing further that Maxwell and Michelson–
Morley are correct in saying that light travels with constant speed c ms−1,
then there must be some problem with our measurement of distances. The
resolution to our problem is now very simple: we must measure distances
using the speed of light! That is, we define 1m = 1

c ls, where one light
second (ls) is the distance traversed by light in one second. In these units,
the speed of light is equal to c ms−1, or, in more natural units, one light
second per second!

So what does it mean to measure distance in light seconds? In the
1970s, NASA sent Apollo missions to the moon to, among other things,
place a large mirror on its surface. From Earth, a laser was fired at the
moon, and the time taken for its return trip measured (with Swiss watches
situated on the Earth’s surface). Those watches counted approximately 2.5
seconds for the return journey, putting the moon 1.25 light seconds away20.

There can be no mystery about the constancy of the speed of light if
we measure distances this way. If we instead try to define distances using,
say, rigid measuring rods, then are we measuring the same thing (albeit in
different units)? Or is there some other sort of distance to be measured?
One can interpret experiments such as the Michelson–Morley experiment by
saying that these two notions of distance (radar ranging and rigid measuring
rods) are equivalent21. Surely this is what we should have expected — for
steel rules are really held together by electromagnetic interactions!

191864–1909.
20On average (we may really only deduce that the distance to the Moon and back is 2.5 light

seconds).
21Perhaps we could call this the (electromagnetic) equivalence principle.
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If we agree to measure distances by radar ranging, then we reduce dis-
tance measurements to time measurements. As we will see, it follows from
the finiteness of the speed of light that these time measurements cannot
accord with Galileo–Newtonian ideas. In particular, we are forced to give
up the existence of absolute simultaneity measured by absolute time.

5.1. Simultaneity is relative. Suppose that we observe a duel, fought
with pistols, and we wish to determine which duellist fired first. We could
set up delicate instruments to exactly time the arrival of the muzzle flashes
from the pistols. We could then determine who fired first according to which
flash we observed first. But that would not be quite right. Since we know
that light travels at a finite speed, the time of arrival of the photons from the
muzzle flashes will depend upon the distance travelled. So if, for example,
both flashes arrive together, we would deem the person furthest away from
us to have fired first. Thus we cannot decide who fired first unless we know
how to measure distances. We have agreed to do this by radar ranging.

Figure 5.1. A fair duel.

Suppose that some observer, a marshal at the duel, fires a radar ‘starting
gun’ pulse which travels to both duellists. The pulse triggers both weapons
and the muzzle flashes are subsequently seen by the marshal at the same
time. The marshal concludes that the duellists are the same distance apart
and that both weapons were fired at the same instance. (The marshal might
not be standing in a very clever place, but we assume he sacrifices personal
safety to help simplify the discussion.) We can depict this sequence of events
on a space-time diagram (see Figure 5.1). The marshal fires his radar pulse
at the point O, a definite time and place. The electromagnetic pulse meets
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one duellist at point A, and the other at point B. The instant at which the
muzzle flashes are detected by the marshal is C. Thus points O and C lie
on the marshal’s worldline. The lines OA and AC represent the worldlines
of photons, as do OB and BC. The marshal concludes that both weapons
were fired simultaneously and so the duel was fair. Notice that we assume
nothing about the motion of the duellists. They could be moving relative to
each other. All we need to know is the point on their respective worldlines
at which they fired their weapon. What they did before or after does not
affect our determination of fairness (even if it might determine the outcome
of the duel).

Now suppose (to ensure impartiality of the marshal) that each duellist
has his second monitor the fight. Suppose that one of these seconds is present
when the ‘starting gun’ is fired, but that he moves at uniform speed with
respect to the marshal (see figure 5.2). We suppose that he receives one
muzzle flash at point D with the other arriving later at E. Thus O, D and
E lie on the worldline of the second. He must conclude that the pistol fired
at A was closest, as the electromagnetic signal returns first, and therefore
that duellist received the starting signal first and subsequently fired first. So
he deems the duel unfair! Clearly both points of view are equally valid. We
must conclude that the ordering of the events A and B depends upon your
point of view. The marshal deems them to be simultaneous whereas our
second deems A to precede B. If we measure distances by radar then the
finiteness of the speed of light forces us to abandon absolute simultaneity.

Figure 5.2. A fair duel?
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We need to assume that each observer can measure time, but we are
forced to conclude that this time is a personal matter. On our diagram, the
ratio of the lengths of OD and OE represents the ratio of the times at which
the second deems A and B to occur. However, as we will see, we cannot
just take a ruler and measure on our diagram the lengths of OD and OC
to measure the ratio of the times measured by the different observers. To
see this, suppose that the second travels as fast as he can away from the
marshal in the direction of A. The point D will become arbitrarily close to
A as his velocity approaches the speed of light. So, since OA and AD are
traversed by the flashes in the same period of time (as determined by the
second), the time between firing the starting gun and receiving the muzzle
flash will get arbitrarily small. Thus, as D gets closer to A, the length of
OD represents a decreasing time. In the limit in which D approaches A this
time must become zero. So a non-zero line segment represents a vanishingly
small time. Then we cannot compare times measured by different observers
by using a ruler!

Note that, in addition to assuming that the speed of light is constant,
we are implicitly assuming some version of the Galilean assertion that all
inertial observers are created equal.

5.2. Lorentzian Geometry. We shall see that the structure of space-
time that we have just described may be modelled by a four dimensional
Lorentzian space.

Definition 5.1. A pseudo-orthogonal structure on a real-linear space V
is a map g : V × V → R that is

(1) symmetric,

(2) bilinear, and

(3) non-degenerate.

The final statement means the linear map Y 7→ g(X,Y ) is the zero map only
if X = 0 (i.e. the only vector “orthogonal” to everything is the zero vector).

A pair (V, g) is called a pseudo-orthogonal space.

You may recall that any orthogonal space admits an orthogonal basis.
The usual proof of this employs the so-called Gram–Schmidt process. A
similar procedure applies in the pseudo-orthogonal setting, however we need
to be slightly more careful due to the presence of nontrivial null vectors:
vectors X ∈ V satisfying g(X,X) = 0.

28



5. MINKOWSKIAN SPACETIME

Theorem 5.2. Every n-dimensional pseudo-orthogonal space (V, g) admits
a basis {Ei}ni=1 such that

g(Ei, Ej) =

{
±1 if i = j

0 if i 6= j .

Such a basis is called a (pseudo)-orthonormal basis.

For every pseudo-orthonormal basis for (V, g), the respective number
(p,m) of plus and minus signs is the same.

Proof. We may assume that n > 0. In that case, there certainly exists
some non-zero vector E ∈ V . In fact, we may arrange that E is not null.
Indeed, if every E ∈ V were null, then we would have

0 = g(X + Y,X + Y ) = g(X,X) + 2g(X,Y ) + g(Y, Y ) = 2g(X,Y )

for all X and Y , which would violate non-degeneracy.

Set E1 + E/g(E,E). If V = span{E1}, then we are done. Else, there
exists E ∈ V \ span{E1}. In fact, we may arrange that E is in the kernel of
the linear map X 7→ g(E,X). Indeed, if this is not the case, then we may
choose λ ∈ R so that

0 = λg(E1, E1) + g(E1, E) = g(E1, λE1 + E)

and thus replace E by E + λE1. Since ker g(E, ·) is a nontrivial subspace of
V , we may further arrange, as before, that E is not null.

We now take E2 + E/g(E,E). If V 6= span{E1, E2}, then we may
continue in this manner to find some E3 satisfying g(E3, E3) = ±1 and
g(E3, Ei) = 0 for i = 1, 2. The process must eventually terminate since V is
finite dimensional. This proves the first part of the theorem.

Now consider two pseudo-orthonormal bases {Ei}ni=1 and {E′i}ni=1 for
(V, g). We may reindex so that g(Ei, Ei) is +1 for i = 1, . . . , p and −1 for
i = p + 1, . . . , n and similarly for E′. If p > p′, then we can find some
non-zero

X ∈ span{E1, . . . , Ep} ∩ span{Fp′+1, . . . , Fn} .
Now, we may write X equally well as

∑p
i=1XiEi or as X =

∑n
i=p′+1X

′
iE
′
i.

But then

0 <

p∑
i=1

(Xi)
2 = g(X,X) = −

n∑
i=p′+1

(X ′i)
2 < 0 ,

which is absurd. The second claim follows. �

The pair (p,m) is called the signature of the pseudo-orthogonal struc-
ture g. A pseudo-orthogonal structure of signature (n − 1, 1) is called a
Lorentzian structure. A pseudo-orthogonal space equipped with a Lorentzian
structure is called a Lorentzian space.
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Example 5.3. Minkowski space, R3,1, is the linear space R4 equipped
with the Lorentzian structure η defined by

η((X0, X1, X2, X3), (Y0, Y1, Y2, Y3)) = −X0Y0 +

3∑
i=1

XiYi .

It admits the “standard” pseudo-orthogonal basis {E0, E1, E2, E3}, where
E0 + (1, 0, 0, 0), E1 + (0, 1, 0, 0), E2 + (0, 0, 1, 0), and E3 + (0, 0, 0, 1).

From now on, we work with Minkowski space, although all considerations
hold for general Lorenzian spaces (cf. Exercise 5.1).

Definition 5.4. A vector X ∈ R3,1 is called

(1) timelike if η(X,X) < 0,

(2) spacelike if η(X,X) > 0, and

(3) lightlike, or null, if η(X,X) = 0.

Recall that a cone is a subset of a linear space that is closed under
positive scalar multiplication.

Proposition 5.5. The set J + {X ∈ R3,1 : η(X,X) < 0} of timelike vectors
in R3,1 has two connected components,

J± + {(X0, X1, X2, X3) ∈ J : ±X0 > 0}

each of which is an open, convex cone. If X ∈ J+ (resp. J−) and Y ∈ J ,
then Y ∈ J+ (resp. J−) if and only if η(X,Y ) < 0.

Proof. The set J is clearly a cone: if λ > 0 and η(X,X) < 0, then

η(λX, λX) = λ2η(X,X) < 0 .

It is open since the quadratic form X 7→ 1
2η(X,X) is continuous. It is

disconnected since the two subsets J± are separated by the hyperplane
{X0 = 0}. Each of these subsets is a convex (and hence connected) cone.

Indeed, J+ is the epigraph {X ∈ R3,1 : X0 >
√
X2

1 +X2
2 +X3

3} of the

convex function u+(X1, X2, X3) +
√
X2

1 +X2
2 +X3

3 while J− is the hy-

pograph {X ∈ R3,1 : X0 < −
√
X2

1 +X2
2 +X3

3} of the concave function

u−(X1, X2, X3) + −
√
X2

1 +X2
2 +X3

3 .

Now consider any pair of timelike vectors X,Y ∈ J+. We may write X =

X0E0 + ~X and Y = Y0E0 + ~Y for some pair ~X, ~Y ∈ span{E1, E2, E3} ∼= R3.
If we denote by · and | · | the standard dot product and norm on R3, then
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X0 > | ~X| (and similarly for Y ) and hence

η(X,Y ) = −X0Y0 + ~X · ~Y

< − | ~X||~Y |+ ~X · ~Y
≤ 0

by the Cauchy–Schwarz inequality. On the other hand, if Y ∈ J−, then
−Y ∈ J+ and hence η(X,Y ) = −η(X,−Y ) > 0. �

The set ∂J is called the lightcone. The set ∂J+ is called the future
lightcone, and ∂J− the past lightcone. Timelike vectors in J+ are referred
to as future pointing, while those in J− are referred to as past pointing.

We define the length of a timelike or null vector X ∈ R3,1 by |X| +√
|η(X,X)|.

Theorem 5.6 (Reverse Cauchy–Schwarz inequality). For all X,Y ∈ J+,

η(X,Y )

|X||Y |
≤ − 1 .

Equality holds if and only if X and Y are colinear.

Proof. Since J+ is a convex cone, X + λY ∈ J+ for any λ > 0. Thus,

0 > η(X + λY,X + λY )

= η(X,X) + 2λη(X,Y ) + λ2η(X,Y )

= − |X|2 − λ2|Y |2 + 2λη(X,Y ) .

Now optimize the inequality with λ = |X|/|Y |. �

Corollary 5.7 (Reverse triangle inequality). For all X,Y ∈ J+

|X + Y | ≥ |X|+ |Y | ,
with equality if and only if X and Y are colinear.

Proof. Since X + Y ∈ J+, the reverse Cauchy–Schwarz inequality yields

|X + Y |2 = |X|2 + |Y |2 − 2η(X,Y )

≥ |X|2 + |Y |2 + 2|X||Y |
= (|X|+ |Y |)2 . �

Now recall from high school that the dot product of two vectors u, v
in R3 is defined by

u · v + |u||v| cos θ ,

where θ is the angle between u and v, and |u| +
√
u2

1 + u2
2 + u2

3 is the
length of u. Of course, as was often the case your adolescence, you were
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lied to: rather, the angle is defined by the dot product, as allowed by the
standard Cauchy–Schwarz inequality, and not the other way around. Since
in the Lorentzian case the inequality is backwards, we can no longer use the
cosine to define the angle between future pointing timelike vectors. Instead,
a well-defined hyperbolic angle is determined by the hyperbolic cosine:

cosh θ +
|η(X,Y )|
|X||Y |

,

where the sign of θ is taken to be positive if X and Y lie in the same con-
nected component of J and negative otherwise. In Lorentzian geometry,
hyperbolic trigonometry plays an analogous role to the “elliptic” trigonom-
etry of Euclidean geometry.

5.3. Minkowskian Spacetime. Recall that a spacetime in which all in-
ertial observers measure the same speed for light cannot support absolute
simulteneity, and, therefore, cannot have a time projection ΠT . Since we
are keeping the Galilean (inertial) postulate, we take “bare” spacetime to be
a 4 dimensional affine space, M . Furthermore, we saw that the constancy
of the speed of light imparts a natural cone structure on M , such that the
length of the worldline of light is zero. We are led to equip the space of
displacements M of M with a Lorentzian structure.

We define a Minkowskian observer as a curve22 C : T → M , where
T is a one dimensional affine space, which is future-pointing timelike.
That is, the tangent vector

C ′(t) + lim
h→0

C(t+ h)− C(t)

h
∈M(5.1)

of C exists and satisfies C ′(t) ∈ J+ for all t ∈ R. For such a curve, the
arc-length

L(a,b)(C) +
∫ b

a
|C ′(t)|dt(5.2)

of C is a well-defined geometric invariant: it does not depend on any choice
of coordinates23. So it should also have a physical interpretation: we assign
to L(a,b)(C) the concept of personal time as measured by C between the
events C(a) and C(b). In order to “synchronise watches”, we also assert
that all observers are arc-length parametrised or unit speed. That is,
|C ′(t)| = 1 for all t ∈ R. This then yields

L(a,b)(C) = b− a .

22Note that we have sacrificed the freedom of choice of time-origin for clarity: Here, R should
really be an interval in one-dimensional affine space.

23Note that the integral is well-defined even though t is an affine parameter. Roughly speak-

ing, this is because dt is an infinitessimal difference.
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So C measures the time b − a between the events C(b) and C(a). (What
could be simpler?)

We refer to an observer C whose velocity C ′ is uniform as an inertial
observer. If we define the acceleration of C by

C ′′(t) = lim
h→0

C ′(t+ h)− C ′(t)
h

,(5.3)

then it follows that inertial observers satisfy C ′′ = 0.

Now, at any moment t ∈ R, the pseudo-orthogonal complement of C ′(t),
Σt + {X ∈ M : η(C ′(t), X) = 0}, is also a geometric invariant. We refer to
Σt as the instantaneous rest space of displacements24 of C at the mo-
ment t. The set σt + {P ∈M : P −C(t) ∈ Σt} is called the instantaneous
rest space of C at t. We interpret σt as the set of points which C deems
simultaneous to the event C(t). The motivation for this interpretation is
clear if we consider an inertial observer measuring distances with radar as
in the examples above.

Exercises.

Exercise 5.1. We define the standard pseudo-orthogonal structure η of
signature (p,m) on Rp+m by

η(X,Y ) =
n∑

i,j=1

XiYjηij ,

where Xi is the i-th component of X with respect to the standard basis
{E1, . . . , En} for Rp+m (and similarly for Y ) and

ηij +

{
−1 if i = 1 . . . ,m

1 if i = m+ 1 . . . , n .

Show that every pseudo-orthogonal space (L, g) of signature (p,m) is
isometric to Rp,m. That is, there exists a linear isomorphism φ : L→ Rp+m
such that

η(φ(X), φ(Y )) = g(X,Y ) .

The map φ is called an isometry.

Exercise 5.2. Show that the acceleration C ′′ of an observer C lies in his
instantaneous rest space. That is, η(C ′, C ′′) = 0.

24I will refer to both the instantaneous rest space and the instantaneous rest space of dis-

placements as the (instantaneous) rest space.
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6. CONSEQUENCES OF THE LORENTZIAN STRUCTURE OF
SPACETIME

6. Consequences of the Lorentzian structure of spacetime

There once was a young fencer named Fisk,
whose speed was exceedingly brisk.
So fast was his action, the Lorentz–Fitzgerald contraction,
diminished his rapier to a disk.25

6.1. Rapidity and velocity. Consider two observers, O and P , such that
P (τ) lies in the instantaneous rest space of O at time t. Denote X = O′(t)
and Y = P ′(τ). How does O interpret Y ? She splits it into components
parallel and orthogonal to her own tangent vector:

Y = Y ‖ + Y ⊥ ,

where

Y ‖ +
η(X,Y )X

η(X,X)
= −η(X,Y )X ,

and

Y ⊥ + Y − Y ‖ .

Since Y ⊥ lies in O’s instantaneous rest space of displacements at t, |Y ⊥|
is interpreted by O as a distance. Furthermore, if we consider the inertial
observer I such that I(t) = O(t), and I ′ = X, then a point I(|Y ‖|) is such

that I(|Y ‖|) − I(t) = Y ‖. Since |Y ‖| = L(t,t+|Y ‖|)(I), |Y ‖| is interpreted

by O as a ‘time’. Hence O views the ratio |Y ⊥|/|Y ‖| as a speed. By the
definition of θ, we have that

|Y ‖| = cosh θ

|Y ⊥| = sinh θ ,

therefore tanh θ is interpreted as the relative speed between the observers O
and P , as observed by O at time t. The hyperbolic angle between two vectors
often attains the name rapidity. Now, it’s easy to see that P observes the
same relative speed between P and O at his personal time τ . However, if
we choose to write v + tanh θs, where s is a unit vector in the direction of
Y ⊥, then v is P ’s velocity vector as observed by O, however, −v cannot (in
general) be the velocity vector of O as observed by P , since v lies in the rest
space of O, and not (in general) P .

6.2. Relativistic addition of speeds. In terms of the rapidity, the “rel-
ativistic addition rule for speeds” is simply hyperbolic trigonometry:

tanh(α+ β) =
tanhα+ tanhβ

1 + tanhα tanhβ
.

25An improvement, credited to George Gamow, is found by replacing two of the words.
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6.3. The Doppler effect (frequency interpretation). Suppose that an
inertial source emits two pulses. Let X be tangent to the worldline of the
source such that |X| is the time between emission of the pulses. The pulses
are received by some inertial observer. Let Y be tangent to her worldline
such that |Y | is the time she measures between the pulses. Then Y −X = N
for some null vector N .

Since N is null (it is tangent to the worldline of a photon)

0 = η(N,N) = η(X,X) + η(Y, Y )− 2η(X,Y )

= − |X|2 − |Y |2 + 2|X||Y | cosh θ

where θ is the hyperbolic angle between X and Y . This is a quadratic
equation for |Y |:

|Y | = |X| cosh θ ± |X|
√

cosh2 θ − 1

where the first sign corresponds to the observer receding from the source.
We can rearrange as follows

|Y | = |X| cosh θ ± |X| sinh θ

= |X| cosh θ(1± tanh θ) .

