
Nonlinear Elliptic
Partial Differential
Equations and Their
Applications

Our primary goal in these notes will be a complete1 proof of the existence
(and uniqueness) of solutions to the Dirichlet problem for a large class of
quasilinear and fully nonlinear elliptic equations, many of which arise natu-
rally in engineering, geometry, materials science, physics and topology.

We follow quite closely the programme laid out in the marvellous text
of Gilbarg and Trudinger [2]: by establishing a priori estimates in Hölder
spaces for linear equations, the existence problem is reduced to the establish-
ment of a priori estimates for first or second derivatives of solutions to the
nonlinear problems. The latter can be achieved directly in many instances
(by exploiting barriers and the maximum principle, say).

We first develop the theory of quasilinear equations, such as the mini-
mal surface or mean curvature flow translator equations, where the Schauder
theory and the Harnack inequality of de Giorgi, Nash and Moser for linear
elliptic equations in divergence form reduces the existence problem to the
establishment of a global C1 estimate. We present the latter for a quite

1Insofar as completeness is concerned, we naturally fail in achieving our goal; the main gaps
concern a complete treatment of regularity up-to-the-boundary (namely, Theorems 3.3, 6.8, 10.8
and 11.4, and Proposition 7.7).
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general class of equations of mean curvature type (which includes the afore-
mentioned examples).

We then consider concave fully nonlinear Hessian equations, such as the
equation of prescribed Gauss curvature or the translator equations of Gauss
curvature flows, where the Schauder theory and the Harnack inequality of
Krylov and Safanov for linear elliptic equations not in divergence form re-
duces the existence problem to the establishment of a global C2 estimate.
We present the latter for certain equations of Monge–Ampère type (which
includes the above examples) assuming the presence of suitable barriers.

Acknowledgements. Parts of these notes have benefitted from lecture
notes by Theodora Bourni, Oliver Schnürer and Felix Schulze.
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Newcastle, November 2021 Last updated February 5, 2023
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0. MOTIVATING PROBLEMS

0. Motivating problems

We shall begin by presenting some examples of (nonlinear) partial differential
equations which arise in various applications. We provide a brief description
of their motivating problem and how they arise, but we shall not attempt a
thorough discussion.

0.1. Newtonian gravity. Newton’s law of gravity may be formulated in
terms of the gravitational potential u and the mass distribution ρ. The
mass distribution ρ describes the density of matter (units of mass per unit
of volume) at each point of space and the gravitational potential u is an un-
observable quantity with units of energy which gives rise to the gravitational
force f via the equation (expressed in appropriate units)

f = − gradu .

The gravitational force can be measured via Newton’s second law of mo-
tion. Conservation of energy demands that its divergence is, in appropriate
units, 4π times the mass distribution. So the gravitational potential satisfies
Poisson’s equation

∆u = 4πρ , (0.1)

where ∆ · + div(grad · ) is the Laplacian.

As observed by Newton, if the mass density ρ is compactly supported
and integrable, then Poisson’s equation is solved by the (three dimensional)
Newtonian potential

γρ(x) + 4π(Γ ∗ ρ)(x) + 4π

ˆ
R3

Γ(x− y)ρ(y) dy ,

where

Γ(x) + − 1

4π|x|
is the (three dimensional) fundamental solution to the Laplace equation.
This solution is not unique, however, since (1.1) is satisfied by u = γρ + h
for any harmonic function h.

For suitably regular Ω ⊂ R3 and φ : ∂Ω→ R, the Dirichlet problem{
∆u = 4πρ in Ω

u = φ on ∂Ω

admits the unique solution u = γρ + h, where h is the unique harmonic
function taking boundary values ψ + φ − γρ|∂Ω. When Ω is, for example,
the unit ball B, h admits the simple representation formula

h(x) +
ˆ
∂B
ψ(y)K(x, y) dσ(y) ,
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where

K(x, y) +
1− |x|2

|∂B|
1

|x− y|3

is the Poisson kernel (for B) and σ is the standard measure on ∂B.

Poisson’s equation also models a number of further phenomena. For
example, in electrostatics, u becomes the electrostatic potential and 4πρ is
replaced by the charge density. This is a common theme in the study of
partial differential equations — very often, a given pde or class of pde will
arise as a model for a number of apparently unrelated phenomena.