We can write this in terms of the relative speed. For the observer receding
from the source we have

|Y | = |X|
√

1 + v

1− v
.

If the source is periodically emitting pulses then the frequency of the pulse
is inversely proportional to the period. So if ν is the frequency of emission
and ν ′ the received frequency, we have

ν ′ =

√
1− v
1 + v

ν .

Therefore, for an observer receding from the source the frequency is lowered,
that is, red-shifted.

6.4. The Doppler effect (wavelength interpretation). Suppose that
an oberver O : R → M ‘detects’ a ‘photon’ (null curve), n : I → M in
an event E ∈ M . That is, O(0) = n(0) = E. Suppose O interprets this
event as follows: Let N = n′(0) be the tangent (null) vector to n at E, and
U = O′(0) the tangent vector to O at E. Then O may write N = r(U + r),
for some r > 0 and some unit vector r in O’s instantaneous rest space (of
displacements) at E. Then −r is interpreted as the direction of motion of
n. We’ll call r the ‘colour’ of n.

Suppose now that a second observer, P : R → M , also detects n at E,
so that P (0) = n(0) = E. Let V = P ′(0), be P ’s tangent vector at E. Then
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P writes N = b(V + s), where s is a unit vector in P ’s instantaneous rest
space (of displacements) at E. Suppose for simplicity that all of the relevant
motion is planar, that is, U, V,N are coplanar vectors in R3,1. Then we may
compare r and b as follows: First note that

r(U + r) = b(V + s)

so that, taking the inner product of both sides with V ,

r(η(U, V ) + η(r, V )) = − b

⇒ − cosh θ + sinh θ = − b
r
,

where θ is the hyperbolic angle between U and V . Now, using the identity
cosh2 θ − sinh2 θ = 1, we have (since cosh θ ≥ 1),

cosh θ =
1√

1− tanh2 θ
,

and

sinh θ =
± tanh θ√
1− tanh2 θ

.(6.1)

If we suppose η(V, r) ≥ 0, then sinh θ ≥ 0 and tanh θ > 0 (since cosh θ ≥ 1),
and we get

− cosh θ + sinh θ =
−1 + tanh θ√

1− tanh2 θ
.

Therefore,

b

r
=

1− tanh θ√
1− tanh2 θ

.

⇒ b = r

√
(1− tanh θ)2

(1− tanh θ)(1 + tanh θ)

= r

√
1− tanh θ

1 + tanh θ
,

or, in terms of the relative speed v = tanh θ,

b = r

√
1− v
1 + v

.

That is, P measures a wavelength shorter by a factor of
√

(1− v)/(1 + v)
than that measured by O.
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6.5. Time dilation. Time dilation describes the descrepancy in time dif-
ferences between events as measured by different observers in motion with
respect to each other.

Consider two events P and Q connected by a forward-pointing timelike
vector Y . (So P and Q lie on the worldline of some inertial observer.)
How does another inertial observer O assign times and distances to the two
events? He decomposes Y into components parallel and perpendicular to
his own worldline. Then according to O, the time difference is |Y ‖|. But

|Y ‖| = |Y | cosh θ

=
|Y |√

1− tanh2 θ
.

Of course, the proper time between these events (that is, the time measured
by an inertial observer whose worldline joins them) is simply the length of Y .
So the time difference between two events on an inertial observer’s worldline
as measured by another inertial observer is greater by a facter of 1/

√
1− v2

than the proper time, where v = tanh θ is the relative speed between the
two observers.

6.6. Lorentz–Fitzgerald contraction. Suppose now that some instan-
taneous observer Y ∈ SJ+ (where SJ+ is the set of unit length forward
pointing timelike vectors) wishes to measure the length of a “rigid rod”,
with respect to which she is in motion. She deems the length of the rod to
be the length of the vector K in her rest space that connects the worldlines
of the ends of the rod.

So suppose that L is the vector in the rest space of the rod that joins
the worldlines of its endpoints, and X is the vector tangent to the rod such
that η(X,X) = −|L|.

Now |L|Y is decomposed into components parallel and perpendicular to
X:

|L|Y = cosh θX + sinh θL .

Then the vector |L|r + sinh θX + cosh θL has length |L| and lies in the
rest space of Y (r is the reflection of Y about the light cone), so that K is
parallel to |L|r. That is,

K = µ|L|r = µ (sinh θX + cosh θL)

= µ cosh θ(tanh θX + L) .(6.2)

But L is the projection of K onto the rest space of Y , so that K = λX +L,
and hence (from (6.2)) µ cosh θ = 1. That is,

K = tanh θX + L ,
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so that

|K| =
√
|L|2 − tanh2 θ|L|2 = |L|

√
1− v2 ,

where v = tanh θ is the speed of Y relative to the rod. So Y observes the
length of the rod to be shorter by a factor of

√
1− v2.

The length of an object as determined by a co-moving observer is called
its proper length.

6.7. Inertial coordinates and Lorentz transformations. Just as in
Galilean spacetime, any Minkowskian observer may adapt coordinates to her
worldline. Consider an observer O : R→M , with tangent vector X0 ∈ SJ+.
Then O may complement X0 with an orthonormal basis {X1, X2, X3} for
her restspace (span{X0})⊥. Then, fixing an origin o = O(0) ∈M , O defines
coordinates

t(p) = − η(X0, p− o)

xi(p) = η(Xi, p− o)

for each event p ∈M .

Now suppose Ô : R→M is a second observer. Then Ô sets up his own
coordinates for p:

t̂(p) = − η(X̂0, p− ô)

x̂i(p) = η(X̂i, p− ô) .

Let’s assume that ô = o. This can be achieved with a translation vector
A + ô − o. We also assume span{X0, X1} =span{X̂0, X̂1}, which can be

achieved with an orthogonal transformation B ∈ O(3) of span{X̂1, X̂2, X̂3}
(that is, by rotating and reflecting). Then, introducing the hyperbolic angle

θ between X0 and X̂0,

X̂0 = cosh θX0 + sinh θX1

and

X̂1 = ± sinh θX0 + cosh θX1 .

By re-choosing B (i.e by introducing a reflection if necessary), we may take
the ‘+’ sign in the second equation. We now have

t̂(p) = − η(cosh θX0 + sinh θX1, p− o)
= t(p) cosh θ − x1(p) sinh θ

= cosh θ
(
t(p)− x1(p) tanh θ

)
=
t(p)− x1(p) tanh θ√

1− tanh2 θ
,
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and

x̂1(p) = η(sinh θX0 + cosh θX1, p− o)
= − t(p) sinh θ + x1(p) cosh θ

=
x1(p)− t(p) tanh θ√

1− tanh2 θ
.

Moreover (up to possibly more reflecting in span{X̂1, X̂2, X̂3}), x̂2(p) =
x2(p) and x̂3(p) = x3(p). We have derived the coordinate change formula
for a ‘Lorentz boost’:

t̂ =
t− x1v√

1− v2

x̂1 =
x1 − tv√

1− v2

x̂2 = x2

x̂3 = x3 ,

where v = tanh θ. The remaining Lorentz transformations are given by the
origin translation A and the orthogonal transformation B, resulting in the
full Poincaré group of inertial coordinate transformations. The principle of
relativity may now be rephrased as follows: the laws of physics (in special
relativity) should be invariant under action of the Poincaré group.

Exercises.

Exercise 6.1. Show that

tanh(α+ β) =
tanhα+ tanhβ

1 + tanhα tanhβ
.

Interpret this as a relativistic addition rule for speeds.

Exercise 6.2. Draw a spacetime diagram depicting the Doppler effect (both
frequency and wavelength interpretations).

Exercise 6.3. Draw a spacetime diagram depicting the Lorentz–Fitzgerald
contraction. Draw in the light cone and the ‘Minkowski sphere’ {v ∈ R3,1 :
|v| = |L|}.

Exercise 6.4. Resolve the “car-garage paradox”

Exercise 6.5 (The car-garage paradox). Let’s make the following adjust-
ment to the Lorentz contraction discussion: Suppose that we replace the
“rod” with the depth of a garage, and the observer O with the worldline of
the front of a car, whose proper length is equal to the proper length of the
garage. We wish to carry out the following experiment: We drive the car
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into the garage, at constant speed v 1, and, just as the rear of the car is
inside, we slam the door shut.

Resolve the following apparent paradox: Since, from the car’s perspec-
tive, the length of the garage is contracted, the car will not fit, and busts
through the rear of the garage before the door shuts. On the other hand,
from the garage’s perspective, the car’s length is contracted and it fits com-
fortably in the garage before the door shuts!

Exercise 6.6 (Xeno 2.0). Suppose we set up the following experiment: fix
a mirror, mirror A, on one end of a straight track, and slide a second mir-
ror, mirror B, uniformly along the track such that the two mirror faces are
parallel. At some event prior to their collision, mirror A emits a photon
toward B, which then bounces back and forth infinitely many times before
the collision.

(a) Draw a spacetime diagram of the situation.

(b) Calculate the distance travelled by the photon as determined by an
observing physicist (i.e. co-moving with mirror A).

(c) Calculate the distance travelled by the photon as determined by a
PhD student duct-taped to mirror B.

Exercise 6.7 (The twin paradox). Twin brothers Neil and Noel wave good-
bye as Niel sets off for the moon. Upon reaching the moon, Niel realises he
has forgotten his camera and immediately turns around to head home and
get it. For simplicity, assume that Neil’s motion on both legs of the trip is
uniform. The “paradox” may be stated as follows:

Since Noel moves uniformly with respect to Neil, Noel’s personal time
is dilated. Therefore Noel is younger upon Neil’s return. On the other
hand, since Neil moves uniformly with respect to Noel, Neil’s personal time
is dilated, and hence Neil is younger upon his return.

(a) Draw a spacetime diagram of the situation.

(b) Describe the relative lengths of the worldlines of the two observers
between the start and end of Neil’s trip.

(c) Deduce which twin is “really” older upon Neil’s return.

Of course, the situation described is a little too simplistic, since Neil’s
worldline is not smooth. Physically speaking, he accelerates infinitelty at
three points. The following exercise removes this issue, and makes the situ-
ation much clearer:

Exercise 6.8. A class field trip to α-Centauri is planned. (You will be
pleased to know that this is planned to be a return trip!) The rocket is to
be designed to be capable of a constant acceleration g (to give a comfortable
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simulated gravity). The rocket will accelerate away from earth for a (proper)
time T and then reverse the thrust to decelerate and arrive at α-Centauri
after a further time T . Immediately the rocket will accelerate back towards
earth for time T , at which point the thrust is again reversed so as to land the
rocket after a total time of 4T . Assuming α-Centauri to be 4.36 light years
away find how long the trip will take. How much will earth-bound students
not taking the trip age between the launching and the landing of the rocket?

Hints:

(i) The worldlines of the inertial and accelerating observers lie in a
two-dimensional plane. Let X0 be tangent to the inertial observer’s
worldline, and X1 a unit spacelike normal, with {t, x} the corre-
sponding inertial coordinates. Let τ be the proper time of the
accelerating observer. The (four) velocity of the rocket is given by

W =
dt

dτ
X0 +

dx

dτ
X1 .

Since proper time is just arc length, a proper-time-parametrised
curve has a unit (four) velocity, and so

W = cosh θX0 + sinh θX1

where θ is a function of τ . The acceleration is defined by A =
dW
dτ , and we are told that η(A,A) = g2. Hence determine θ as

a function of τ , and then integrate to obtain the equation of the
rocket’s worldline in the inertial coordinates.

(ii) Choose units in which time is measured in years and distance in
light years (so that c = 1). Now express g in these units.

Exercise 6.9. Critically (and briefly) comment on the following: “Since
α-Centauri is 4.36 light years away it would take light 8.72 years to make
the return trip. As we cannot travel faster than light, we cannot make the
trip in less than 8.72 years.”

Exercise 6.10. Show (or argue that we have already shown) that the Poincaré
group is the group of isometries of Minkowski space, that is, the group of
transformations of M that preserve the (Lorentzian) length of displacement
vectors.
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7. Mechanics in Minkowski space

Consider an inertial observer C : R→M , so that C ′(τ) ∈ SJ+. Recall that
inertial observers C : R→M satisfy

C ′′ = 0 .(7.1)

Just as in Newtonian mechanics, we attribute any deviation from (7.1) to
the existence of a ‘force’ f acting on the world line of C:

mC ′′(τ) = f(τ) .(7.2)

Just as in the Galilean setting, we’ll call a pair (C,m), C an observer, m > 0,
a (mechanical) particle. The constant m is called the inertial mass of (C,m).
We’ll discuss the interpretation of f in more detail in a moment.

7.1. Momentum and energy. Just as in Newtonian mechanics, we can
rewrite Newton’s law (7.1) as

p′ = f ,

where we have introduced the momentum p = mC ′ of the particle (C,m).

Suppose the particle (C,m) is observed by an (instantaneous) inertial
observer X0 ∈ SJ+. Then X0 self-centredly decomposes P into components
parallel and perpendicular to her world line:

p = EX0 + p .

It follows that

E = |p| cosh θ

= m cosh θ

=
m√

1− v2

= m+
1

2
mv2 + . . . ,

where the dots stand for terms of higher order in v. The second term
in the expansion is the classical expression for the kinetic energy of the
particle. So E might be interpreted by X0 as an energy. If we are to
accept this interpretation, then we must conclude that mass and energy are
fundamentally intertwined.

Now, since p = mv, where

|v| = sinh θ =
v√

1− v2
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is the speed accorded C by X0, X0 interprets p as a kind of momentum,
which we call the 3-momentum of (C,m) (as determined by X0). Of

course, this differs from the Newtonian expression26 by the factor 1/
√

1− v2.

So energy and 3-momentum are no longer conserved quantaties: they
are observer dependent. However, the momentum, p, is observer invariant,
hence its length is an invariant. But this is just the mass of the particle.
On the other hand, any observer can relate the mass to the observed energy
and 3-momentum by Einstein’s famous equation

−m2 = η(p, p) = − E2 + |p|2

⇒ E2 = m2 +
m2v2

1− v2
.

7.2. Force and power. Now suppose X0 introduces an inertial coordinate
system for M with respect to an origin O ∈M and a basis {X0, X1, X2, X3}
for R3,1. That is, for any P ∈M , we have

P −O = t(P )X0 + xi(P )Xi i = 1, 2, 3 .

Then the tangent vector of C is

C ′(τ) = lim
h→0

C(τ + h)− C(τ)

h

= lim
h→0

(C(τ + h)−O)− (C(τ)−O)

h

= lim
h→0

Ca(τ + h)− Ca(τ)

h
Xa a = 0, . . . , 4

=
dCa

dτ
(τ)Xa a = 0, . . . , 4 ,

where we have defined C0 + t◦C, and Ci + xi ◦C for i = 1, 2, 3. Therefore,
introducing the hyperbolic angle θ(τ) between X0 and C ′(τ),

dC0

dτ
= cosh θ

⇒ d

dτ
= cosh θ

d

dt
.

26Ian Benn quipped the following at this point: “If our observer were really perverse, he could
try to make this expression look like the Newtonian one by introducing a “velocity dependent

mass”, M(v) + m/
√

1− v2. Whatever he does, he will not be able to escape the fact that the
dynamics is non-Newtonian, so little will it profit him”.

44



7. MECHANICS IN MINKOWSKI SPACE

We’ll use this coordinate change to see how X0 interprets the force f . We
have

f =
d

dτ
p = cosh θ

d

dt
(EX0 + p)

= cosh θ

(
dE

dt
X0 +

dp

dt

)
= cosh θ (PX0 + f) ,

where we have defined P + dE
dt and f + dp

dt . Since p is interpreted by X0 as
a 3-momentum, f is interpreted as a 3-force. Since E is interpreted by
X0 as an energy, P is interpreted as a power. The latter interpretation is
also justified from the following consideration:

0 =
m

2

d

dτ
η(C ′, C ′) = η(C ′,mC ′′)

= η(C ′, f)

= cosh2 θη(PX0 + f , X0 + v)

=⇒ P = v · f ,
which is another pre-relativity expression for the power. Note, however, the
overall cosh θ factors.

Exercises.

Exercise 7.1. Show that the acceleration C ′′ of a particle is inertial observer
independent. Deduce that Newton’s law (7.2) is invariant under the Poincaré
group.
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8. Electromagnetism in Minkowski space

Define a charged particle to be a triple (C,m, q), where C is an observer,
m > 0 is its mass and q ∈ R is its charge.

8.1. The Lorentz force law. We shall assume that the force experienced
by a charged particle in the presence of an electromagnetic field

(1) is proportional to its charge, and

(2) depends linearly on its tangent vector.

That is, we make the Ansatz

f(τ) = qF (C ′(τ)) ,

where F : R3,1 → R3,1 is some linear map27. We can identify any such
endomorphism with a bilinear form F : R3,1 × R3,1 → R using the metric:

F (X,Y ) + η(F (X), Y ) .

Since C ′′ ⊥ C ′, we have, by Newton’s law,

qF (C ′, C ′) = η(qF (C ′), C ′) = η(mC ′′, C ′) = 0 .

Since the law is independent of q, we must have F (C ′, C ′) = 0. Since this
must hold independent of the observer C, we must have F (X,X) = 0 for all
forward-pointing timelike vectors X. This is actually sufficient to conclude
the apparently stronger statement that F is skew-symmetric; that is,

F (X,Y ) = −F (Y,X)

for all X,Y ∈ R3,1 (see Exercise 8.4).

Now, any instantaneous observer U ∈ SJ+ interprets the field F by
decomposing it into components parallel and perpendicular to his worldline.
So define

E + F (U) .(8.1)

Observe that

η(F (U), U) = F (U,U) = 0

and hence E ∈ U⊥. Thus, for any v ∈ U⊥,

η(F (v), U) = −η(F (U),v) = −E · v .
We conclude that

F (v) = (E · v)U +B(v) ,(8.2)

where B is some endomorphism of U⊥ whose associated bilinear form is
skew-symmetric.

27F is for Michael Faraday (1791-1867).
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By Exercise 8.5,

B(v) = v ×B

for some B ∈ U⊥ (uniquely determined by B), and hence

F (v) = (E · v)U + v ×B .

So, decomposing C ′ = cosh θ(U + v), we find that

F (C ′) = cosh θF (U + v) = cosh θ
(
(E · v)U + (E + v ×B)

)
.

Thus, comparing with the expressions derived in §7.2, we find that

P = qE · v
f = q(E + v ×B) .

Since the second equation is formally the Lorentz force law, we interpret E
and B as the electric and magnetic fields observed by U .

8.2. Maxwell’s Equations*. Up to a Lorentz transformation, we can ar-
range that U = ∂x0 . Let {1

2Fij}
n
i,j=1 be the components of F with respect

to the basis {dxi ⊗ dxj}ni,j=1 for the covariant two-tensors. Then

Fij + Fji = 0

so that

F =
1

2
Fijdx

i ⊗ dxj

=
1

2

∑
i<j

Fij(dx
i ⊗ dxj − dxj ⊗ dxi)

=
∑
i<j

Fijdx
i ∧ dxj .

So the exterior derivative of F is given by

dF =
∑
i<j

n∑
k=1

∂Fij
∂xk

dxk ∧ dxi ∧ dxj

=
∑
i<j<k

(
∂Fjk
∂xi

+
∂Fki
∂xj

+
∂Fij
∂xk

)
dxi ∧ dxj ∧ dxk .

By (8.1),

E = F (∂x0) =
3∑
j=1

F0j∂xj .

If we write

B = −B1dx
2 ∧ dx3 +B2dx

1 ∧ dx3 −B3dx
1 ∧ dx2,
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then, by (8.2), B1 = F23, B2 = F31 and B3 = F12, or, in matrix notation,

[F ] =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 .
Moreover, for any v =

∑3
i=1 vi∂xi ∈ ∂⊥x0 ,

v ×B = B(v)

= −B1(v2∂x3 − v3∂x2) +B2(v1∂x3 − v3∂x1)−B3(v1∂x2 − v2∂x1)

= (v2B3 −B2v3)∂x1 − (v1B3 −B1v3)∂x2 + (v1B2 −B1v2)∂x3 .

Thus,

B = B1∂x1 +B2∂x2 +B3∂x3 .

We note also that

B = −ιB(dx1 ∧ dx2 ∧ dx3) = − ∗3 B] ,

where ∗3 : Λ(R3) → Λ(R3) is the Hodge dual associated with the standard
dot product on ∂⊥x0

∼= R3.

Since

ι∂x0dF =
∑
j<k

(
∂Fjk
∂x0

+
∂Fk0

∂xj
+
∂F0j

∂xk

)
dxj ∧ dxk ,

we obtain

(∗3ιdx0dF )] =
∂B

∂x0
+ curl E ,

where ∗ : Λ(R3,1)→ Λ(R3,1) is the Hodge dual associated with the Minkowski
metric on R4. Comparing with Maxwell’s equations (4.1), we find that
ι∂x0dF should vanish.

The remaining component of dF is

dF123 =
∂F23

∂x1
+
∂F31

∂x2
+
∂F12

∂x3

=
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3

= div B ,

which should also be zero. So the source-free Maxwell equations suggest
that F should satisfy

dF = 0 .
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Now, since the Hodge duals of the basis vectors are determined by

∗(dx0 ∧ dx1) = ιdx1ιdx0(dx0 ∧ dx1 ∧ dx2 ∧ dx3)

= η(dx0, dx0)ιdx1(dx1 ∧ dx2 ∧ dx3)

= η(dx0, dx0)η(dx1, dx1)dx2 ∧ dx3

= − dx2 ∧ dx3

and

∗(dx1 ∧ dx2) = ιdx2ιdx1(dx0 ∧ dx1 ∧ dx2 ∧ dx3)

= − η(dx1, dx1)ιdx2dx
0 ∧ dx2 ∧ dx3)

= η(dx1, dx1)η(dx2, dx2)dx0 ∧ dx2 ∧ dx3

= dx0 ∧ dx3 ,

with the rest obtained by skew-symmetry and cyclic permutations of the
indices i = 1, 2, 3, the Hodge dual of F is

∗F = (∗F )ijdx
i ∧ dxj ,

where, in matrix notation,

[∗F ] =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 .
Since this simply interchanges (E,B) 7→ (−B,E), we find that

(∗3ιdx0dF )] =
∂E

∂x0
− curl B ,

and

d ∗ F123 = div E .

By the source Maxwell equations, we interpret (∗3ι∂x0dF )] as current density
and d∗F123 as charge density. We arrive at the covariant Maxwell equations,

dF = 0

d ∗ F = J ,
(8.3)

where

J = ρ dx1 ∧ dx2 ∧ dx3 − ∗ j[ .
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8.3. Invariants*. To some extent, “one man’s E is another man’s B”: the
decomposition of F into E and B is observer dependent. Could it be then
that every F can be interpreted by some observer as corresponding to a
purely electric field? It turns out that this is not the case, and we can see
this by finding certain invariant expressions formed from the electric and
magnetic fields.

The simplest invariant is just the Minkowski product η(F, F ) of F with
itself. Recall that the metric η can be defined on homogeneous tensors on
R3,1 by asserting bilinearity and commutation with the tensor product, in
the sense that

η(R⊗ S, T ⊗ U) + η(R, T )η(S,U)

for tensors R, T of the same type, and tensors S, U of the same type, and
setting

η(u[, v[) + η(u, v)

for any vectors u, v ∈ R3,1.

Using these rules, η(F, F ) is most easily calculated by introducing the
pseudo-orthonormal basis {dxi}3i=0, so that

η(F, F ) = η(Fijdx
i ⊗ dxj , Fkldxk ⊗ dxl)

= FijFklη(dxi ⊗ dxj , dxk ⊗ dxl)

= FijFklη
ikηjl

= F klFkl

= 2F 0lF0l + 2
∑

1≤k<l
F klFkl

= − 2E2 + 2B2

= 2(B2 −E2) ,

where

E2 + E ·E and B2 + B ·B .

The next most obvious invariant is η(∗F, ∗F ), but this is just −η(F, F ).
Of course, we can also form the Minkowski product of F and ∗F :

η(F, ∗F ) = F ij ∗ Fij

= 2F 0j ∗ F0j + 2
∑

1≤i<j
F ij ∗ Fij

= − 4E ·B .

Earlier we posed the question “is there always some observer who sees
a purely electric field?”. Certainly we now know that for this to be the case
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it is necessary that η(F, F ) be negative, and that η(F, ∗F ) be zero. Is this
sufficient? It turns out that it is, but we shall not show it.

Exercises.

Exercise 8.1. Show that the dual space V ∗ of a linear space V is a linear
space of the same dimension as V . Let {Xi}ni=1 be a basis for V . Show that
the set {αi}ni=1 of linear transformations defined by αi(Xj) = δij forms basis
for V ∗.

Exercise 8.2. Let (V, g) be a pseudo-orthogonal space. Show that the map
Φ from the linear space of endomorphisms of V (linear maps from V to
itself) to the linear space of bilinear forms on V defined by

Φ(F )(X,Y ) + g(F (X), Y )

is an isomorphism.

Exercise 8.3. Let V be a linear space. A derivation at p ∈ V is a map
D : C(V )→ R on smooth functions f ∈ C(M) which

(1) is linear,

D(f + λg) = Df + λDg for all λ ∈ R ,

and

(2) satisfies the Leibniz rule,

D(fg) = (Df)g(p) + f(p)(Dg) .

Note that the derivations form a linear space over R.

Given any vector X ∈ V , we can define a derivation on functions f ∈
C(M) by taking the directional derivative of f at p in the direction V :

DXf =
n∑
i=1

Xi
∂

∂xi

∣∣∣∣
p

f .

Show that the map X 7→ DX is a linear isomorphism from V to the space of
derivations. Note that the basis vectors Ei map to the coordinate derivatives
∂
∂xi

∣∣
p

under this identification.

Exercise 8.4. Let F be a bilinear form on R3,1 satisfying F (X,X) = 0 for
all X ∈ SJ+.

(1) Show that F (X,X) = 0 for all X ∈ R3,1.

(2) Deduce that F is skew-symmetric:

F (X,Y ) = −F (Y,X)

for all X,Y ∈ R3,1.
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Exercise 8.5. For each vector B ∈ R3, we may define a bilinear form B
on R3 by taking the scalar triple product of two vectors with B. That is,

B(v, w) = (B× v) ·w .

Show that

(1) B is skew-symmetric: B(v,w) = −B(w,v) for all v,w ∈ R3;

(2) The linear space of skew-symmetric bilinear forms on R3 is iso-
morphic to R3 via this identification. In particular, for each skew-
symmetric bilinear form B on R3, there is a unique vector B ∈ R3

such that B(v,w) = (B× v) ·w for all v,w ∈ R3;

(3) This is a fluke of 3-dimensions.
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9. Gravity as curvature?

“...the essential achievement of general relativity, namely,
to overcome ‘rigid’ space (i.e. the inertial frame), is only
indirectly connected with the introduction of a Riemannian
metric. The directly relevant conceptual element is the dis-
placement field Γij

k, which expresses the infinitesimal dis-
placement of vectors. It is this which replaces the parallelism
of spatially arbitrarily separated vectors fixed by the inertial
frame (i.e. the equality of corresponding components) by an
infinitesimal operation. This makes it possible to construct
tensors by differentiation and hence to dispense with the in-
troduction of ‘rigid’ space (the inertial frame). In the face of
this, it seems to be of secondary importance in some sense
that some particular Γ field can be deduced from a Riemann-
ian metric...” — Albert Einstein28 (4 April 1955)

We have seen that any successful theory of gravity that includes a de-
scription of light needs to accommodate the following experimental obser-
vations:

(1) The speed of light is constant.

(2) Freefall is indistinguishable from uniform motion.

As we have seen, the first fact imparts a “lightcone structure” on space-
time, which may be modelled mathematically by a Lorenzian metric. The
second fact suggests that freefallers could be described by the geodesics of
some connection.

The following thought experiment (due to Einstein) suggests that the
second of the above facts is incompatible with Minkowski spacetime.

Consider two freely falling observers: one located at the centre of the
Earth, and an orbiting Yuri Gagarin. Since the laws of physics should look
the same for both observers, both should agree on measurements of the
invariants of those laws. Now, both observers certainly agree on the ra-
dius of Yuri’s orbit, since there is no radial motion between them. Since
spacetime is Minkowskian (and hence spacelike slices are Euclidean), ac-
cording to a centre-of-the-Earth observer the length of Yuri’s orbit is 2πr.
However, due to the effect of Lorentz contraction, the length of the orbit
according to Yuri is 2πr

√
1− v2, where v is his orbital speed. This means

that the flat geometry of Minkowski space implicitly discriminates between
certain classes of freefallers. On the other hand, if the sectional curvature of

281879–1955. The quote is taken from F. Hehl, Y. Obukhov, Élie Cartan’s torsion in geom-
etry and in field theory, an essay., Annales de la Fondation Louis de Broglie.
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the 2-plane containing Yuri’s orbit were positive, then the two observations
could potentially be reconciled. This suggests that the equivalence principle
could plausibly be reconciled with relativity if we use a non-flat Lorentzian
geometry.29

In short, the problem is that Yuri’s orbit — the worldline of a freefaller
— is not a geodesic of the Minkowski connection (or any connection which
is compatible with the Minkowski metric). So we are led to consider more
general (non-flat) Lorentzian geometries. Indeed, remarkably, Maxwell’s
equations (in the form (8.3)) require no alteration if Minkowski spacetime
is replaced by a general Lorentzian manifold!

To get an idea of how gravity might influence the structure of spacetime,
consider a family of “nearby” freefallers. That is, a family ωε(s) + ω(s, ε) of
timelike geodesics emanating from some initial point, p:

ωε(0) = p for all ε

ω′′ε + ∇s∂sω = 0 for all ε

ω0 = γ .

We assume that the variation field J(s) + ∂εω(s, 0) is a unit vector
orthogonal to the world line of γ (i.e pointing into the instantaneous rest
space of γ at each time s). Then, at least for small ε, we interpret rε + εJ
as the position vector of the observer ωε with respect to the initial observer
γ. So rε = εJ ′′ should be interpreted as the acceleration of the observer ωε
with respect to γ. Now,

J ′′ + ∇s∇sJ = ∇s∇s∂εω
∣∣
ε=0

= ∇s∇ε∂sω
∣∣
ε=0

(∇ is torsion-free.)

= ∇ε∇s∂sω
∣∣
ε=0
− Rm(∂sω, ∂εω)∂sω

∣∣
ε=0

= − Rm(γ′, J)γ′ . (ωε is geodesic.)

So we conclude that

r′′ε + Rm(γ′, rε)γ
′ = 0 .

The relative acceleration between two observers is interpreted as a “tidal
force”, caused by the presence of gravity. So let us define the tidal force
operator Rmγ : Γ(TM)→ Γ(TM) of γ by

Rmγ(X) + Rm(γ′, X)γ′ .

Returning to the Newtonian picture, we saw that

Rm(γ′, X)γ′ = Hessφγ(X) .

29A four dimensional manifold equipped with a Lorenzian metric.
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So the Newtonian tidal force operator (with respect to γ) is in this case
Rmγ + Hessφγ .

Recall that the Newtonian gravitational field is generated by a distribu-
tion of matter according to Poisson’s equation:

ργ = ∆φγ = tr (Hessφγ) = tr (Rmγ) .

This suggests a relativistic version of Poisson’s equation:

ργ = tr (Rmγ) = Rc(γ′, γ′) .(9.1)

However, in contrast to the Newtonian situation, this is not sufficient to
determine the connection (and hence determine the motion of freely falling
particles). Besides, according to special relativity, energy and mass are but
two faces of the same coin. Therefore not only mass distributions, but all
forms of energy, should contribute to the gravitational field.
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10. 2-tensors, 3-forms and conservation laws

“With the appearance of Einstein’s general theory of relativ-
ity, Hilbert turned to that subject, which also occupied his
colleague Felix Klein. Interestingly, the most lasting math-
ematical contribution out of this effort came from an alge-
braist who had recently engaged in studies of differential in-
variants. This was Emmy Noether30..., whom Hilbert and
Klein brought to Göttingen to assist them in research. —
Carl B. Boyer, A History of Mathematics (1968, 1991).

For some (but not all) physical systems, concepts such as energy, mo-
mentum and mass can be made sense of. Their physical significance lies in
their conservation.

10.1. 3-Forms. Consider Maxwell’s equations:

dF = 0

d ∗ F = ∗ j ,
where F is the electromagnetic field 2-form, and j is the 4-current covector.
We define the total charge of a spacelike31 hypersurface Σ (with forward
pointing timelike orientation) by

QΣ +
∫

Σ
∗j .

Recall Stokes’ theorem.

Theorem 10.1 (Stokes’ theorem). Let M be an n-dimensional oriented
manifold with (possibly empty) boundary ∂M and let ω be a compactly sup-
ported32 (n− 1)-form on M . Then∫

M
dω =

∫
∂M

ω .

Applying Stokes’ Theorem to the definition of charge, we obtain

QΣ =

∫
Σ
∗j =

∫
Σ
d ∗ F =

∫
∂Σ
∗F

for any closed region Σ. Thus the charge in a region is the “total flux of the
field through the boundary”.

Now let γ be some curve which is normal to a family Σt of spacelike
hypersurfaces (instantaneous rest spaces). Consider a region of spacetime

301882–1935.
31A hypersurface is a submanifold of one lower dimension than its ambient space. A hyper-

surface is said to be spacelike if its normal is everywhere timelike.
32That is, ω vanishes outside a compact subset of M .
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Ω bounded by two of the spacelike hypersurfaces: Σ2 and Σ1. Since d ∗ j =
dd ∗ F = 0 (equivalently div j] = ∗−1d ∗ j = 0, where j] is the vector field
corresponding to the 1-form j), we have, assuming ∗j has compact support,

0 =

∫
Ω
d ∗ j =

∫
∂Ω
∗j =

∫
Σ2

∗j −
∫

Σ1

∗j = Q2 −Q1 .

That is, the total charge of the 3-space Σ2 is the same as the total charge of
the 3-space Σ1. This has an obvious interpretation as a conservation law.

The above discussion is not particular to electromagnetism. In fact, it
is easy to see that every closed 3-form (divergence free vector field) leads to
a “conservation law” in this way.

10.2. 2-Tensors. If our orientable manifold admits a pseudo-Riemannian
metric, then Stokes’ theorem implies the divergence theorem.

Corollary 10.2 (Divergence theorem). Let M be an n-dimensional oriented
pseudo-Riemannian manifold with (possibly empty) boundary ∂M and let V
be a vector field on M with compact support. If ∂M is nowhere null, then∫

M
div V dµ =

∫
∂M

g(~n, ~n)g(~n, V )dσ ,

where µ is the Riemannian measure33 on M , σ the Riemannian measure
induced on ∂M , and ~n is a choice of normal field to ∂M , normalized so that
|g(~n, ~n)| ≡ 1.

Now let T be a symmetric, divergenceless covariant two tensor. We refer
to such tensors as stress-energy tensors, since they arise in classical mechan-
ics and special relativity in Euler–Lagrange equations of matter models, in
which case their components are interpreted as “energies/momenta” and
“stresses/strains”. In the classical (and Minkowskian) setting, stress-energy
tensors correspond to conservation laws. Roughly speaking, this is because
0 = (div T )(ei) = div(T (ei)), so that T (ei) may be integrated as above
to obtain a conserved quantity. However, in more general (i.e. non-flat)
settings, this is not the case. On the other hand, if our spacetime admits
isometries, then there is a procedure for generating conservation laws from
stress-energy tensors (see Exercise 10.2).

The group of isometries of a pseudo-Riemannian manifold (M, g) is a
Lie group. Its Lie algebra is called the Killing algebra of (M, g), since it
consists of Killing vector fields (sometimes referred to as infinitesimal
isometries). That is, vector fields K satisfying

LKg = 0 .

33See section 11.1 for a definition of the Riemannian measure.
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Minkowski spacetime, for example, has a Killing algebra of generated by 10
Killing vector fields: 3 generating spacelike translations, one generating a
timelike translation, 3 generating rotations, and 3 generating the Lorentz
boosts.

10.3. Noether’s principle. Given a vector bundle with connection E over
(M, g), suppose that the field φ ∈ Γ(E) is a critical point of the action

A(φ) +
∫
M
L(·, φ,∇φ) dµ

for some Lagrangian L : E ⊕ T ∗M ⊗ E → R. This means that, given any
smooth, compactly supported34 variation s 7→ φs = φ + sv ∈ Γ(E) with
φ0 = φ,

d

ds

∣∣∣∣
s=0

A(φs) = 0 .

But then the divergence theorem yields

0 =

∫
M

d

ds

∣∣∣∣
s=0

L(·, φs,∇φs) dµ

=

∫
M

(
∂L
∂φ

(v) +
∂L
∂φ̇

(∇v)

)
dµ

=

∫
M

(
∂L
∂φ
− div

∂L
∂φ̇

)
(v) dµ ,(10.1)

where ∂L
∂φ |(p,φp,(∇φ)p) : Ep → R is the derivative of L with respect to the

φ factor and ∂L
∂φ̇
|(p,φp,(∇φ)p) : (T ∗M ⊗ E)p → R is the derivative of L with

respect to the∇φ factor (after making the identifications TL(p,φp,(∇φ)p)R ∼= R
and35 T(p,φp,(∇φ)p)(E ⊕ T ∗M ⊗ E) ∼= TpM ⊕ (E ⊕ T ∗M ⊗ E)p).

Now, since (10.1) holds for all v ∈ E, we conclude that the critical point
φ satisfies the equation

∂L
∂φ

(·, φ,∇φ) = div
∂L
∂φ̇

(·, φ,∇φ) .

This is called the Euler–Lagrange equation for the action A.

Noether’s principle asserts that “infinitesimal symmetries” of the La-
grangian give rise to conservation laws. Indeed, suppose that L is infinites-
imally invariant under the action

φ 7→ φs + αs(φ)

34I.e. φs differs from φ on at most a compact set (not depending on s). This ensures that

the following steps make sense.
35Note that the latter identification is made using the connection ∇.
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of some smooth family {αs}s∈(−s0,s0) of automorphisms of E. This just
means that

0 =
d

ds

∣∣∣∣
s=0

L(·, φs,∇φs)

for all φ ∈ Γ(E). If we set A + d
ds

∣∣
s=0

αs, then the divergence theorem
yields, for any Ω ⊂M with nowhere-null boundary,

0 =
d

ds

∣∣∣∣
s=0

A|Ω(φs)

=

∫
Ω

d

ds

∣∣∣∣
s=0

L(·, φs,∇φs) dµ

=

∫
Ω

(
∂L
∂φ

(
A(φ)

)
+
∂L
∂φ̇

(
∇[A(φ)]

))
dµ

=

∫
Ω

(
∂L
∂φ
− div

∂L
∂φ̇

)(
A(φ)

)
dµ+

∫
∂Ω
g(~n, ~n)

∂L
∂φ̇

(~n,A(φ)) dσ ,

where ~n is a unit normal to ∂Ω. Since φ satisfies the Euler–Lagrange equa-
tion, we conclude that ∫

∂Ω

∂L
∂φ̇

(~n,A(φ)) dσ = 0 .