0.2. Diffusion. In the absence of sources and sinks, Fourier’s theory of
heat diffusion may be formulated in terms of the temperature function u.
The temperature is a scalar function which depends on space and time. It
takes units of energy per unit volume and plays an analogous role to the
gravitational potential in Newton’s law of gravity. Fourier’s Law states that
the rate of flow of heat energy, the heat flux q, is proportional to the negative
temperature gradient. That is, in appropriate units,

q = −∇u .

Conservation of energy demands that the total heat energy

Q(Ω, t) +
ˆ
∂Ω
u dV

contained in a region Ω ⊂ R3, where dV is the volume element of Ω, can (in
the absence of sources and sinks) only be gained or lost via flux through its
boundary; that is,

Q(Ω, t2)−Q(Ω, t1) = −
ˆ t2

t1

ˆ
∂Ω
〈q, ν〉 dAdt ,

where ν and dA are the outward unit normal and area element of ∂Ω, re-
spectively. From these postulates, we deriveˆ

Ω
∂tu dV =

d

dt
Q(Ω, t) = −

ˆ
∂Ω
〈q, ν〉 dA =

ˆ
∂Ω
〈∇u, ν〉 dA =

ˆ
Ω

∆u dV,

where ∂t + ∂
∂t . Since the same argument applies to every subdomain of Ω,

we actually obtain the pointwise equation

(∂t −∆)u = 0 .

The heat equation and its close relatives model more general diffusion
phenomena, and therefore arise in a number of areas, from physics, chem-
istry, and biology (particle diffusion), to sociology, economics, and finance
(diffusion of people, ideas, and prices).
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0. MOTIVATING PROBLEMS

Though we shall only consider elliptic equations in these notes, essen-
tially all of the techniques and results we cover have analogues in the para-
bolic setting.

0.3. The Minkowski problem.

The importance of the Minkowski problem and its solution
is to be felt both in differential geometry and in elliptic par-
tial differential equations, on either count going far beyond
the impact that the literal statement superficially may have.
From the geometric viewpoint it is the Rosetta Stone, from
which several other related problems can be solved.
— Eugenio Calabi

Let Σ2 ⊂ R3 be the boundary of a convex open set Ω ⊂ R3. If Σ is
smooth, then it admits a well-defined outward unit normal ν(p) ∈ S2 at
each point p ∈ Σ. The map p 7→ ν(p) is called the Gauss map of Σ. Note
that the tangent planes TpΣ to Σ and Tν(p)S

2 to S2 are parallel. Up to
identification of these planes, the shape operator of Σ at p is defined as
the differential Ap + (Dν)|p : TpΣ → TpΣ of the Gauss map at p. The
Gauss curvature K(p) at p is the determinant of Ap.

The Minkowski problem asks for the existence of a closed, convex
surface Σ whose Gaussian curvature is a prescribed positive function f :
S2 → R of its outward unit normal. That is,

K(p) = f(ν(p)) .

If K is positive everywhere, then ν is a local diffeomorphism. Since
S2 is simply connected, ν must in fact be a diffeomorphism, so we may
parametrize Σ by the inverse ϕ + ν−1 : S2 → Σ ⊂ R3 of its Gauss map. This
parametrization is closely related to the support function σ : S2 → R of
Σ, which is defined by

σ(z) + sup
x∈Σ

x · z .

Equivalently (and more geometrically) σ(z) is the distance to the origin of
the supporting hyperplane for Σ with outward unit normal z. So we find
that

σ(z) = z · ϕ(z) .

Moreover, differentiating this identity, we find that ϕ>S2 = gradσ, and hence

ϕ(z) = σ(z) z + gradσ|z ,
where grad is the gradient operator with respect to the round metric g on S2.
The shape operator is given, with respect to the Gauss map parametrization,
by

A−1 = ∇ gradσ + σ I ,
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where ∇ is the covariant derivative operator of S2 and I : TS2 → TS2 is the
identity map. So the Minkowski problem asks for a solution σ : S2 → R to
the Monge–Ampère type equation

det
(
∇ gradσ + σ I

)
= f−1

on S2.

Note that f must satisfy the constraint equationˆ
S2

e · z
f(z)

dµS2(z) = 0

for all e ∈ R3. Indeed, since detDϕ = K−1, the area formula and the
divergence theorem yieldˆ

S2

e · z
f(z)

dµ̄(z) =

ˆ
S2

e · z
K(z)

dµ̄(z) =

ˆ
Σ
e · ν(x) dµ(x) =

ˆ
Ω

div e dL = 0 ,

where µ̄ is the area measure on S2 induced by ḡ, µ is the area measure on
Σ induced by its embedding in R3, and L is the Lebesgue measure on R3.