We may once again interpret this as a conservation law (when Ω is taken to
be the region bounded by two “time-slices” of M , say).

Exercises.

Exercise 10.1. Show that a vector field is Killing if and only if its flow is
a one-parameter family of isometries.

Exercise 10.2. Let T be a stress-energy tensor and K a Killing vector field
on (M, g).

(a) Show either that

d ∗ jK = 0 ,

where jK is the 1-form defined by jK(X) + T (K,X) for all vector
fields X, or, equivalently, that

div VK = 0 ,

where VK is the vector field corresponding to jK ; that is, g(VK , X) =
T (K,X) for all vector fields X.

(b) Deduce a conservation law.

If K generates open timelike integral curves, then the conserved integral of
jK (or Vk) over a spacelike hypersurface Σ is interpreted as the energy con-
tained in Σ. If K generates open spacelike integral curves, then the conserved
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integral of jK (or VK) over a spacelike hypersurface Σ is interpreted as the
momentum of Σ in the direction of K. If K generates closed, spacelike
integral curves, then the corresponding conserved quantity is interpreted as
an angular momentum of Σ about the axis defined by K.

Exercise 10.3. Given a covector field j on Minkowski spacetime R3,1, show
(directly) that the Euler–Lagrange equation for the action functional

A(φ) +
∫ (

1

2
η(dφ, dφ) + η(φ, j)

)
∗ 1

(defined on one-forms φ) is the wave equation

∗−1d ∗ dφ = j .

Hint: recall that
α ∧ ∗β = η(α, β) ∗ 1 .
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11. Einstein’s equation

“It is analogous to a building, one wing of which is built from
fine marble (left hand side of the equation), the other of cheap
wood (right hand side of the equation).” — Albert Einstein
(Journal of the Franklin Institute, 1936)

Recall equation (9.1). On more than one occasion between 1905 and
1914, Einstein and Grossmann toyed with the following field equation for
relativity:

Rc = T ,(11.1)

where T is some specified stress-energy tensor functioning as the source of
the gravitational field. On each occasion, Einstein rejected the equation
as unphysical: the reason being that, by the second Bianchi identity, the
divergence of the Ricci tensor is given by

div Rc +
1

2
dR ,

where R + trg(Rc) is the scalar curvature, whereas the divergence of the
stress-energy tensor should be zero. Of course, with hindsight, there is an
obvious modification we can make to equation (11.1): we can make the left
hand side divergenceless by subtracting a tensor whose divergence is 1

2dR.

The most obvious choice is 1
2 R g. We arrive at the famous equation posed

by Einstein in 1914:

Rc−1

2
R g = T .(11.2)

In fact, David Hilbert36 arrived at (11.2) independently, at more or less
the same time (after the fierce, but productive37, and mostly friendly, com-
petition of November 1914) via a very different approach: the principle of
least action.

11.1. The Hilbert action.

“I assure you that with respect to the quantum I have nothing
new to say ... I am now exclusively occupied with the prob-
lem of gravitation and I hope to master all difficulties with
the help of a friendly mathematician here. But one thing
is certain: in all my life I have labored not nearly as hard,
and I have become imbued with great respect for mathematics,
the subtler part of which I had in my simple-mindedness re-
garded as pure luxury until now. Compared with this problem

361862–1943.
37See Ivan T. Todorov, Einstein and Hilbert: The Creation of General Relativity.
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the original relativity is a child’s play.” — Albert Einstein
(Letter to Arnold Sommerfeld, October 1912)

Hilbert’s approach was to obtain a field equation from an action func-
tional. The simplest choice for an action is simply the total volume of
the manifold, but the Euler–Lagrange equation obtained is not very useful:
g = 0 (this reflects the fact that volume can always be decreased by simply
“scaling-down” the metric). The next most natural choice38 would arguably
be the total scalar curvature:

A(g) +
∫
M

R dµ .

Here, µ denotes the Riemannian measure induced on M by the metric and
Ω is some subset of M . If (U, φ) is a coordinate chart, then the integral over
U is defined by ∫

U
fdµ +

∫
φ(U)

f ◦ φ−1
√
|det gφ|dL ,

where gφ is the matrix of the components of the metric g in the φ-coordinates,
and L is the Lebesgue measure. To integrate over all of M , we choose a lo-
cally finite atlas {φα : Uα → R4}α and a subordinate partition of unity
{ρα}α, and set∫

M
fdµ +

∑
α

∫
φα(Uα)

(ραf) ◦ φ−1
α

√
|det gφα |dL .

This is well-defined by the change-of-variables formula for integration in R4.

We assume that the actual universe is a (local) extremiser of the Hilbert
action. So consider the change in A produced by changing the metric g 7→
gε + g + εh, where h is a compactly supported symmetric two-tensor:

A(gε) +
∫

Ω
Rε dµε .

By assumption, we must have,

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

Rε dµε

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω
gijε Rcεijdµε

=

∫
Ω

(
∂εg

ij
ε Rcεij + gijε ∂εRcεij

)
dµε

∣∣∣∣
ε=0

+

∫
Ω

Rε ∂εdµε

∣∣∣∣
ε=0

.

38It is easy to come up with other scalars to integrate — an infinite number arise by con-
tracting tensor products of Rm and its derivatives. It is the scalar curvature, however, that leads
to general relativity.

66



11. EINSTEIN’S EQUATION

Let’s first consider the derivative of the inverse metric:

0 = ∂ε

(
gikε gεkj

)
=
(
∂εg

ik
ε

)
gεkj + gikε ∂εgεkj ,

so that (
∂εg

ik
ε

)
gεkj = − gikε hkj .

We arrive at

∂εg
ij
ε = − gikε gjlε hkl

⇒ ∂εg
ij
ε

∣∣
ε=0

= − gikgjlhkl + −hij .

Therefore, ∫
Ω
∂εg

ij
ε Rcεijdµε

∣∣∣∣
ε=0

= −
∫

Ω
hij Rcij dµ .(11.3)

Now consider the derivative of the measure. In local coordinates,

∂εdµε = ∂ε

√
−det gφε dφ

= − 1

2

√
−det gφε

∂ε det gφε dφ

=
1

2

√
−det gφε g

ij
ε hijdφ

=
1

2
gijε hijdµε ,

where we used the following formula for the derivative of a determinant:

∂ε detA(ε) = Aij(ε) detA(ε)∂εAij(ε) .

We arrive at

∂εdµε
∣∣
ε=0

=
1

2
gijhijdµ =

1

2
hijgijdµ .

Therefore, ∫
Ω

Rε ∂εdµε

∣∣∣∣
ε=0

=

∫
Ω

1

2
hij R gijdµ .(11.4)

The remaining integrand, gij∂εRcεij |ε=0, turns out to be of divergence
form, and therefore integrates to zero for all variations h having compact
support in Ω. To see this, recall that the difference of two connections defines
a tensor, and hence so too does the assignment

(U, V ) 7→ d

dε

∣∣∣∣
ε=0

∇εUV ,
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where ∇ε is the Levi-Civita connection of gε. Denote this tensor by Γ̇ ∈
Γ(T ∗M ⊗ T ∗M ⊗ TM). Note that its covariant derivative satisfies

∇iΓ̇jkl = ∂iΓ̇jk
l − Γ̇pk

lΓij
p − Γ̇jp

lΓik
p + Γ̇ik

pΓip
l .

(This is just the usual formula for the covariant derivative of a tensor field
with respect to a coordinate chart.) Differentiating the formula for the
components of Rmε at ε = 0, we then find that(

d
dε

∣∣
ε=0

Rmε

)
ijk

l = ∇kΓ̇ij l −∇jΓ̇ikl .

Taking the trace yields(
d
dε

∣∣
ε=0

Rcε
)
ij

= ∇jΓ̇ill −∇lΓ̇ij l ,

and hence
gij
(
d
dε

∣∣
ε=0

Rcε
)
ij

= divX ,

where X is a vector field obtained by taking the difference of certain traces
of Γ̇. We conclude that ∫

Ω
gijε ∂εRcεijdµε

∣∣∣∣
ε=0

= 0 .

Thus, recalling (11.3) and (11.4), we obtain

0 =

∫
Ω
hij
(

Rcij −
1

2
R gij

)
dµ

for all h with compact support in Ω. Since h and Ω were otherwise arbitrary,
we must in fact have

Rc−1

2
R g = 0 ,

which is Einstein’s vacuum equation.

We note at this point that we could just as well argue for the inclusion
of some amount Λ ∈ R of the lower order volume term in our functional.
That is, we may take

A(Ω) +
∫

Ω
R dµ− 2Λ

∫
Ω
dµ .

It is not hard to see that this will result in the vacuum Einstein equation
with cosmological constant Λ:

Rc−1

2
R g + Λg = 0 .

If we include suitable “Lagrangian” densities Lk(g) + L(φk, g) to our
action corresponding to “matter fields” φk (sections of some vector bundle
over M), then we obtain the most general form of the Einstein equation:

Rc−1

2
R g + Λg = T ,(11.5)
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where

Tij + −
∑
k

(
∂Lk
∂gij

− 1

2
Lkgij

)
.(11.6)

Exercises.

Exercise 11.1. Let (M, g) be a Lorentzian manifold and let Λ be a smooth
function. Show that the tensor Λg is divergenceless if and only if grad Λ = 0;
that is, Λ is locally constant.

Exercise 11.2.

(a) Extremise the action with matter Lagrangian to obtain (11.5)–(11.6).

A natural example of a matter Lagrangian is given by

Lscalar(φ, g) +
1

2
|∇φ|2 + V ,

where φ is a “scalar field” (a smooth function) and V is a “potential energy”
(also just a smooth function). The term 1

2 |∇φ|
2 is the “kinetic energy”.

(b) Show that the stress-energy tensor corresponding to Lscalar is

Tscalar = − dφ⊗ dφ+
1

2

(
1

2
|∇φ|2 + V

)
g .
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12. Schwarzschild’s solution

“If the semi-diameter of a sphere of the same density as
the Sun in the proportion of five hundred to one, and by
supposing light to be attracted by the same force in propor-
tion to its mass with other bodies, all light emitted from
such a body would be made to return towards it, by its
own proper gravity.” — John Michell39, (Letter to Henry
Cavendish, 1788).

“It is therefore possible that the greatest luminous bodies
in the universe are on this account invisible.” — Pierre-
Simon Laplace40, (Exposition du Système du Monde, 1796).

Einstein’s equation, although delightfully elegant, is an intimidating
beast: In any local coordinate system it becomes a system of n2 = 16
coupled non-linear hyperbolic pde (although the symmetry of the Einstein
and stress tensors reduces this to 10 coupled equations) to be solved for
the 10 independent components of the metric. Of course, every Lorentzian
manifold solves the Einstein equation for some T (namely, T = G); however,
finding meaningful solutions involves prescribing T .

The simplest stress-energy tensor is T = 0. Our physical motivation
for the Einstein equation suggests that solutions should model spacetime in
regions absent of matter and energy (but not necessarily their influence!).
So the resulting equation is called the vacuum (Einstein) equation:

Rc−1

2
R g = 0 .

Taking the trace (with respect to g) yields R = 0, so that, in fact,

(12.1) Rc = 0 .

That is (in dimensions n ≥ 3), the Einstein tensor vanishes (if and) only if
the Ricci tensor vanishes. At first glance, this appears to imply the trivial
solution, i.e. flat Minkowski space. A moment’s thought however suggests
that other solutions should be possible, since, after all, gravity extends its
influence rather effectively through the vast tracts of vacuum between the
galaxies, where the vacuum equation should be satisfied. Luckily, there do
indeed exist non-flat, Ricci-flat metrics.

In normal coordinates, the Ricci curvature is, to highest order, the co-
ordinate Laplacian of the metric. Since the metric is Lorentzian, this means
that (12.1) is, when written in normal coordinates, a coupled system of 10

391724–1793.
401749–1827.
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nonlinear hyperbolic pde. In order to solve such a system, one needs to im-
pose appropriate boundary conditions. It is not immediately obvious how
to do this, since even the underlying manifold on which the metric lives is
unspecified.

We will not yet concern ourselves with the general existence theory for
(12.1). Let us instead try to find some special solutions. One way to do this
is to reduce the nonlinear system of pde to a system of ode by imposing
certain symmetry assumptions. We will seek a a metric that is spherically
symmetric in space and unchanging in time. Physically, this would be a
sensible model for a stable, isolated gravitational system.

A näıve way to do this is to assume that there are coordinates (t, r, θ, φ)
such that the metric is of the form

g = − f(r)dt⊗ dt+ h(r)dr ⊗ dr + r2gS2(θ, φ)

for some positive functions f and h of only the r-coordinate, where

gS2 + dθ ⊗ dθ + sin2 θ dφ⊗ dφ
is the metric of the 2-sphere. We can then stick this into the Einstein
equation and find out what f and h have to be (or if such a metric cannot
solve Einstein’s equation). This approach is fine if we just want to find
a solution of Einstein’s equation, however, by being more careful, we can
actually learn a little more.

Suppose only that our metric is spherically symmetric; that is, it has a
set of Killing fields generating SO(3), the Killing algebra of S2. This algebra
is generated by vector fields R,S, T having the cyclic commutation relations:

[R,S] = T

[S, T ] = R

[T,R] = S .

Now, S2 has a standard chart (φ, θ) on which these Killing fields take the
form:

R = ∂φ

S = cosφ∂θ − cot θ sinφ∂φ

T = − sinφ∂θ − cot θ cosφ∂φ .

So we are tempted to assume that there is a coordinate patch ({t, r, θ, φ}, U)
for which our metric takes the form

g = f(t, r)dt⊗ dt+ h(t, r)dr ⊗ dr + r2gS2(θ, φ) ,(12.2)

however, we don’t need to assume this at all. Here’s a rough argument for
why it holds automatically: since the Killing algebra generated by R,S, and
T is involutive (i.e. closes under the Lie bracket), the Frobenius Theorem
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implies that it is tangent to a foliation of our manifold. From the structure of
the Killing algebra, the leaves of the foliation are rigid 2-spheres (that is, the
metric restricted to each leaf, a topological 2-sphere, is the standard 2-sphere
metric). We can coordinate an “initial” 2-sphere using polar coordinates
φ, θ. These coordinates can then be extended (at least locally) to the other
2-spheres using Fermi normal coordinates (a, b, φ, θ) based on the initial
2-sphere (the idea is to shoot off geodesics from the initial surface in the
two normal directions, and use the distance along them to define “radial”
coordinates a and b). In these coordinates, ∂a and ∂b are orthogonal to the
2-spheres, so that g takes the form

g = gaada⊗ da+ gab(da⊗ db+ db⊗ da) + gbbdb⊗ db+ r2gS2 ,

where gaa, gab, gbb and r only depend on the coordinates a and b. By a
straightforward coordinate change (a, b) → (t, r), we can diagonalise the
first part of the metric, so that

g = gttdt⊗ dt+ grrdr ⊗ dr + r2gS2 ,

where gtt and grr only depend on the coordinates t and r. So spherical
symmetry really means that the metric looks like (12.2) in appropriate co-
ordinates. We note that we have proved a general geometric statement, inde-
pendent of Einstein’s equation: any spherically symmetric (n-dimensional)
Lorentzian metric admits local coordinates about each point for which it is
of the form

g = f(t, r)dt⊗ dt+ h(t, r)dr ⊗ dr + r2gSn−2 .

We make one further simplification: that f = gtt and h = grr do not depend
on the t-coordinate. This is equivalent to assuming that ∂t is a Killing
vector field. If gtt is negative, then ∂t is a time-like Killing field. A metric
possessing a timelike Killing field is said to be stationary. If gtt < 0, we must
have grr > 0. So let’s write gtt = −e−2α and grr = e−2β for some functions
α and β of the r-coordinate, so that

g = − e−2αdt⊗ dt+ e−2βdr ⊗ dr + r2 sin2 θdφ⊗ dφ+ r2dθ ⊗ dθ ,

Since g is diagonal in these coordinates, it is easy to compute the dual
metric:

g = − e2α∂t ⊗ ∂t + e2β∂r ⊗ ∂r + r−2 sin−2 θ∂φ ⊗ ∂φ + r−2∂θ ⊗ ∂θ .

We41 are now ready to attack Einstein’s equation.

Choose your own adventure exercise. Determine the connection using
one of the following methods:

41Rather you, as I have lazily left the rest of it as an exercise. Feel free to send an email if
you’re stuck, or, worse, if my formulae are incorrect.
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(1) Calculate the (algebraically independent) connection coefficients of
g with respect to the coordinate frame {∂i}3i=0 = {∂t, ∂r, ∂θ, ∂φ} and
its dual {dxi}3i=0 = {dt, dr, dθ, dφ} using the formula

2dxk(∇i∂j) + 2Γij
k = gkl (∂igjl + ∂jgil − ∂lgij) .

Or

(2) Calculate the (algebraically independent) connection coefficients of
g with respect to the orthonormal frame42 {ea}3a=0 = {F−1∂t, H

−1∂r,
r−1∂θ, (r sin θ)−1∂φ} and the dual frame {Ea}3a=0 + {Fdt,Hdr, rdθ,

r sin θdφ}, where F = e−α and H = e−β, using the formula

2Γab
c = gcd (Cabd − Cbda + Cdab) ,

where Cabc + g([ea, eb], ec) are the structure coefficients of the
frame. Or

(3) Calculate the (algebraically independent) connection 1-forms {ωab}3a,b=0,
defined by

ωa
b(ec) = −(∇cEb)(ea) ,

using the formula

gbcωa
c = ωab = (ιaιbdEd)E

d + ιbdEa − ιadEb ,

where Eb = gabE
a.

Hint: By the symmetry Γijk = Γjik in case (1), and the skew-symmetry

Γijk + Γikj = 0 in cases (2)-(3), there are a priori n2(n+1)
2 = 40 independent

connection coefficients in case (1), n2(n−1)
2 = 24 independent connection

coefficients in case (2), and n(n−1)
2 = 6 independent connection one-forms

in case (3). The number of coefficients reduces further due to the diagonal
structure of the metric, and many of the remaining components vanish due
to the simple dependence of the metric coefficients on the coordinates.

Choose your own adventure exercise. Calculate the Riemann tensor
using one of the following methods:

(1) Calculate the components of the Riemann tensor with respect to the
coordinate frames using the formula

Rmijk
l = ∂jΓik

l − ∂iΓjkl + Γik
pΓjp

l − Γjk
pΓip

l .

Or

42The orthonormal frame approach has two advantages: the metric components are

diag(−1, 1, 1, 1), so that raising and lowering an index is just multiplication by ±1, and there
are fewer independent connection components (1-forms) to calculate, since Cabc (ωab) is antisym-
metric in a, b, whereas ∂kgij is symmetric in i, j. But be careful with factors of −1 when raising

and lowering indices.
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(2) Calculate the components of the Riemann tensor with respect to the
orthonormal frames using the formula

Rmabc
d = ebΓac

d − eaΓbcd + Γac
pΓbp

d − Γbc
pΓap

d − CbapΓpcd ,

where Cab
c = gcdCabd = gccCabc. Or

(3) Compute the Riemann curvature 2-forms {Rma
b}3a,b=0 using the

formula

Rma
b = dωa

b + ωa
c ∧ ωcb .

Hint: Due to the symmetries

Rmijkl = − Rmjikl ,

Rmijkl = − Rmijlk ,

Rmijkl = Rmklij , and

Rmijkl + Rmjkil + Rmkijl = 0

of the Riemann tensor, there are only n2(n2−1)
12 = 20 algebraically indepen-

dent components in cases (1)-(2) and only n(n−1)
2 = 6 independent curvature

two-forms in case (3).