Despite its purely geometric origin, the Minkowski problem appears in
many applications. For example, the problem of radiolocation and the “in-
verse problem” of short-wave diffraction both reduce to the Minkowski prob-
lem.

The Minkowski problem was solved by Louis Nirenberg in 1953. The
statement generalizes in a straightforward manner to higher dimensions,
and this was solved by Pogorelov in 1978.

0.4. The Weyl problem. Gauss’ famous theorema egregium states that
the intrinsic curvature of a surface which is isometrically immersed in R3

is equal to its extrinsic (a.k.a. Gauss) curvature. The Hadamard theorem
states that any properly immersed surface in R3 with positive Gauss curva-
ture is the boundary of a convex body. Motivated by these two results, the
Hermann Weyl asked whether a given closed Riemannian surface of positive
intrinsic curvature is necessarily realized by the boundary of a convex body
in Euclidean three-space (with its induced geometry).

Given an immersion u : M2 → R3 and a coordinate chart (x1, x2) : U →
R2 for M2, the metric components and the Gaussian curvature are given in
U by

gij =
∂u

∂xi
· ∂u
∂xi

and K = det

(
gjk

∂2u

∂xi∂xk
· ν
)
,

respectively, where

ν =
∂u
∂x1 × ∂u

∂x2

| ∂u
∂x1 × ∂u

∂x2 |
8
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is the (right-handed) unit normal field and gij are the components of the

inverse of the component matrix gij . That is, gikg
kj = δji . So, given a closed

Riemannian surface (M2, g) with positive intrinsic curvature K = K[g], the
Weyl problem asks for a map u : M2 → R3 which satisfies the coupled
differential equations

∂u

∂xi
· ∂u
∂xi

= gij

det

(
gjk

∂2u

∂xi∂xk
·

∂u
∂x1 × ∂u

∂x2

| ∂u
∂x1 × ∂u

∂x2 |

)
= K

in any local coordinate chart (x1, x2) : U → R2 for M2.

The Weyl problem was resolved affirmatively by Alexandrov (1941) and
Pogorelov (1952) and, independently, by Nirenberg (1953) (in the same pa-
per in which he presented his solution to the two dimensional Minkowski
problem).

The work of Nirenberg and Pogorelov on the Weyl and Minkowski prob-
lems are some of the most important developments in the theory of elliptic
partial differential equations.

0.5. Surface tension.

“Make a soap bubble and observe it;
you could spend a whole life studying it,”
Sir William Thomson, Lord Kelvin

A macroscopic consequence of statistical mechanics is the presence of
cohesive forces within liquids. In an equilibrium state, these forces pull each
molecule of the liquid in every direction with equal magnitude, resulting in
a net force of zero. At a flat interface between two liquids (the respective
cohesive forces within which being unequal) a net difference of force per unit
area (pressure) normal to the interface results. Moreover, the tangential
forces at the boundary have the effect of decreasing the area of the interface
in the vicinity of every point. This causes distortion of the interface until
equilibrium is restored.

The Young–Laplace law asserts that the net difference in pressure be-
tween the two liquids at a point p on the interface is proportional to the
mean curvature H(p) of the interface at x (twice the average of the cur-
vatures at p of all normal sections). In a neighbourhood of any point p of a
smooth interface Σ, we may represent Σ as the graph of a function u over
the tangent plane TpΣ at p. That is, we can find an open subset U ⊂ R3

containing p and a function u : TpΣ→ R such that

U ∩ Σ = {x+ u(x)ν(p) : x ∈ TpΣ} ∩ U ,
9
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where ν(p) is a unit normal to Σ at p. The mean curvature of a point
x+u(x)ν(p) in this region is the trace of the shape operator A = Dν, which
is equal to

H(x) = div

(
Du√

1 + |Du|2

)∣∣∣∣∣
x

.

Thus, if the pressure on both sides is balanced, then the interface will
satisfy locally the (graphical) minimal surface equation

div

(
Du√

1 + |Du|2

)
= 0 .

If the pressure on both sides is unbalanced, then the interface will satisfy
locally the (graphical) prescribed mean curvature equation

−div

(
Du√

1 + |Du|2

)
= ψ(·, u) .

Graphical minimal surfaces with prescribed Dirichlet boundary data
model soap films. Graphical surfaces of prescribed mean curvature with
prescribed boundary contact angle model capillary surfaces.

0.6. Optimal transportation. The field of optimal transportation was
developed in order to minimize the cost or work associated with transporta-
tion of some quantity of a commodity from one specified location to another.

Given two domains, Ω, Ω∗ ⊂ Rn, and corresponding (non-negative)
densities f ∈ L1(Ω) and f∗ ∈ L1(Ω∗) satisfyingˆ

Ω
f =

ˆ
Ω∗
f∗ ,

we denote by I the set of measure preserving transformations from
Ω to Ω∗. A map T : Ω→ Ω∗ is in I provided that T is measurable andˆ

T−1(E)
f =

ˆ
E
f∗

for any Borel set E ⊂ Ω∗.

For a given cost function c : Ω × Ω → R, we consider the problem of
determining a measure preserving transformation T which minimizes the
cost functional

C(T ) +
ˆ

Ω
c(x, T (x))f(x)dx .

In the original problem formulated by Monge, the cost function c, given
by

c(x, y) = |x− y| ,
10
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corresponds to the work done in moving a mass distribution from Ω to Ω∗.

Under mild hypotheses, a smooth optimal map T (if it exists) can be
realized as

T (x) = p(x,Du(x)) ,

where, denoting derivatives with respect to the x and y variables by corre-
sponding subscripts, p satisfies

cx(x, p(x, v)) = v

and u satisfies the equation

det
(
D2γ −D2u

)
= |det cx,y|

f

f∗ ◦ T
together with the concavity condition

D2u ≤ D2γ ,

where γ(x) + c(x, T (x)).

In the special case of a quadratic cost function

c(x, y) = −x · y ,

by replacing u with −u we obtain the Monge–Ampère type equation

detD2u = ψ(·, u,Du)

and the convexity constraint

D2u ≥ 0 ,

where

ψ(·, u,Du) +
f

f∗(Du)
.

0.7. Geometric optics. Consider a non-isotropic light source positioned
at a point O in space R3. Let S be a unit radius sphere with centre at O
and consider Ω an open subset of S. Denote by Γ a surface which projects
radially in a one-to-one fashion onto Ω. The surface is supposed to have a
perfect reflection property. That is, no loss of energy occurs when a beam of
light is reflected by it. Suppose a ray is originated from O in the direction
x and is reflected by Γ, producing a reflected ray in the direction y. If, we
identify a direction with a point on S2, then we get a mapping u of Ω ⊂ S2

into S2.

The reflector problem is the problem of constructing the reflecting
surface Γ in such a way that the reflected rays cover a prescribed region Ω∗

of a “far-field sphere” and the density of the distribution of the reflected
rays is a prescribed function of the incoming directions.
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The reflector problem can be reduced to the Monge–Ampère type equa-
tion

detg

(
∇2u− |∇u|

2

2u
g +

1

2
ug

)
= ψ(·, u,∇u) on Ω ⊂ S2

for the radial graph height u : Ω → R of Γ, equipped with an appropriate
boundary condition, where g and ∇ are, respectively, the metric and co-
variant derivative on S2, and ψ is determined a priori by the illumination
densities on the input and output domains Ω and Ω∗.

0.8. The Yamabe problem. The famous uniformization theorem, re-
solved by Poincaré and Koebe in 1907, states that every Riemannnian sur-
face admits a conformally equivalent metric of constant Gauss curvature.
The Yamabe problem generalizes this to higher dimensions by asking
whether a given Riemannian metric on a closed differentiable manifold of
dimension at least three is conformally equivalent to a metric of constant
scalar curvature.

Two Riemannian metrics g and g̃ on a differentiable manifold M are
conformally equivalent if there is a (positive) function f such that
g̃ = fg. If the dimension n of M is at least three, then we may assume that

g̃ = u
4

n−2 g for some positive function u. A direct computation shows that
the scalar curvature R̃ of g̃ is related to the scalar curvature R of g by the
equation

R̃ = u1−2∗
(
−4(n−1)

n−2 ∆u+ Ru
)
,

where 2∗ + 2n
n−2 and ∆ · + divg(grad · ) is the Laplacian on M induced by g.

(Note that 2∗ is the critical exponent in the Sobolev embedding, a fact that
plays a decisive role in the problem.) So the Yamabe problem is equivalent
to finding a solution (u, λ), λ ∈ R, to the nonlinear eigenvalue problem

−4(n−1)
n−2 ∆u+ Ru = λu2∗−1 .