Choose your own adventure exercise. Compute the Ricci tensor using
one of the following methods:

(1) Contract the Riemann tensor in the coordinate frame to obtain

Rcij = Rmikj
k .

Or

(2) Contract the Riemann tensor in the orthonormal frame to obtain

Rcab = Rmacb
c .

Or

(3) Contract the Riemann 2-forms in the orthonormal frame to obtain
the Ricci 1-forms

Rca = ιbRma
b .

Hint: Since Rc is symmetric, the number of independent components in

cases (1)-(2) is n(n+1)
2 = 10.

Choose your own adventure exercise. Set the Ricci tensor equal to
zero to obtain three differential equations (plus one redundant one) for the
functions α and β (or F and H). Deduce that

e−2α = e2β =

(
1− M

r

)
,
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where M is a constant that appears in solving the ode. If you don’t get
something like this, go back to step one and check your signs, otherwise...

Congratulations, you have successfully completed your quest! Your
prize: the Schwarzschild metric,

g = −
(

1− M

r

)
dt⊗ dt+

(
1− M

r

)−1

dr ⊗ dr + r2 sin2 θdφ⊗ dφ+ r2dθ ⊗ dθ.

(12.3)

The constant M (by comparing with the “weak-field limit”) is inter-
preted as the mass of the source of the field. We make the following remarks:

(1) As r →M , we see that the grr component of the metric blows-up.
But we assumed that ∂t is a timelike Killing field (equivalently,
gtt < 0), which is not true when r = M . Therefore our chart is
not defined here. In fact, the “singularity” at r = M may be “re-
moved” by embedding the Schwarzschild solution inside a larger
spacetime satisfying the Einstein equation, for which the hypersur-
face r = M simply demarcates the point where the timelike Killing
field ∂t becomes spacelike (and ∂r becomes timelike). One way to
achieve this is to making use of a better choice of coordinate ansatz
(Kruskal–Szekeres coordinates, say).

(2) Since ∂r is a timelike Killing field for r < M , we have really discov-
ered two different regions (distinguished by r > M and 0 < r < M)
for which (12.3) solves Einstein’s equation. (In Kruskal–Szekeres
coordinates, both of these regions lie in a single chart.)

(3) In the inner chart, we can investigate the limit r → 0. We find that
there is a ridgy-didge curvature singularity at r = 0: the normed
curvature

|Rm|2 + g(Rm,Rm) = Rmijkl Rmijkl =
12M2

r6

blows-up as r → 0. Note, however, that there’s no good way of
figuring out when coordinate singularities are dinky-di singulari-
ties: for example, the scalar curvature of the Schwarzschild metric
is identically zero, and we need to look at the more complicated
invariant |Rm| to see that something nasty occurs. More generally,
|Rm| could remain bounded at some point while some other geo-
metric quantity (e.g |∇Rm|, or |∇2Rm|,...) blows-up there. Each
of these singularities may have a different physical significance (or
none at all).

(4) Since the trace part (the Ricci curvature) of the curvature tensor
of the Schwarzschild metric is bounded (it is zero), it must be the
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trace-free part which blows-up. The trace-free part, R̊m, of Rm is
called the Weyl tensor. It is given explicitly by

R̊m + Rm−1

2

(
Rc−R

4
g

)
©∧ g − R

24
g©∧ g ,

where ©∧ is the Kulkarni–Nomizu product, defined on a pair of
covariant 2-tensors S and T by

(S©∧ T )(X,Y, Z,W ) + S(X,Z)T (Y,W )− S(X,W )T (Y,Z)

+ S(Y,W )T (X,Z)− S(Y,Z)T (X,W ) .

The Weyl tensor does not convey information on how the volume of
the body changes (this is encoded in the Ricci tensor), but rather
only how the shape of the body is distorted by the tidal force. It
turns out that the Weyl tensor is invariant under conformal changes
of the metric, g 7→ e2ug, u ∈ C(M). So the Schwarzschild singular-
ity is also a singularity of the conformal structure of spacetime.

Exercises.

Exercise 12.1. Obtain the Schwarzschild metric by completing the choose
your own adventure exercises in this section.

Exercise 12.2. Show that the “stationary” assumption was not necessary.
Deduce that any spherically symmetric vacuum solution of Einstein’s equa-
tion is automatically Schwarzschild, and hence stationary. In particular,
a spherically symmetric, uncharged mass cannot emit gravitational waves.
This result is known as Birkhoff’s Theorem, which is the simplest of the
democratic “no hair” theorems for singularities.
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13. Geodesy of the Schwarzschild solution

“It is always pleasant to have exact solutions in simple
form at your disposal.” — Karl Schwarzschild43, 1916.

13.1. Constants of the motion. Recall that a Killing field is a vector
field K whose integral curves generate isometries; that is,

gφ(p,s)

(
φ(·, s)∗u, φ(·, s)∗v

)
= gp(u, v)

for all u, v ∈ TpM , p ∈ M , and s ∈ (−s0, s0), where φ : M × [0, s0)→ M is
the flow of K: 

dφ

ds
(p, s) = K(φ(p, s)) ,

φ(p, 0) = p .

It follows that

LKg = 0 ,(13.1)

where L denotes the Lie derivative. Now, the Lie derivative “commutes with
contractions”, so that

0 = LKg(X,Y ) = K [g(X,Y )]− g(LKX,Y ) + g(X,LKY ) .

Since the Lie derivative of a vector field Y with respect to X is the commu-
tator [X,Y ], we obtain

0 = LKg(X,Y ) = K [g(X,Y )]− g([K,X], Y ) + g(X, [K,Y ]) .

Using the metric compatibility and symmetry of ∇, we conclude that

0 = LKg(X,Y )

= g(∇KX,Y ) + g(X,∇KY )− g([K,X], Y ) + g(X, [K,Y ])

= g(∇XK,Y ) + g(X,∇YK) .(13.2)

In other words, the bilinear form related to ∇K by the metric is skew-
symmetric. Equation (13.2) is called Killing’s equation. Killing’s equation
is equivalent to (13.1); solving it is one way to find Killing fields.

Now suppose that γ is a geodesic of g (with parameter s). Then

∂sg(γ′,K) = g(∇sγ′,K) + g(γ′,∇sK)

= g(γ′,∇sK) (Since γ is geodesic)

= 0 (By Killing’s equation (13.2)) .(13.3)

That is, if K is a Killing field, and γ is a geodesic, then the scalar g(γ′,K)
is constant along γ. We will call g(γ′,K) a constant of the motion of γ.

431873–1916.
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Recall that (outside the Schwarzschild radius) the Schwarzschild metric

g = −
(

1− M

r

)
dt⊗ dt+

(
1− M

r

)−1

dr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
has a Killing algebra generated by four Killing fields, one generating time
translations, K + ∂t, and three generating rotations,

R = ∂φ

S = cosφ ∂θ − cot θ sinφ ∂φ

T = sinφ ∂θ − cot θ cosφ ∂φ .

Let γ be a timelike, future pointing, unit speed geodesic of the Schwarzschild
metric. We interpret γ as a “test particle” of negligible mass, m. In the
(t, r, θ, φ) coordinates, we can write

γ′ = t′∂t + r′∂r + θ′∂θ + φ′∂φ ,

where ·′ denotes differentiation with respect to the proper time, s, and we
conflate the coordinates t, r, θ, φ with their values along γ, t◦γ, r◦γ, θ◦γ, φ◦γ.

By rotating the θ, φ coordinates, we may assume that γ satisfies θ ≡ π/2.
Then

γ′ = t′∂t + r′∂r + φ′∂φ .

Now, since K is Killing, the conservation law (13.3) implies that

E + g(mγ′,K) = −mt′
(

1− M

r

)
is a constant of the motion of γ. Comparing with the physics of special
relativity (which is particularly justified where r is large compared to M),
we interpret E as the energy of γ, as determined by a comoving observer.

Similarly,

L + g(mγ′, R) = mφ′r2

is a constant of the motion. We interpret L as the angular momentum of
γ about the “axis” defined by the integral curves of R, as determined by a
comoving observer.

Now consider

−m2 = g(mγ′,mγ′) = mg(mγ′, t′K + r′∂r + φ′R)

= mt′E +m2(r′)2

(
1− M

r

)−1

+mφ′L

= − E2

(
1− M

r

)−1

+m2(r′)2

(
1− M

r

)−1

+
L2

r2
.
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Rearranging, we obtain

E2 = m2 +m2
(
r′
)2

+
L2

r2
−m · mM

r
− ML2

r3
.

So we interpret each of the terms on the right as a form of energy. The
first term we are already familiar with as a form of energy from special
relativity, and the second and third terms correspond with classical kinetic
energies. The term −mM

r corresponds to the Newtonian gravitational po-
tential, which justifies the identification of the constant M with the mass

of the system. The final term ML2

r3
is not familiar from Newtonian physics

or special relativity. It turns out that it is precisely what was required to
explain the “perihelion anomoly” of the planet Mercury (see [3]).

13.2. Radial geodesics. Consider a test particle with unit mass and no
angular momentum. From above, the energy of the particle must satisfy

E2 =

(
dr

ds

)2

+

(
1− M

r

)
⇒
(
dr

ds

)2

= E2 −
(

1− M

r

)
.(13.4)

Let us synchronize clocks so that r0 + r(0) satisfies

0 = E2 −
(

1− M

r0

)
⇒ r0 =

M

1− E2
.(13.5)

Then r′|r=r0 = 0 (so we are dropping the test particle from rest at time zero).
If E2 < 1, then r0 > M , so that r0 is part of the exterior Schwarzschild
coordinate chart. Combining (13.4) and (13.5), and separating variables,
we obtain √

r

r0 − r
dr = −

√
M

r0
ds .

This can be solved by reparametrising r so that

r =
r0

2
(1 + cos ξ).

The solution is then given by

2r = r0(1 + cos ξ)

2s = r0

√
r0

M
(ξ + sin ξ)

(13.6)

for ξ ∈ [0, ξM ), where ξM is the point at which the geodesic reaches the
edge of the exterior chart. On the other hand, since the metric takes the
same form on the interior chart, for ξ ∈ (ξM , π) the equations (13.6) define a
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radial geodesic that lies in the interior. Notice that r and s remain smooth
with respect to ξ as ξ → ξM . By including this smooth limit point in our
manifold and identifying the outer and inner geodesics at that point, we
can smoothly “glue” the interior and exterior solutions together to obtain
a single, connected solution described (modulo the horizon r = M) by our
two coordinate charts44.

On the other hand, we saw that the norm |Rm| of the curvature tensor
blows up as r → 0, which implies that the metric is not smooth as r → 0.
That is, our geodesic cannot be extended (smoothly) through the curvature

singularity r = 0. Since s→
√
r3

0π
2/M as r → 0, the singularity is reached

in finite proper time. Something terrible must happen to our observer at
proper time s =

√
r3

0π
2/M !

We have thrown the word “singularity” around a lot here, all the while
remaining very vague about its meaning. It was used to refer to the bad
behaviour of the metric, in Schwarzschild coordinates, as r → M , and to
the behaviour of the curvature, |Rm| → ∞, as r → 0. There are many
other things that could potentially go wrong, for example other invariants
such as derivatives of the curvature could blow-up, or the injectivity radius
could approach zero. The situation above, in which an observer ceases to
exist, seems worthy also of the monacle “singularity”, even if it is perhaps
not coupled with something like the blow-up of curvature. This latter kind
of singularity certainly seems physically more objectionable than the other
kinds.

Exercises.

Exercise 13.1. Show that the angular momenta of a radial Schwarzschild
geodesic γ about the axes determined by the Killing fields S and T are zero.

44The result can also be described in a single coordinate chart, known as Kruszkal–Szekeres
coordinates (see [3]).
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14. The Friedmann universe

Among the authorities it is generally agreed that the Earth is
at rest in the middle of the universe, and they regard it as in-
conceivable and even ridiculous to hold the opposite opinion.
However, if we consider it more closely the question will be
seen to be still unsettled, and so decidedly not to be despised.
For every apparent change in respect of position is due to
motion of the object observed, or of the observer, or indeed
to an unequal change of both. — Nicolaus Copernicus45 (On
the Revolutions of the Heavenly Spheres).

There is experimental evidence (namely, the temperature distribution of
the cosmic microwave background radiation and the present distribution of
galaxies) to suggest that the universe is spatially isotropic at large scales,
at least from the point of view of an Earth-bound astronomer. That is, at
each moment on our astronomer’s watch, the universe looks, to him, approx-
imately the same, at a large enough scale, in all directions. The Copernican
principle suggests that this should also be the case for astronomers on other
planets in other epochs.46

Definition 14.1. A Riemannian manifold (Σ, γ) is called isotropic at
p ∈ Σ if, given any u, v ∈ SpΣ (the unit tangent space at p), there is an
isometry φ of Σ that fixes p and rotates the direction u to the direction v.
That is,

φ(p) = p and φ∗u = v .

A Riemannian manifold (Σ, γ) is called isotropic (or maximally sym-
metric) if it is isotropic at every p ∈ Σ.

Exercise 14.1. A Riemannian manifold (Σ, γ) is called homogeneous if
given p, q ∈ Σ there is an isometry φ of Σ such that φ(p) = q. Show that
every complete isotropic Riemannian manifold is homogeneous.

We will seek a solution (M, g) to Einstein’s equation admitting a smooth
function t : M → R with nonvanishing gradient such that

g = −dt⊗ dt+ α2γ ,

where α is constant on each level hypersurface Σt0 + {x ∈ M : t(x) = t0},
L∂tγ = 0, and, denoting by ιΣt : Σt ↪→ M the inclusion map, ι∗Σtγ is an
isotropic Riemmanian metric on Σt for each t.

451473–1543
46The model we shall develop, based on these assumptions, is also known as the Friedmann

or Friedmann–Robertson–Walker or Robertson–Walker or Friedmann–Lemâıtre model. We have

given Friedmann all the credit since he was the earliest to develop the model and since Friedmann
model it is shorter than Friedmann–Lemâıtre–Robertson–Walker model.
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Proposition 14.2. If (Σ, γ) is isotropic, then γ is Einstein:

Rc = fγ

for some f ∈ C∞(Σ).

Proof. Recall that the sectional curvature of a two-plane Π ⊂ TpΣ is
defined by

K(Π) + Rm(e1, e2, e1, e2)

for some (and, in fact, any) orthonormal basis {e1, e2} for Π.

Thus, for any u ∈ TpΣ,

Rc(u, u) =
n∑
a=1

Rm(ea, u, ea, u) ,

where {ea}n1 is any orthonormal basis for TpΣ. Using the Gramm–Schmidt
procedure, we can assume that e1 = u/|u|, so that

Rc(u, u) =
n∑
a=2

|u|2 Rm(e1, ea, e1, ea) = |u|2
n∑
a=2

K(Πa) ,

where Πa + span{e1, ea}.
Now, since the curvature tensor is invariant under isometries, the isotropy

of γ implies that K(Πa) = K(Πb) = kp for all a, b = 2, . . . , n. It follows that

Rc(u, u) = (n− 1)kp|u|2 = (n− 1)kpγ(u, u) .

By polarisation, we conclude that

Rc(u, v) = (n− 1)kpγ(u, v)

for all u, v ∈ TpΣ. Since p was arbitrary, the claim follows. �

Theorem 14.3 (Schur’s Theorem). If γ is a Riemannian Einstein metric
on Σn, and n ≥ 3, then γ has locally constant scalar curvature, and

Rc =
R

n
γ .

Proof. If γ is Einstein, Rc = fγ, then, taking the trace, R = nf , so that
Rc = R

n γ. It follows that

div Rc =
1

n
dR .

However, we have seen that the second Bianchi identity yields

div Rc =
1

2
dR .

It follows that (n− 2)dR = 0. �
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Corollary 14.4. If (Σn, γ), n ≥ 3, is isotropic, then γ has constant sectional
curvature k, and Rc = (n− 1)kγ.

Now (the argument is similar to the one for the Schwarzschild metric)
isotropy of γ ensures that there exist local coordinates {t, r, θ, φ} about each
p ∈ Σ such that

γ = e2βdr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
,

where β depends only on r (that is, ∂θβ = ∂φβ = ∂tβ = 0). Therefore, the
Lorentzian metric g on M locally takes the form

g = −dt⊗ dt+ α2
[
e2βdr ⊗ dr + r2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)]
,

The non-vanishing components of the Ricci tensor of γ are given (in
{r, θ, φ} coordinates) by

Rcrr =
2

r
βr

Rcθθ = e−2β(rβr − 1) + 1

Rcφφ = sin2 θ Rcθθ ,

where βr + ∂rβ (see Exercise 14.2).

Equating Rc = 2kγ, we obtain the ode

1

r
βr = ke2β

e−2β(rβr − 1) + 1 = 2kr2 .

Eliminating βr, we obtain

e−2β = 1− kr2 ,

and hence

γ =
1

1− kr2
dr ⊗ dr + r2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
.

When k = 0, this simply the Euclidean metric on R3 in polar coordinates.

We conclude the following:

(1) If k > 0, then (Σ, γ) is locally isometric to Sn
1/
√
k
, the n-sphere

of radius 1/
√
k, and in particular has finite diameter. If (Σ, γ) is
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geodesically complete47, then it is necessarily compact48, and its
universal cover is Sn

1/
√
k
.

(2) If k = 0, then (Σ, γ) is locally isometric to Rn. However (Σ, γ)
could be either unbounded (e.g. Rn) or bounded (e.g the cubic
torus Tn + S1 × · · · × S1). If (Σ, γ) is geodesically complete, then
its universal cover is Rn.

(3) If k < 0, then (Σ, γ) is locally isometric to Hn
1/
√
−k, n-dimensional

hyperbolic space of curvature k, and could be either unbounded
(e.g. Hn

1/
√
−k) or bounded (e.g. quotients of Hn by lattices). If

(Σ, γ) is geodesically complete, then its universal cover is Hn
1/
√
−k.

We next consider the components of the Ricci tensor of g. The non-
vanishing components are

Rctt = − 3
α̈

α
,

Rcrr = grr

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

Rcθθ = gθθ

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

Rcφφ = gφφ

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

where α̇ + ∂tα and α̈ + ∂2
t α. It follows that

R = 6

(
α̈

α
+

(
α̇

α

)2

+
k

α2

)
.

(See Exercise 14.4.)

Before solving the Einstein equation, we need to specify a stress tensor.
One possibility is an empty universe, T = 0. In this scenerio, we have

α̈ = 0

α̇2 + k = 0 .

47Geodesic completeness refers to the infinite (smooth) extendability of all geodesics. By

the Hopf–Rinow theorem, geodesic completeness of a Riemannian manifold (i.e. positive definite
metric) is equivalent to completeness of the manifold as a metric space, with distance defined by

the length of shortest joining curves. We will discuss geodesic completeness further in the next
lecture.

48If (Σ, γ) satisfies Rc ≥ (n− 1)kγ for some k > 0, then the diameter of Σ is bounded above

by π/
√
k. This is known as Meyers’ Theorem.
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In particular, k ≤ 0. Solving the second equation, we get α(t) = ±t
√
−k +

α0. Translating the time coordinate, we can set α0 = 0. It appears that the
universe either expands uniformly out of a single point at t = 0, existing
for all t > 0, or exists for all t < 0, collapsing into a single point at t = 0.
However, it can be checked that the curvature tensor vanishes. It follows
that (M, g) is locally isometric to Minkowski spacetime, so that our chart is
just a subset of Minkowksi spacetime with some funny coordinates.

By Einstein’s equation, the stress-energy tensor must be of the form

T = (ρ+ p)dt⊗ dt+ pg ,(14.1)

where ρ and p depend only on t (i.e. they are constant on the level-sets
Σt). Given x ∈ M , ρ(x) is interpreted as the energy density at x as seen
by an observer at x with tangent vector ∂t, and p(x) is interpreted as the
pressure (which is the same in all directions) at x as felt by an observer at
x with tangent vector ∂t. Since ρ and p depend only on t, the pressure and
energy-density of this universe are uniform across each space slice Σt.

Einstein’s equation yields the ode

ρ

3
=

(
α̇

α

)2

+
k

α2
(14.2)

p = −

(
2
α̈

α
+

(
α̇

α

)2

+
k

α2

)
.(14.3)

These equations are known as the Friedmann equations. Adding the two
yields

α̈

α
= − 1

6
(3p+ ρ) ,

which we can write as the pair of first order equations

H =
α̇

α
(14.4)

Ḣ +H2 = − 1

6
(3p+ ρ) .(14.5)

We gain an equation from the requirement that T be divergence free:

ρ̇ = − 3H(p+ ρ) ,

but this can also be obtained from differentiating (14.2).

We would like to solve (14.4)–(14.5), however this will not be possible
without specifying 3p + ρ. On the other hand, if 3p + ρ has a sign, we can
determine a very important property of (14.5):

Proposition 14.5. Let H : (t0, 0] → R be a solution to (14.5) with H0 +
H(0) > 0 which does not extend farther backwards in time. If 3p + ρ ≥ 0,
then t0 > −∞ and H ↗∞ as t↘ t0.
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Proof. This is a simple comparison property of the ode φ̇+φ2 = 0. We will
prove the statement in case 3p + ρ > 0 (a simple perturbation argument49

shows that it also holds for 3p+ ρ ≥ 0). Let u be the solution to{
u̇+ u2 = 0

u(0) = H0 .

That is,

u(t) =
H0

1 +H0t
.

We will prove that H(t) > u(t) for all t ∈ (−H−1
0 , 0) ∩ (t0, 0).

Set w + log(H/u). Then w satisfies the equation

ẇ = −(H − u)− 3p+ ρ

6H
.(14.6)

In particular, ẇ(0) < 0. It follows that w(t) > 0 for t less than but close to
0.

Suppose, contrary to the claim, that there is some t1 < 0 at which
w(t1) = 0. From above, we may assume without loss of generality that
w(t) > 0 for all t ∈ (t1, 0). Equivalently, H > u for t ∈ (t1, 0). By the mean
value theorem, there must be some t2 ∈ (t1, 0) such that ẇ(t2) = 0. But
this contradicts (14.6). Therefore w (and hence H −u) must be positive for
all t ∈ (t0, 0) such that H(t) is defined. The claim now follows. �

By (14.2) and (14.3), the energy density and pressure both become in-
finite as t↘ t0.

The assumption that 3p + ρ is non-negative is a consequence of the
Strong Energy Condition (sec):

Rc(u, u) ≥ 0 for all timelike u ∈ TM .

Roughly speaking, the sec says that gravity is always attractive. For
a perfect fluid, it can only be violated in the presence of negative energy
density or pressure (see Hawking and Ellis [4, §4.3] for a discussion of the
common “energy conditions” in general relativity). In any case, it was ob-
served by Hubble (confirming a prediction of Lemâıtre motivated by the
calculations we have just done) in 1929 that the current value of H is pos-
itive. We conclude, based on our model, that the (spatial) universe has
been expanding since some finite cosmological time in the past, at which it
emerged, somehow, from a region of infinite energy density and pressure.

49Precisely, consider wε = w − εt, with w as below, to obtain strict inequality ẇε(0) < 0,
and continue as below. The claim follows by taking ε↘ 0.
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Now recall the equation (14.5). Since α > 0, and we have assumed
ρ + 3p > 0, we find that α̈ < 0. That is, the expansion of the universe is
slowing down. This suggests the following question: Will the stress energy
term 3p + ρ be large enough to cause α̇ eventually to fall to zero, and
become negative, resulting in a recollapse of the universe, or will 3p + ρ
be sufficiently weak that α̇ only asymptotes to zero, resulting in a universe
that expands forever? Saul Perlmutter, Adam Riess, and Brian Schmidt
recently shared the 2011 Nobel prize in physics for observing, much to their
mutual surprise, that neither of these scenarios is true of our universe, since
the present value of α̈ is actually positive: The expansion of the universe
is accelerating ! What is this ubiquitous but unseen “dark energy” which
violates the sec, and causes the accelerated expansion of the cosmos?

14.1. The cosmological constant. Recall that the modified Einstein equa-
tion in the presence of the “cosmological term” is

Rc−1

2
R g + Λg = T ,(14.7)

where Λ is a constant. The cosmological term arises naturally in Hilbert’s
derivation of the Einstein equation, and was used early on by Einstein in an
attempt to square the theory with the belief that the universe is static.

In order to see how this might work, we rewrite (14.7) as:

Rc−1

2
R g = T − Λg + TΛ .

With T as in (14.1), this becomes50

Rc−1

2
R g = (ρ+ p)dt2 + (p− Λ)g .

So “cosmological dark energy” allows us to violate the sec, satsfied by
“vanilla” stress-energy tensors, without requiring the existence of an ex-
otic, unseen energy field of negative pressure: Λ is simply part of the local
geometry of the universe51.

The Friedmann equations now take the form

α̈

α
= Ḣ +H2 = − 1

6
(3p+ ρ− 2Λ) ,(14.8)

ρ̇ = − 3H(p+ ρ) .(14.9)

Einstein now sets p = 0 and ρ = 2Λ to obtain a static universe (with
constant α and ρ). However, once it became clear, from the observations of

50We can think of this as reinterpreting the cosmological constant as being caused by a

form of ubiquitous but unseen “vacuum energy” (or “dark energy”) of constant energy density,
ρvacuum = Λ, and constant pressure, pvacuum = −Λ. More on this in a moment.

51On the other hand, it would be nice to have an explanation of why the universe would
choose a certain value for Λ and no other.
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Slipher and others, that the universe was not static, but rather expanding,
Einstein quickly disposed of the cosmological constant, asserting: “If there
is no quasi-static world, then away with the cosmological term!”

The cosmological term was resurrected with attempts to combine general
relativity and quantum field theory (and observations of the Casimir effect),
which produced estimates for the value of the energy of the vacuum. Calcu-
lating this energy leads to the “worst52 prediction in the history of physics”
with the predicted value coming out something like 100 orders of magnitude
larger the experimental value. The cosmological term is now reinstated to
cancel out the vacuum energy. However, these calculations rely on ad hoc
arguments, and in any case are far beyond the scope of my knowledge, so I
will not discuss them further.

On the other hand (ignoring quantum behaviour) the cosmological con-
stant may be used to account for the accelerated expansion observed by
Perlmutter, Riess and Schmidt: returning to the modified Friedmann equa-
tions (14.8) and (14.9), observe that, even if normal matter obeys the sec,
we can still get the experimentally determined value for α̈0 > 0 with the
right choice of Λ > 0. Now, Λ is constant, whilst ρ and p are dynamic.
Thus, the dynamic state of the universe will become time dependent, since
α̈ depends on the sign of 3p + ρ − 2Λ > 0. However, in the case that
Λ < 0, (14.8) implies that α̈/α is uniformly negative, and it follows that
such a universe will inevitably collapse after some finite universal time. If
instead Λ > 0 the situation is more complicated, with perpetual expansion
(accelerated or decelerated) and eventual collapse possible. Moreover, since
the energy density decreases as α increases, a universe whose expansion is
initially “slowing down” (i.e. with 3p + ρ − 2Λ > 0) can reach a critical
time at which the expansion begins to accelerate (i.e. where 3p + ρ − 2Λ
changes sign). The current data for the radiation, mass and cosmological
energy densities suggests an eternal accelerated expansion [3].

Finally, we note that the Friedmann singularity is very different from
that of Schwarzschild: although both metrics experience curvature singu-
larities and geodesic incompleteness, the Schwarzschild metric, on the one
hand, is Ricci flat, and hence its curvature singularity occurs at the level
of the Weyl curvature. In particular, the curvature singularity cannot be
“cured” by conformal transformations of the metric. The Friedmann metric,
on the other hand, has controlled Weyl curvature. Indeed, multiplying it by

α−2 and setting τ +
∫ t

0 α(s)ds, we find that it is conformally equivalent to

52On the other hand, one might argue that this is only the second worst prediction in the
history of physics, since some well-known theorists predict that there are at least 10500 universes,
out by 500 orders of magnitude from the observed value.
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the nonsingular metric

g̃ = −dτ ⊗ dτ + γ .

This observation is central to Roger Penrose’s “conformal cyclic cosmology”.

Exercises.

Exercise 14.2. Show that the non-vanishing components of the Ricci tensor
of γ are given (in {r, θ, φ} coordinates) by

Rcrr =
2

r
βr

Rcθθ = e−2β(rβr − 1) + 1

Rcφφ = sin2 θ Rcθθ ,

where βr + ∂rβ.

Exercise 14.3.

(a) Consider R4 with cylindrical coordinates (t, r, θ, φ), where (r, θ, φ)
are the standard polar coordinates on R3, in which the Euclidean metric
takes the form

δ = dt⊗ dt+ dr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
.

Given k > 0, define new coordinates T and R on R \ {0} by

t = T
√

1− kR2 and r =
√
kRT .

Show that

δ = dT ⊗ dT + kT 2

(
1

1− kR2
dR⊗ dR+R2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

))
.

Deduce that the region (R, θ, φ) ∈ (0, 1√
k
) × (0, 2π) × (0, π) of R3 equipped

with the metric

γ +
1

1− kR2
dR⊗ dR+R2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
is locally isometric to the sphere S3

1/
√
k
.

(b) Denote by t the standard “time” coordinate on Minkowski space R3,1

and by (r, θ, φ) the standard polar coordinates on the pseudo-orthogonal com-
pliment, R3, in which the Minkowski metric becomes

η = −dt⊗ dt+ dr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
.

Given k < 0, define new coordinates T and R on the region

J + {x ∈ R4 : η(x, x) < 0}

by

t = T
√

1− kR2 and r =
√
−kRT .
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Show that

η|J = −dT ⊗dT −kT 2

(
1

1− kR2
dR⊗ dR+ r2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

))
.

Deduce that the region (R, θ, φ) ∈ (0,∞) × (0, 2π) × (0, π) of R3 equipped
with the metric

γ +
1

1− kR2
dR⊗ dR+R2

(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
is locally isometric to the hyperbolic space H3

1/
√
−k.

Exercise 14.4. Show that the non-vanishing components of the Ricci tensor
of g are

Rctt = − 3
α̈

α
,

Rcrr = grr

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

Rcθθ = gθθ

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

Rcφφ = gφφ

(
α̈

α
+ 2

(
α̇

α

)2

+
2k

α2

)
,

where α̇ + d
dtα and α̈ + d2

dt2
α. It follows that

R = 6

(
α̈

α
+

(
α̇

α

)2

+
k

α2

)
.

Exercise 14.5. Show that T satisfies the sec if and only if

3p+ ρ ≥ 0 and p+ ρ ≥ 0 .
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15. THE INITIAL VALUE FORMULATION OF EINSTEIN’S
EQUATION

15. The initial value formulation of Einstein’s equation

“In so far as a scientific statement speaks about reality, it
must be falsifiable: and in so far as it is not falsifiable, it
does not speak about reality.” — Karl Popper53 (The Logic
of Scientific Discovery)

In order for general relativity to be a fully predictive theory, it should
admit an initial value formulation satisfying some version of the following
properties:

(1) There is a class of initial conditions (restricted perhaps by certain
reasonable constraints) which always provides solutions.

(2) Solutions are determined uniquely by those initial conditions.

(3) Solutions depend continuously on the initial conditions.

A theory satisfying these conditions is called “well-posed”.

In classical physics, the physical laws are generally phrased as second
order partial differential equations (perhaps the Euler–Lagrange equation of
some action functional), whose solutions govern the “state” of the system
(whose values are usually observable quantities), depending usually on time
and space coordinates. The problem is then solvable by specifying the state
of the system and its first derivatives at some initial time and/or at the
spatial boundary (the exact nature of the boundary conditions will depend
on the pde at hand).

In general relativity, the problem is not so straightforward, since space
and time themselves are part of the system for which we are trying to solve.
In order to see how we might escape this conundrum, let us turn the problem
around: suppose we are given a solution to Einstein’s equation; the solution
consists of a four dimensional manifold M equipped with a Lorentzian metric
g satisfying the Einstein equation:

Rc−1

2
R g = T,

or, equivalently,

Rc = T − 1

2
tr(T )g .

We have seen that this tensor equation can be viewed as a partial differential
equation on M . Indeed, in local coordinates xi : U → R, it becomes a second

531902–1994
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order system for the unknown components gij of the metric:

Tij −
1

2
gklTklgij

= Rcij

= Rmikj
k

= ∂kΓij
k − ∂iΓkjk + Γij

qΓkq
k − Γkj

qΓiq
k

=
1

2
gkm (∂k∂mgij + ∂i∂jgkm − ∂k∂jgim − ∂i∂mgjk)

− 1

2
gkmgln∂kgln (∂igjm + ∂jgim − ∂mgij)

+
1

2
gkmgln∂kgln (∂kgjm + ∂jgkm − ∂mgjk)

+
1

4
gmngko (∂igjn + ∂jgin − ∂ngij) (∂kgmo + ∂mgko − ∂ogkm)

− 1

4
gmngko (∂kgjn + ∂jgkn − ∂ngkj) (∂igmo + ∂mgio − ∂ogim) .(15.1)

Needless to say, this is not a very nice equation. Even ignoring the compli-
cated mix of lower order terms, it is a degenerate nonlinear system. However,
we have not made full use of the geometry at hand.

15.1. The 3+1 split. Locally, any observer γ : I →M gives rise to a split-
ting of spacetime into space+time: at any given time, which we without loss
of generality take to be 0, the “instantaneous rest space” γ′(0)⊥ ⊂ Tγ(0)M
may be locally “integrated” to obtain a spacelike hypersurface Σ0 ⊂ M by
shooting out (spacelike) geodesics from o + γ(0) in directions v ∈ γ′(0)⊥.
This hypersurface consists of events which γ may interpret as occurring
simultaneously with γ(0). By parallel translating Uo + γ′(0) along these
geodesics, we may then shoot out (timelike) geodesics from each p ∈ Σ0

in the timelike direction of Up (the parallel translate of Uo at p). We may
interpret these geodesics as a family of freefallers which are instantaneously
comoving with γ at time 0.

Denote by U the vector field on the resulting open subset N ⊂M which
gives at each q ∈ N the tangent vector to the comoving freefaller at q,
by t : N → R the function which assigns to each q ∈ N the proper time
along the comoving freefaller which joins q to Σ0, and, abusing notation, by
Σt + {p ∈ M : t(p) = t} the t-level set of the function t. By the Gauss
lemma, the metric restricted to N takes the form

g|N = −dt⊗ dt+ h ,

where h(U, ·) = 0 and ι∗th is a Riemannian metric on Σt for each t (we will
drop the inclusion map ιt hereafter).
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Our goal is to view Einstein’s equation as an evolution equation for h
with initial data (Σt, h, ∂th) at t = 0, say (since we expect a hyperbolic
equation for h, we expect that we should need to prescribe both h and ∂th
at the initial time).

Denote by ∇> the connection induced on Σt. Observe that

(LUh)(X,Y ) = U(h(X,Y ))− h(LUX,Y )− h(X,LUY )

= h(∇UX − [U,X], Y ) + h(X,∇UY − [U, Y ])

= h(∇XU, Y ) + h(X,∇Y U)

= 2A(X,Y ) ,(15.2)

where A is the second fundamental form of Σt corresponding to U . We
interpret this as the (first order) evolution equation for the spatial metric.
Indeed, if we compliment t with “spatial” coordinates for Σt, then

∂thij = (L∂th)ij = 2Aij(15.3)

where here i and j range over the “spatial” indices, 1, 2, 3.

Remark 15.1. More generally, if t is any function whose level sets are
spacelike hypersurfaces, then, setting

U +
grad t

| grad t|
,

we can decompose ∂t = dt] as

∂t = αU + β

for some function α (the lapse function) and some vector β tangent to the
level sets Σt (the shift vector). The metric then takes the form

g = −α2dt⊗ dt+
1

2
(dt⊗ β[ + β[ ⊗ dt) + h ,

and the time derivative of h becomes

L∂th = 2αA+ Lβh .
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To obtain an evolution equation for A, consider

Rm(X,U,U, Y ) = g(∇U (∇XU)−∇X(∇UU)−∇[U,X]U, Y )

= g(∇U (∇XU), Y )− g(∇X(∇UU), Y )− g(∇[U,X]U, Y )

= Ug(∇XU, Y )− g(∇XU,∇UY )− g(∇X(∇UU), Y )

− g(∇[U,X]>U +∇[U,X]⊥U, Y )

= Ug(∇XU, Y )− g(∇XU,∇Y U + [U, Y ])− g(∇X(∇UU), Y )

− g(∇[U,X]>U, Y )− g([U,X], U)g(∇UU, Y )

= UA(X,Y )−A([U,X]>, Y )−A(X, [U, Y ]>)

−A2(X,Y )− g(∇X(∇UU), Y )− g([U,X], U)g(∇UU, Y ) ,

If we define the Lie derivative LUA of A in the time direction U by the
equation

U(A(X,Y )) = (LUA)(X,Y ) +A
(
(LUX)>, Y

)
+A

(
X, (LUY )>

)
,

then, since we have assumed that the integral curves of U are geodesic, we
obtain

(15.4) Rm(X,U,U, Y ) = (LUA)(X,Y ) +A2(X,Y ) ,

which, by (15.3), can be interpreted as a second order time evolution of h.

By the Gauss equation,

Rc(X,Y ) = − Rm(X,U, Y, U) + trTΣt Rm(X, ·, Y, ·)

= Rm(X,U,U, Y ) + Rch(X,Y )−A2(X,Y ) +HA(X,Y )(15.5)

for directions X,Y tangent to Σt, where H + trh(A) is the mean curvature
of Σt.

Applying (15.5) to (15.4) yields

(LUA)(X,Y ) = Rc(X,Y )− Rch(X,Y ) + 2A2(X,Y )−HA(X,Y )(15.6)

for X,Y tangent to the level sets Σt. By Einstein’s equation, the right hand
side of (15.6) only involves source terms and the geometric data (Σt, h, A).

Taking the trace of (15.5) yields

R = − Rc(U,U) + trTΣt(Rc)

= − Rc(U,U)− trTΣt Rm(·, U, ·, U) + Rh−|A|2 +H2

= − 2 Rc(U,U) + Rh−|A|2 +H2 ,

where

Rh + trTΣt(Rch)

is the scalar curvature of (Σt, h).
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Thus,

G(U,U) = Rc(U,U)− 1

2
R g(U,U)

= Rc(U,U) +
1

2
R

=
1

2

(
Rh−|A|2 +H2

)
.(15.7)

The mixed space-time components of G are given by taking the trace of
the Codazzi equation,

Rm(X,Y, Z, U) = ∇>XA(Y,Z)−∇>YA(X,Z) ,

which yields

Rc(Y,U) = divhA(Y )− Y H
for X tangent to Σt. Thus,

G(X,U) = Rc(X,U)− 1

2
R g(X,U)

= divhA(X)−XH .(15.8)

Writing

T = ρdt⊗ dt+
1

2
(dt⊗ J + J ⊗ dt) + P ,

where P (U, ·) = J(U) = 0, equations (15.6), (15.7), and (15.8) split Ein-
stein’s equation into the equations

1

2

(
Rh +H2 − |A|2

)
= ρ(15.9a)

divhA− dH = J(15.9b)

LtA+ Rch−2A2 +HA = P +
1

2
(ρ− trTΣt(P ))h .(15.9c)

The first two equations, (15.9a)-(15.9b), only involve the geometric data
(Σt, h, A) plus the source terms (ρ, J). As a consequence of the second
Bianchi identity, they are automatically satisfied at time t if they are sat-
isfied initially and if the spatial equation (15.9c) is satisfied. So equations
(15.9a)-(15.9b) only serve as constraint equations for the initial data.
The remaining equation is formally a second order evolution equation for h.