The Yamabe problem is closely connected with the positive mass the-
orem in general relativity. It was resolved through the combined works of
Trudinger (1968), Aubin (1976), and Schoen (1984).

0.9. Black hole horizons. Spacetime in Einstein’s general theory of rel-
ativity is modelled by a four dimensional Lorentzian manifold (M4, g) for
which g satisfies the Einstein equation,

Rc− 1

2
R g = 8πT ,

where Rc and R are, respectively, the Ricci and scalar curvatures of g, and,
in appropriate units, T is the stress-energy tensor, a source term representing
the configuration of matter and energy.
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0. MOTIVATING PROBLEMS

A trapped surface τ ⊂ M4 in a Lorentzian manifold (M4, g) is a
smooth, closed, two-dimensional, spacelike submanifold of M4 whose mean
curvature vector H is past pointing timelike. This condition means that both
outward and inward directed causal curves are converging at τ . Indeed, if
V ∈ Γ(Tτ) is a future pointing causal (timelike or null) vector field on τ ,
then the first variation formula yields

d

dε

∣∣∣
ε=0

A(τ + εV ) = −
ˆ
g(H, V )dµ ≤ 0

with strict inequality unless V ≡ 0, where A is the area functional and

τ + εV + {γ(p,V (p))(ε) : p ∈ τ}
is the surface obtained by moving each point p ∈ τ a parameter distance ε
along the geodesic γ(p,V (p)) with initial data (p, V (p)). So the area is locally
decreasing about any p ∈ τ in the direction of any nonzero future pointing
causal vector field. This means that all causal curves emanating from the
surface are “pulled inwards”, even light emitted in the outwards normal
direction.

Trapped surfaces are closely connected to black holes: under mild con-
ditions on (M, g), Penrose’s singularity theorem2 asserts that a spacetime
which admits a trapped surface must also admit a “singularity”. In a space-
time which contains a trapped surface, the outermost trapped surface
Σ is the boundary of the union of all the trapped surfaces. Outward directed
lightrays are neither converging nor diverging. This is the event horizon.
(Note that Σ may have multiple connected components.)

On a spacelike surface τ in M , any normal vector can be written as a
linear combination of two future-pointing null-vectors k± normalized by the
equation

g(k−, k+) = −2 .

In particular, the mean curvature vector H may be decomposed as

H = θ−k− + θ+k+ .

So being trapped means precisely that both the inner and outer ex-
pansions θ± are negative. On the outermost trapped surface, one of the
two expansions vanishes, which we may take to be the outer expansion θ+.
Such surfaces are called marginally outer trapped surfaces. They are
Lorentzian analogues of minimal surfaces. To see why, we need to introduce
initial data sets.

Locally, any observer γ : I → M4 gives rise to a splitting of spacetime
into space+time: at any given time t ∈ I, which we without loss of gener-
ality take to be 0, the spacelike subspace γ′(0)⊥ ⊂ Tγ(0)M

4 may be locally

2Sir Roger Penrose shared the 2020 Nobel Prize in physics for this work.
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“integrated” to obtain a spacelike hypersurface M3
0 ⊂ M4 by shooting out

(spacelike) geodesics from o + γ(0) in directions v ∈ γ′(0)⊥. By parallel
translating Uo + γ′(0) along these geodesics, we may then shoot out (time-
like) geodesics from each p ∈ Σ in the direction of Up (the parallel translate
of Uo at p). We may interpret these geodesics as a family of freefallers which
are instantaneously comoving with γ at time 0. Denote by U the vector field
on the resulting open subset O ⊂M4 which gives at each q ∈ O the tangent
vector to the comoving freefaller at q, by t : O → R the function which
assigns to each q ∈ O the proper time along the comoving freefaller which
joins q to M3

0 , and, abusing notation, by denote by M3
t + {p ∈ O : t(p) = t}

the t-level set of the function t. By the Gauss lemma, the metric is of the
form

−dt⊗ dt+ h

on O, where g(U, ·) = 0 and t 7→ g(t) + g|TM3
t ⊗TM3

t
is a Riemannian metric

on M3
t for each t. Having split spacetime locally into space + time in this

manner, it is possible to view Einstein’s equation as an evolution equation
for g with initial data (M3

t , g, ∂tg) at t = 0 plus certain constraint equations
for (M3

t , g, ∂tg).