15.2. Solving the Einstein equation via harmonic coordinates. We
saw that the constraint equations (15.9a)-(15.9b) are necessary conditions
on (Σ, h, A) for the data to arise from a spacelike hypersurface in a spacetime
satisfying the Einstein equation. It turns out that they are also sufficient
conditions for the existence of a spacetime satisfying the Einstein equations
in which (Σ, h) embeds isometrically with second fundamental form A. We
will describe the procedure for constructing such a spacetime in this section.
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The idea is to solve the system of equations (15.1) obtained by writing
the Einstein equation in coordinates, and use the resulting solution, gij ,
to construct our spacetime solution “by hand”. Unfortunately, the system
(15.1) is highly degenerate, which prevents the immediate application of
“standard” pde results. This is not a bug, however, but a feature — it results
from the general covariance of the Einstein equation under diffeomorphisms,
as required by the equivalence principle; we will mod-out this covariance by
choosing a special class of coordinates, resulting in a non-degenerate system
of hyperbolic equations for the metric coefficients.

Harmonic coordinates (a.k.a. wave coordinates in the Lorentzian
context) on a pseudo-Riemannian manifold are local coordinates x : U → Rn
which satisfy

(15.10) −∆xi = 0 ,

where ∆ is the Laplace–Beltrami operator,

∆u + trg(∇2u) .

If we assume that the coordinates in which we are working are harmonic,
then, by (15.12), we obtain the four additional equations

0 = −∆xn = − gkl
(

∂xn

∂xk∂xl
− Γkl

m ∂xn

∂xm

)
= gklΓkl

n

= gmngkl (∂kglm + ∂lgkm − ∂mgkl) .(15.11)

We will use these equations to eliminate the degenerate terms in (15.1).

Remark 15.2. Note that harmonic coordinates always exist about any point
on any Lorentzian (or Riemannian) manifold: given any p ∈M , choose any
coordinates φ : U → Rn about p, and denote by gkl and Γkl

m the components
of the metric and connection in the φ-coordinates. Classical pde methods
allow us to solve the boundary value problem

0 = −(gkl ◦ φ−1)

(
∂xi

∂yk∂yl
− (Γkl

m ◦ φ−1)
∂xi

∂ym

)
,

xi(φ(p)) = φi(p),
∂xi

∂yj
(φ(p)) =

∂(φi ◦ φ−1)

∂yj
(p) .

(15.12)

for functions {x0, x1, x2, x3} on some ball about φ(p) ∈ Rn. It follows that

the functions xi ◦ φ are harmonic. Since ∂xi

∂yj
(φ(p))dφj are linearly inde-

pendent, ( ∂x
i

∂yj
◦ φ)dφj are linearly independent in a neighbourhood of p, so

{xi ◦ φ}3i=0 define local coordinates on this neighbourhood.
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Differentiating (15.11) yields

0 = − gin∂j(∆xn)− gjn∂i(∆xn)

= gin∂j(g
kmglnΓkml) + gjn∂i(g

kmglnΓkml)

= gin∂j(g
kmgln)Γkml + ging

kmgln∂jΓkml

+ gjn∂i(g
kmgln)Γkml + gjng

kmgln∂iΓkml .

The two terms involving derivatives of the connection coefficients are

gkm (∂iΓkmj + ∂jΓkmi) =
1

2
gkm

(
∂i∂kgmj + ∂i∂mgkj − ∂i∂jgkm

+ ∂j∂kgmi + ∂j∂mgki − ∂j∂igkm
)

= gkm
(
∂i∂mgkj + ∂j∂kgmi − ∂j∂igkm

)
,

where we exploited the fact that the metric coefficients are symmetric. Thus,

gkm
(
∂i∂mgkj + ∂j∂kgmi − ∂j∂igkm

)
= − gin∂j(gkmgln)Γkml − gjn∂i(gkmgln)Γkml

= − ∂jgkmΓkmi − ∂jgkmΓkmj

= gkpgmq (∂jgpqΓkmi + ∂jgpqΓkmi) .

Using this identityt, the coordinate formula (15.1) for the Einstein equation
becomes the inhomogeneous quasi-linear wave equation

Tij −
1

2
gklTklgij =

1

2
gkm∂k∂mgij +Q(g, ∂g) ,(15.13)

where Q(g, ∂g) is a term which is quadratic in the components gkl and ∂igjk.

Given a suitable stress-energy tensor T , initial data (Σ, h, A) satisfying
the constraint equations, and a local harmonic coordinate chart (x, U) on
Σ, the reduced Einstein equation (15.13) with initial conditions[

gij
] ∣∣
x(U)

=

[
−1 0
0 hij

]
and

[
∂x0gij

] ∣∣
x(U)

=

[
0 0
0 Aij

]
can be attacked using pde methods. We do not want to stray into the vast
wilderness of pde theory here, so let us simply assume that we do indeed
obtain a solution gij on U × (−δ, δ) for some δ > 0 (uniquely and continu-
ously depending on the initial data). Then we still need to show 1. that the
functions gij do indeed correspond to a solution to the Einstein equation
(this is not obvious, since a solution to the reduced Einstein equation only
corresponds to a solution to the Einstein equation if the coordinates are har-
monic with respect to g — a priori, only a subset of the harmonic coordinate
conditions hold, and only on the initial hypersurface, {0} × x(U)), and 2.
that the local solutions can be patched together to obtain a global solution
(M, g) in which (Σ, h) embeds isometrically with second fundamental form
equal to A.
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It turns out that the harmonic conditions hold automatically, as a con-
sequence of the second Bianchi identity; so the coefficients gij do indeed
correspond to a (local) solution to the Einstein equation. It is also not too
difficult to “patch together” local solutions to obtain a solution spacetime in
which (Σ, h) embeds globally. Local uniqueness of solutions to the reduced
equation guarantees that there is a unique “largest” spacetime arising from
(Σ, h) by solving the reduced Einstein equation54. Putting everything to-
gether, we arrive at the Choquet-Bruhat Theorem:

Theorem 15.3 (Choquet-Bruhat, 1952, 1962, Choquet-Bruhat–Geroch,
1969). Let (Σ, h) be a smooth Riemannian three-manifold equipped with a
symmetric covariant two-tensor field A. If h and A satisfy the constraint
equations (15.9a)-(15.9b), then there exists a smooth Lorentzian four man-
ifold (M, g) satisfying the vacuum Einstein equation and the following five
properties:

(1) (Σ, h) embeds isometrically into (M, g) with second fundamental
form A.

(2) Every inextendable causal (timelike or null) curve in M intersects
Σ in exactly one point55.

(3) Every globally hyperbolic solution to the vacuum Einstein equation
with Cauchy hypersurface Σ maps isometrically into (M, g).

(4) If (M ′, g′) is a spacetime satisfying the vacuum Einstein equation
and (i)-(iii) with data (Σ, h, A) replaced by (Σ′, h′, A′), and there
is a diffeomorphism φ : S → S′ from S ⊂ Σ to S′ ⊂ Σ′ such
that φ∗h′ = h and φ∗A′ = A, then the set D(S) ⊂ Σ of points
in M which are connected to S by causal curves56 is isometric to
D(S′) ⊂ Σ, the set of points in M ′ which are connected to S′ by
causal curves.

(5) (M, g) depends continuously57 on (Σ, h, A).

A full proof of Theorem 15.3 can be found in Hawking and Ellis [4] (see
also Wald [8]).

The Choquet-Bruhat Theorem also holds for the non-vacuum Einstein
equation, so long as the stress-energy tensor comes from matter fields satis-
fying suitable dynamical equations.

54There could be larger spacetimes containing Σ, but these will have points which cannot be
reached from Σ by causal curves.

55The hypersurface Σ is called a Cauchy hypersurface for (M, g). A spacetime which

admits a Cauchy hypersurface is called globally hyperbolic.
56The set D(S) is called the Cauchy development of S.
57In an appropriate topology. See [4].
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16. The Penrose singularity theorem

“The theorems predict singularities in two situations. One is
in the future in the gravitational collapse of stars and other
massive bodies. Such singularities would be an end of time,
at least for particles moving on the incomplete geodesics. The
other situation in which singularities are predicted is in the
past at the beginning of the present expansion of the universe.
This led to the abandonment of attempts (mainly by the Rus-
sians) to argue that there was a previous contracting phase
and a non singular bounce into expansion. Instead almost ev-
eryone now believes that the universe, and time itself, had a
beginning at the Big Bang. This is a discovery far more im-
portant than a few miscellaneous unstable particles but not
one that has been so well recognized by Nobel prizes.” —
Stephen Hawking and Roger Penrose, The nature of space
and time.58

We have seen that both the Schwarzschild and Friedmann metrics are
“singular”: in both cases, the norm of the curvature tensor becomes infi-
nite59 in certain coordinate limits (r → 0 and t → 0, respectively). Such a
limit point cannot be a part of our spacetime solution. On the other hand,
it does not seem too objectionable for spacetime to become infinitely curved
somewhere, so long as the point of infinite curvature is “inaccessible” (infin-
itely far away in proper time for any observer, say). A terrifying feature of
the Schwarzschild and Friedmann solutions is that their “points” of infinite
curvature are accessible, in the sense that there are observers which reach
them in finite proper time (to the past, in the case of the Friedmann solu-
tion). At this final time, something rather unpleasant must happen to the
observer, as the curve cannot be extended for proper times greater than or
equal to the time at which the singularity is reached. It is this behaviour,
geodesic incompleteness, that we investigate here.

Recall that the geodesic equation{
0 = γ′′ + ∇sγ′ =

(
d2γk

ds2
+ dγi

ds
dγj

ds Γij
k ◦ γ

)
∂k

(γ(0), γ′(0)) = (p, v)
(16.1)

always has a solution γ : (−s0, s0)→M , at least for sufficiently small s0.

We will refer to a geodesic γ : (−s0, s0)→M whose tangent vector γ′ is
everywhere timelike, spacelike or null, respectively, as timelike, spacelike

58Stephen Hawking (1942–2018); Roger Penrose (1931–).
59Recall though that the nature of the blow-up differs between the two cases in that the

Schwarzschild metric, being Ricci flat, has a Weyl curvature singularity, whereas the Friedmann
metric, being conformal to a constant curvature metric, has a Ricci curvature singularity.
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or null, respectively. Note that every geodesic is either timelike, spacelike
or null, since

0 =
d

ds
g(γ′, γ′) = 2g(γ′′, γ′) = 0 =⇒ g(γ′, γ′) ≡ g(γ′(0), γ′(0)) .

Definition 16.1. A Lorentzian manifold (M, g) is called timelike, null, or
spacelike geodesically complete, respectively, if solutions to (16.1) with
timelike, null, or spacelike, respectively initial condition are defined for all
s ∈ R.

If (M, g) is Riemannian, then, by the Hopf–Rinow theorem, (spacelike)
geodesic completeness is equivalent to good-old-fashioned metric space com-
pleteness, where the Riemannian distance function is defined by

d(p, q) + inf
γ

∫ 1

0
|γ′(s)|ds ,

with the infimum taken over piecewise regular curves γ : [0, 1] → M sat-
isfying γ(0) = p and γ(1) = q. Moreover, if the infimum is achieved, it is
achieved by, and only by, a geodesic, since Riemannian geodesics are the
local minimizers60 of the length functional

L(γ) +
∫ b

a

√
|g(γ′(s), γ′(s))|ds .

In the Lorentzian case, however, this does not work so nicely, since L is
not differentiable near a null geodesic. On the other hand, if we restrict
attention to spacelike curves, we find that spacelike geodesics are local length
minimizers of L. If we restrict attention to timelike curves, we find that
timelike geodesics are also stationary points of L, although they turn out to
be local length maximizers.

Alternatively, geodesics, both in the Riemannian and pseudo-Riemannian
settings, are local minimizers of the Dirichlet energy

E(γ) +
1

2

∫ b

a
|γ′(s)|2ds .

16.1. Singularity theorems. Broadly speaking, a singularity theorem is
a statement giving sufficient conditions for a spacetime to have a singularity.
They are usually of the following form.

Generic singularity theorem. If the spacetime (M, g) satisfies the fol-
lowing:

(1) An energy (curvature) condition;

(2) A causality (topological) condition;

60Amongst piecewise regular curves with fixed endpoints.
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(3) Somewhere gravity is strong enough to trap light,

then it is causally geodesic incomplete.

Now, although the Schwarzschild and Friedmann solutions are singular,
until Penrose’s singularity theorem (see below) appeared in 1965, it was not
at all clear that singularities were really to be found in nature — it ap-
peared possible that the Schwarzschild and Friedmann singularities were a
consequence of the high degree of symmetry/homogeneity assumed in their
derivation, a degree of which cannot in reality occur in nature; stellar col-
lapse, for example, can never happen in a perfectly symmetric way, and
the universe is clearly not homogeneous. It was conjectured by some that
any lack of symmetry would cause all the matter to “miss” the singular
point and reexpand. Penrose’s theorem shows that singularities, at least the
Schwarzschild and Friedmann singularities, cannot be perturbed away, at
least within a very large and physically reasonable class of spacetimes.

Theorem 16.2 (Penrose singularity theorem). Let (M, g) be a smooth space-
time (a four dimensional, time oriented Lorentzian manifold (M, g) that
satisfies Einstein’s equation) satisfying the following conditions:

(1) Rc(N,N) ≥ 0 for all null vectors N ∈ TM ;

(2) M contains a non-compact Cauchy hypersurface Σ ⊂M ;

(3) M contains a closed, trapped surface τ ⊂M .

Then (M, g) is null geodesically incomplete.

Before proving Penrose’s theorem, we had best discuss its conditions:

(1) The first condition, known as the null energy condition, is the
eminently reasonable assumption that gravity always has a non-
diverging effect on light rays. By Einstein’s equation, it is equiv-
alent to T (N,N) ≥ 0 for all null vectors N . This is implied, in
particular, by the weak energy condition — T (u, u) ≥ 0 for all
timelike u — which (according to Hawking and Ellis [4]) has been
experimentally confirmed for all known forms of energy61.

(2) A Cauchy hypersurface is a spacelike hypersurface (i.e. a three
dimensional submanifold whose tangent vectors are spacelike) of M
having the property that it intersects every smooth, inextendible
causal (i.e. timelike or null) curve exactly once. For such a space-
time, every event is either in the causal future or the causal past
of Σ, and is determined uniquely by Σ. Cauchy hyersurfaces can
be used as initial data for Einstein’s equation (see §15). The ex-
istence of a non-compact Cauchy surface assumes that “space” is

61Although there is some debate about the role of quantum vacuum energy.
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non-compact, which certainly may not be true; however, the con-
clusion still for spacetimes with compact space slices, so long as
there is some observer that doesn’t fall into the “horizon” (beyond
which lies the region described by condition 3). On the other hand,
if every observer does fall behind the horizon, a theorem of Hawk-
ing and Penrose states, under slightly different conditions, that we
should expect a singularity anyway (this theorem applies to “cos-
mological” singularities such as those of the Friedmann–Lemâıtre–
Robertson–Walker universes).

(3) A closed (i.e. compact and boundaryless), trapped surface τ ⊂M
can be thought of as an event horizon62: it is a smooth, closed, two-
dimensional, spacelike submanifold of M whose mean curvature
vector H is past pointing timelike. This condition means that both
outward and inward directed causal curves are converging at τ .
Indeed, if V ∈ Γ(Tτ) is a future pointing causal vector field on τ ,
then the first variation formula yields

d

dε

∣∣∣
ε=0

A(τ + εV ) = −
∫
g(H,V )dµ ≤ 0

with strict inequality unless V ≡ 0, where A is the area functional
and

τ + εV + {γ(p,V (p))(ε) : p ∈ τ}
is obtained by moving τ a parameter distance ε along the geodesics
with initial data (p, V (p)), p ∈ τ . So the area is locally decreasing
about any p ∈ τ in the direction of any nonzero future pointing
causal vector field — all causal curves emanating from the sur-
face are pulled inwards, (even light emitted in the outwards normal
direction!).

Proof of the Penrose singularity theorem. The proof is a reductio ad
absurdum; it proceeds as follows: Assuming that (M, g) is null geodesically
complete, we can show that ∂J+(τ), the boundary of the causal future of τ
(including τ itself), is a compact, boundaryless manifold (loosely speaking,
the light rays emitted outwards from τ must converge and ‘close up’). On
the other hand ∂J+(τ) maps in a continuous one to one manner into the non-
compact hypersurface Σ. This implies either that ∂J+(τ) is non-compact,
or that it has a boundary, neither of which are true; unless, of course, our
assumption that (M, g) were null geodesically complete is false.

First, we introduce some notation alluded to above: If p ∈ M , then
we denote by J+(p) the set of points in M lying on future pointing causal

62In fact, the closed trapped surface lies strictly inside what we usually think of as the

horizon, since we require the outward fired lightrays to be strictly converging.
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(timelike or null) curves beginning at p. We call J+(p) the causal future
of p. Considering only the future pointing timelike curves emanating from
p, we obtain the chronological future63 of p, denoted by I+(p). There are
analogous definitions for J−(p) and I−(p), the causal and chronological
past of p. The causal (chronological) future (past) of a set P ⊂ M is
defined as the union of the causal (chronological) future (past) of all of its
points and denoted, for example, by J+(P ). It is well to familiarize yourself
with these notations, as we will use them heavily in what follows.

We first prove a rather general causality result for spacelike surfaces.

Claim 16.3. Each point64 p ∈ E+(τ) + J+(τ) \ I+(τ) lies on a future
pointing null geodesic emanating from τ orthogonally.

Thinking of τ as the surface of a sphere, Claim 16.3 simply says that
the fastest we can transmit information from τ to some point p in space is
via a light ray emitted radially outwards from τ in the direction of p.

We prove Claim 16.3 in two parts, first showing that non-orthogonal
null geodesics from τ to p can be deformed into timelike curves from τ to
p, and then showing that non-geodesic null curves from p to q can either be
deformed into timelike curves from p to q or reparametrised to make them
geodesic.

Proposition 16.4. If n : [0, b]→M is a future pointing null geodesic from
n(0) ∈ τ to q = n(b) which is not orthogonal to τ , then there is a timelike
curve from τ to q arbitrarily close to n.

Proof. The idea is to move n(0) along τ in the direction that makes n′(0)
more orthogonal to τ , while keeping the endpoint q fixed. This deformation
decreases g(n′, n′), therefore making the curve timelike.

Since n′(0) is not normal to τ , there is a vector u ∈ Tn(0)τ such that
g(u, n′(0)) > 0. We will move the endpoint n(0) along τ in the direction of
u. First parallel translate u along n to obtain a vector field U along n. Now,
moving n with velocity U won’t keep the endpoint q fixed, so we linearly
rescale U to form the vector field V (s) + (1 − s/b)U(s). We now have
V (b) = 0 and V (0) ∈ Tn(0)τ . So consider a variation ω : [0, b]× (−ε0, ε0)→
M of n, through curves joining τ to q, in the direction of V . That is, with
longitudinal velocity ∂ε|ε=0ω = V . Note that V ′ + ∇sV = −U/b, so that
g(V ′, n′) = −g(U, n′)/b = −g(u, n′(0))/b < 0. The second equality holds
because n′ is also parallel along n (n is geodesic), and parallel translation is
an isometry.

63We consider the trivial curve to be a null curve, so that p ∈ J+(p) but p /∈ I+(p).
64The set E+(q) + J+(q) \ I+(q) is called the future horismos of q.
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We will now show that, for ε1 sufficiently small, the curves ωε(s) + ω(s, ε)
for 0 < ε < ε1 are timelike.

Observe that g(ω′ε(s), ω
′
ε(s))|ε=0 = g(n′(s), n′(s)) = 0 for all s. On the

other hand,

∂ε
∣∣
ε=0

g(ω′ε(s), ω
′
ε(s)) = ∂ε

∣∣
ε=0

g(∂sω(ε, s), ∂sω(ε, s))

= 2g(∇ε∂sω(ε, s), ∂sω(ε, s))|ε=0

= 2g(∇s∂εω(ε, s), ∂sω(ε, s))|ε=0

= 2g(V ′(s), n′(s)) < 0 .

Therefore, for all s, g(ω′ε(s), ω
′
ε(s)) is a strictly decreasing function of ε at

ε = 0 (where it vanishes). It follows that g(ω′ε(s), ω
′
ε(s)) is negative for

sufficiently small positive ε. This completes the proof. �

Proposition 16.5. If n : [0, b] → M is a future pointing non-geodesic null
curve joining n(0) ∈ τ to a point n(b) ∈ J+(τ), then either

(a) there is a geodesic reparametrisation65 of n; or

(b) there is a point on n that lies in I+(τ).

In the second case, n(b) cannot lie on E+(τ).

Proof. To see why this holds, we consider the following local construction:
Observe that two future pointing light cones, one of whose vertex lies on
the other, can only intersect on a single null ray, unless the two vertices
coincide. The ‘lower cone’ represents E+(p) and the ‘upper cone’ represents
the possible directions for a null curve through its vertex. Notice that the
upper cone, apart from the line of intersection, lies entirely inside the ‘lower’
cone. Therefore, all of the possible tangent directions to n either point in
the direction of a null geodesic or into the interior of the lower cone. We
now formalise this argument:

First observe that, if n is a null curve, then

0 = ∂sg(n′, n′) = 2g(n′′, n′) ,

so that n′′ lies in the orthogonal compliment of n′, which implies that it
is either spacelike or null. If n′′ is parallel to n′, then n has a geodesic
reparametrisation. So it suffices to assume that the function g(n′′, n′′) ≥ 0
is not identically zero. We will use this fact to construct a variation field
which vanishes at the endpoints of the interval and satisfies g(V ′, n′) < 0.
It then follows as in Proposition 16.4 that a variation of n in the direction
of V (which this time fixes both endpoints) gives is a nearby timelike curve
joining n(0) and n(b). It follows that n(b) ∈ I+(n(0)) ⊂ I+(τ). So let’s
construct V .

65In this case, we call n pregeodesic.
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Let U be a parallel future pointing timelike vector field along n and
define V = αU + βn′′, where α and β are determined as follows: First, we
chose β to be a smooth non-negative function vanishing at the endpoints 0
and b, and normalised such that∫ b

0
β
g(n′′, n′′)

g(U, n′)
= −b

This is possible because g(n′′, n′′)/g(U, n′) < 0. Now define α by

α(u) +
∫ u

0

[
β
g(n′′, n′′)

g(U, n′)
+ 1

]
ds .

Then α(0) = α(b) = 0 and

α′(s) = β
g(n′′, n′′)

g(U, n′)
+ 1 > β

g(n′′, n′′)

g(U, n′)
.

We now have

g(V ′, n′) = α′g(U, n′)− βg(n′′, n′′) < 0

as required. �

Exercise 16.1. If γ is a curve satisfying γ′′ = αγ′ for some function α
along γ, then there is a reparametrisation of γ which is geodesic.

This completes the proof of Claim 16.3. We will now show that ∂J+(τ),
the boundary of the future of τ , is precisely E+(τ). This depends crucially
on the existence of a Cauchy surface, and can otherwise fail66.

Claim 16.6. ∂J+(τ) = E+(τ).

We will need the following proposition, whose proof would distract from
our current purposes, but may be found in [4, 5, 7].

Proposition 16.7. A spacetime contains a Cauchy hypersurface if and only
if it is globally hyperbolic; that is, if

(i) For all p ∈ M , every neighbourhood of p contains a neighbourhood
of p which no future pointing causal curve intersects more than
once67.

(ii) For every p, q ∈M , the set J+(p) ∩ J−(q) is compact.

Corollary 16.8. For any p ∈M , the sets J+(p) and J−(p) are closed.

66A simple example is given by R3,1 with a point on the lightcone removed. It is easy to see

that ∂J+(0) 6= E+(0). Exercise: Minkowski space with a point removed doesn’t have a Cauchy
surface, and isn’t globally hyperbolic.

67This condition is known as the strong causality condition. In particular, it rules out
closed causal curves.
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Proof. Suppose that J+(p) is not closed, so that there is a point q ∈ J+(p)\
J+(p). Consider a point r ∈ J+(q). Then q ∈ J+(p) ∩ J−(r). But, by the

preceding proposition, J+(p) ∩ J−(r) is closed, so that J+(p) ∩ J−(r) =
J+(p) ∩ J−(r), which implies q ∈ J+(p), a contradiction. �

It follows straightforwardly that J+(P ) (and similarly, J−(P )) is closed
for any compact set P (such as τ).

We now show that the boundary of J+(τ) doesn’t contain points that
lie on timelike curves emanating from τ .

Lemma 16.9. For any P ⊂M , Int J+(P ) = I+(P ).

Proof. We first prove that I+(P ) is an open set, so that I+(P ) ⊂ IntJ+(P ).
This is because, for any p ∈ M , the set I+(p) is an open set, since a small
variation of a timelike curve (with one end fixed) gives a timelike curve. More
explicitly, let γ : [0, b]→M be a future pointing timelike curve with γ(0) = p
and γ(b) = q. Let K be some compact, convex set in TqM containing the ori-
gin. For each v ∈ K, we can consder the variation ωv(s, ε) + expγ(s)(εV (s))
of γ, where V is the parallel translate of v along γ linearly rescaled such
that V (0) = 0 and V (b) = v, and exp is the exponential map68. That is, we
take each point of γ and move it a small distance ε along the geodesic in
the direction of V . Since g(γ′, γ′) < 0, by continuity, for each v ∈ K there
is a (sufficiently small) positive εv such that for all ε ∈ (0, εv) the curve
γv,ε(s) = ωv(s, ε) satisfies g(γ′v,ε, γ

′
v,ε) < 0. That is, for sufficiently small ε,

the perturbed geodesic is still timelike. Since K is compact, ε0 + infv∈K εv
is non-zero, and we find that, for every v ∈ K and every ε ∈ (0, ε0), the curve
γv,ε(s) = ωv(s, ε) is timelike. Moreover, since V (0) = 0, the variation fixes
the initial point p. Therefore, the set Nq + {ωv(b, ε) : v ∈ K, ε < ε0}, which
contains q, is contained in I+(p). Moreover, we can always choose K small
enough that exp is a diffeomorphism. Then, as the diffeomorphic image of
an open set, the set Nq is open. We have demonstrated that every q ∈ I+(p)
has an open neighbourhood contained in I+(p), which implies that I+(p) is
open. Since p ∈ P was arbitrary, I+(P ) = ∪p∈P I+(p) is a union of open
sets, and is therefore itself open. Since I+(P ) is an open subset of J+(P ),
we have I+(P ) ⊂ Int J+(P ).

To prove the opposite inclusion, consider any point q ∈ Int J+(P ). Since
Int J+(P ) is open, there is a convex69 neighbourhood Oq of q such that
Oq ⊂ Int J+(P ). Now consider the open set A + I−(Oq) ∩ Int J+(P ) ⊂

68The exponential map maps a tangent vector v to the point γv(1), where γv is the geodesic
with initial data γ′(0) = v. One should imagine wrapping the tangent space at p down onto M ,

with straight lines emanating from the origin mapped to geodesics emanating from p. There is a
neighbourhood of 0 in TpM , for which this map is a diffeomorphism. We call this neighbourhood

a normal neighbourhood of p.
69Convex means that any geodesic joining two points of the set lies entirely in the set.
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J+(P ). This set is non-empty since it contains q. Moreover, we observe that
q ∈ I+(A) ⊂ I+(J+(P )) ⊂ I+(P ). Therefore, Int J+(P ) ⊂ I+(P ), which
completes the proof. �

Returning to the task at hand, we now have Int J+(τ) = I+(τ), and,
since J+(τ) is closed, ∂J+(τ) = J+(τ) \ I+(τ). This proves Claim 16.6.

We now show that, if (M, g) is geodesically complete, then ∂J+(τ) =
E+(τ) is compact. Roughly speaking, this means that the light rays em-
anating outwards from τ converge on each other, so that, if there are no
holes in the manifold for them to fall out of, they eventually meet, forming
a ‘closed light cone’ which bounds the future of τ . This is a consequence for
the causality of M which follows from the two main geometric assumptions:
that (M, g) is null non-diverging, and that τ is trapped.

Claim 16.10. If (M, g) is null geodesically complete, then ∂J+(τ) is com-
pact.

We need to define the mean curvature, H, of τ : It is the trace (with
respect to the metric induced on τ) of the second fundamental form of τ ,
which, in turn, is defined as the normal part of the connection restricted to
τ . More precisely, given vector fields U, V tangent to τ , we can consider the
covariant derivative ∇UV . Now, although U and V are tangent to τ , the
derivative ∇UV may not be! The second fundamental form, h, measures the
lack of tangentness of ∇UV :

h(U, V ) + (∇UV )⊥ ,

where ⊥ denotes the orthogonal projection, giving the part of ∇UV normal
to τ . We often say that h measures the extrinsic curvature of τ .

Exercise 16.2.

(1) h is symmetric: h(U, V ) = h(V,U).

(2) At each point p of τ , h defines a tensor (hp ∈ T ∗p τ ⊗ T ∗p τ ⊗ Npτ ,
where Nτ is the orthogonal compliment of Tpτ in TpM). That is,
h(fU, V ) = h(U, fV ) = fh(U, V ) for any smooth function f .

The mean curvature (at p ∈ τ) is then the normal vector

H = trτ h = h(e1, e1) + h(e2, e2) ,

where {e1, e2} is an orthonormal basis for Tpτ .

Definition 16.11. Let P be a spacelike submanifold of (M, g) and n :
[0, b) → M a null geodesic normal to P (with n(0) ∈ P ). We say that
n has a focal point at a ∈ (0, b) if the index form,

I(X,Y ) +
∫ c

0

[
〈∇sX,∇sY 〉 − Rm(X,n′, Y, n′)

]
ds− 〈n′(0), h(X(0), Y (0)) ,
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is positive definite (with respect to vector fields X(s), Y (s) along n which are
not tangent to n) for all c < a, but not for c = a.

Remark 16.12. For more about focal points (including a more natural def-
inition), see [5]. Although this is not apparent from the definition, a focal
point is, loosely speaking, a point at which infinitesimally nearby normal
geodesics intersect. For example, the centre is a focal point of the sphere.

The definition given here comes from analysing critical points of the
energy functional70 amongst curves emanating normally from P . In fact,
I(V, V ) is precisely the second variation of E, at n, in the direction of the
vector field V ; so our definition says that focal points are those at which n
is ceases to be locally energy minimising (amongst nearby curves normal to
P ).

Lemma 16.13. Assuming null geodesic completeness, every (maximally ex-
tended) future pointing null geodesic n : [0,∞) → M emanating from τ or-
thogonally has a focal point. Moreover, the focal point is reached before the
geodesic parameter reaches a value of 1/kn, where71 kn + g(H,n′(0)).

Proof. Given a future pointing null geodesic n : [0,∞)→M , we will show
that the index form is not positive definite on [0, 1/k], where k + g(H,n′(0)).

Consider a basis {e1, e2, ν1, ν2} of Tn(0)M satisfying

g(ei, ej) = δij

g(νi, ej) = g(νi, νi) = 0

g(ν1, ν2) = 1 .

We can further choose ν1 = n′(0). Now parallel transport this basis along n
to obtain a frame {E1, E2, N1, N2} along n satisfying ∇sEi = ∇sNi = 0 for
each i = 1, 2. Since n is geodesic, we have N1 = n′. Now consider the fields
{fEi}2i=1, where f(s) + 1− ks. We have

I(fEi, fEi) =

∫ 1
k

0

[
f ′2 − f2 Rm(Ei, n

′, Ei, n
′)
]
ds− 〈n′(0), h(ei, ei)〉

= k −
∫ 1

k

0
f2 Rm(Ei, n

′, Ei, n
′)ds− 〈n′(0), h(ei, ei)〉 .

Adding the two equations yields

I(fE1, fE1) + I(fE2, fE2) = −
∫ 1

k

0
f2

2∑
i=1

Rm(Ei, n
′, Ei, n

′)ds .

70See the remark following Definition 16.1.
71Note that kn > 0 since H is past pointing timelike.
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But
∑2

i=1R(Ei, n
′, n′, Ei) = Rc(n′, n′), since the null components vanish.

(This is because the null components give the cross terms R(N1, n
′, n′, N2)

and R(N2, n
′, n′, N1), which vanish because N1 = n′). Since Rc(n′, n′) ≥ 0,

we obtain

I(fE1, fE1) + I(fE2, fE2) ≤ 0 .

The proof is completed by noting that, since {Ei, Ni}2i=1 forms a basis along
n, and N1 = n′, neither E1 nor E2 can be tangent to n. �

The next proposition says that points on n beyond a focal point cannot
lie on ∂J+(τ).

Proposition 16.14. Let n : [0, b]→M be a null geodesic through q = n(b),
emanating from τ orthogonally. If n has a focal point at a < b, then there
is a timelike geodesic from τ to q arbitrarily close to n. If instead q lies on
n at or before its first focal point, then there is no timelike curve joining τ
to q.

Proof. This is a variation argument similar in spirit to Propositions 16.4
and 16.5. See [5]. �

It follows that, for any null geodesic n generating ∂J+(τ), any point on
n beyond its focal point lies in I+(τ) = Int J+(τ), while every point before
or at a focal point lies on the boundary. We conclude that ∂J+(τ) is a closed
set. At each point p of τ we may choose a local basis {µ, ν} for the normal
bundle of τ consisting of a pair of future pointing null vectors. Let T denote
the set of the null normals composing these local bases. Then T is compact,
since it is a double cover of τ . In particular, k + infν∈T g(H, ν) is attained
by some ν ∈ T , and, since H is past pointing timelike, k is positive. By
Lemma 16.13, each geodesic emanating from τ with initial data ν ∈ T has a
focal point at or before its parameter reaches the value k. Therefore ∂J+(τ)
is a subset of the set

E + {n(s) ∈M : n is a geodesic with n′(0) ∈ T, s ∈ [0, k]}
= exp{sν : s ∈ [0, 1], ν ∈ T} ,

where exp is the exponential map. Therefore, E, as the continuous image
of a compact set, is compact. It follows that ∂J+(τ), a closed subset of a
compact set, is compact. This proves Claim 16.10.

We will now show that ∂J+(τ) fits injectively inside Σ.

Claim 16.15. There is a continuous injective map ρ : ∂J+(τ)→ Σ.

Proof. Since (M, g) is time oriented, it has a timelike vector field, j. Each
of the integral curves of j is timelike, and therefore intersects the Cauchy
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surface Σ exactly once. Therefore the map ρ : ∂J+(τ) → Σ defined by
tracing a point p ∈ ∂J+(τ) along the integral curve of j through p until it
meets Σ is injective. Since the flow of j is continuous, so is ρ. �

This proves Claim 16.15. We will use it to derive a contradiction to the
geodesic completeness of (M, g). We will need the following lemma.

Lemma 16.16. ∂J+(τ) is a 3–dimensional topological manifold (without
boundary).

Sketch proof. Consider any point p ∈ ∂J+(τ). Fix an orthonormal basis
{ei}3i=0 for TpM (such that e0 is timelike). We can define normal coordinates
on a neighbourhood Up of p by setting yi(q) = vi, where q = expp(v

iei).

Now, for sufficiently small u = (u1, u2, u3) ∈ proposition3, we can con-
sider the unique timelike curve in Up defined by γu(s) = expp(se0 + u1e1 +
u2e2 + u3e3). For small enough s, γu(s) lies outside of J+(τ), whereas for
large enough s, γu(s) lies inside J+(τ). Therefore γu(s) intersects ∂J+(τ).
Moreover, γu can only intersect ∂J+(τ) once, otherwise there would be a
timelike curve joining two of its points, which leads easily to a contradic-
tion. This gives us a unique triple of ‘coordinates’, ui(p) = ui, for each point
of ∂J+(τ)∩Up. It now suffices to show that the y0 coordinate is a Lipschitz
function of the ui coordinates, which follows from the lack of timelike sep-
aration of points of ∂J+(τ) (see [5, Corollary 14.27], [4, Proposition 6.3.1]
and [7, Proposition 2.16]). �

By Claim 16.15, we obtain the following dichotomy: the map ρ is either
onto, or its image has a boundary. Since ∂J+(τ) is compact, and Σ is non-
compact72, the first option cannot hold. On the other hand, by Lemma
16.16, neither can the second.

We have arrived at a contradiction, demonstrating the falseness of our
assumption that (M, g) is null geodesically complete, confirming the state-
ment of the theorem. �

72In fact, we observe that only a single integral curve of j not intersecting ∂J+(τ) suffices,

justifying the claim in the seond remark following the statement of the theorem.

112



Bibliography

[1] Benn, I. M., and Tucker, R. W. An introduction to spinors and geometry with
applications in physics. Adam Hilger, Ltd., Bristol, 1989. Reprint of the 1987 original.

[2] Bondi, H. Relativity and ccommon sense, vol. 31 of Educational Books. Heinemann,
New York, 1964.

[3] Carroll, S. Spacetime and geometry. Addison Wesley, San Francisco, CA, 2004. An
introduction to general relativity.

[4] Hawking, S. W., and Ellis, G. F. R. The large scale structure of space-time. Cam-
bridge University Press, London-New York, 1973. Cambridge Monographs on Mathe-
matical Physics, No. 1.

[5] O’Neill, B. Semi-Riemannian geometry, vol. 103 of Pure and Applied Mathematics.
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With
applications to relativity.

[6] Rowe, E. G. P. Geometrical physics in Minkowski spacetime. Springer Monographs
in Mathematics. Springer-Verlag London, Ltd., London, 2001. With a foreword by
Wojtek J. Zakrzewski.

[7] Senovilla, J. M. M. Singularity theorems and their consequences. Gen. Relativity
Gravitation 30, 5 (1998), 701–848.

[8] Wald, R. M. General relativity. University of Chicago Press, Chicago, IL, 1984.

113


	Relativity: The Special and General Theories
	1. Aristotelian spacetime
	2. Galilean spacetime
	3. Newtonian gravity
	4. Electromagnetism in Galilean spacetime
	5. Minkowskian spacetime
	6. Consequences of the Lorentzian structure of spacetime
	7. Mechanics in Minkowski space
	8. Electromagnetism in Minkowski space
	9. Gravity as curvature?
	10. 2-tensors, 3-forms and conservation laws
	11. Einstein's equation
	12. Schwarzschild's solution
	13. Geodesy of the Schwarzschild solution
	14. The Friedmann universe
	15. The initial value formulation of Einstein's equation
	16. The Penrose singularity theorem

	Bibliography