An initial data set is a triple (M3, g, A), where (M3, g) is a Riemann-
ian three-manifold and A is a symmetric bilinear form on A, which satisfy
the constraint equations

1

2

(
Rg +K2 − |A|2

)
= ρ

divg A− dK = J ,

where Rg is the scalar curvature of g, K + trg A, and the function ρ and
the one-form J are source terms which are determined by the distribution
of matter in M3 via the energy-momentum tensor. Choquet-Bruhat proved
that, given any initial data set (M3, g, A), we can find a solution (M4, g)
to Einstein’s equation in which (M3, g) embeds isometrically with second
fundamental form A.

Now suppose that our marginally outer trapped surface Σ lies in an
initial data set (M3, g, A). Then, since (M3, g) embedds in the spacetime
(M4, g), the Gauss equation implies that

H = Hν − trTΣ(A)U ,

where ν is the outer of unit normal field to Σ in M3 (so that k± = U ± ν,
where U is the future pointing unit normal field to M3 in M4), H = div ν
is the corresponding scalar mean curvature, and U is the future directed
timelike unit normal vector field of M3 in M4. Thus,

θ+ = H + trTΣ(A) .
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In particular, if (M3, g, A) is time-symmetric, meaning that A ≡ 0, then

θ+ = H ,

and hence marginally outer trapped surfaces in (M3, g) are just minimal
surfaces in (M3, g).

0.10. The Penrose inequality. A Riemannian three-manifold (M3, g) is
called asymptotically flat if the metric g approaches the Euclidean
metric at infinity in a quantitative way. More precisely, we require that
(M3, g) admits a compact set K such that M3 \K is the union of finitely
many connected components (its “ends”) each of which is diffeomorphic to
the compliment R3 \B of a ball B in R3 via a diffeomorphism (x1, x2, x3) :
E → R3 \B which satisfies3

|gij − δij | ≤ O(|x|−1) , |∂xkgij | ≤ O(|x|−2) , and |∂xk∂xlgij | ≤ O(|x|−3)

as |x| → ∞.

The Arnowitt–Deser–Misner (ADM) mass of an end E of an asymptot-
ically flat three manifold (M3, g) is defined to be

mADM(E) +
1

16π
lim
r→∞

ˆ
∂Br

(∂xjgii − ∂xigij)nj dx ,

where n(x) + x
|x| is the outer unit normal to the coordinate sphere ∂Br at

x ∈ ∂Br. The ADM mass is a geometric invariant of the given end, despite
being expressed in coordinates. The ADM mass of (M3, g) is defined to be
the sum of the ADM masses of its ends.

For the Riemannian Schwarzschild metric

gSchwarzschild =
(

1 +
m

2r

)4
gR3

on the outer region M3
Schwarzschild + R3 \ Bm

2
, where r(x) + |x|, the ADM

mass is equal to

mADM(M3
Schwarzschild, gSchwarzschild) = m =

√
A

16π
,

where A is the area of the horizon ∂(R3 \Bm
2

).

Penrose conjectured that the ADM mass of an asymptotically flat initial
data set is bounded from below in terms of the areas of its black holes. More
precisely, he conjectured that

mADM(M3, g) ≥
√

A

16π
,

with equality only if (M3, g) is isometric to (R3 \Bm
2
, gSchwarzschild).

3There are different definitions requiring different rates or orders of decay, depending on the
context.
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Hawking observed that the ADM mass of (M3, g) can be recovered from
the quasi-local mass (known now as the Hawking mass)

Σ2 ⊂M3 7→ mH(Σ) +

√
|Σ|
16π

(
1− 1

16π

ˆ
Σ
H2 dµ

)
by taking the limit as r → ∞ of mH(Σr) over coordinate spheres Σr +
x−1(Br). Here, H is the mean curvature of Σ, |Σ| = µ(Σ) is its area, and µ
is the induced Riemannian measure.

Geroch (1973) observed that the Hawking mass mH(Σt) is monotone
non-decreasing along a family of surfaces Σt which evolve according to the
inverse mean curvature flow

∂tX = H−1ν , (0.2)

where ν is the outward pointing unit normal field. The equation (0.2) tends
to expand initial surfaces satisfying H > 0, and diffusion tends to smooth
out the curvature so that they become “rounder”. If, given a time-symmetric
initial data set (M3, g), we can find a family of surfaces Σt which start from
the outermost trapped surface Σ0 = ∂M3 and expand outwards, eventually
approximating large coordinate spheres as t → ∞, all the while moving
according to inverse mean curvature flow, then we can conclude that

mADM(M3, g) = lim
t→∞

mH(Σt) ≥ mH(Σ0) =

√
|Σ|
16π

.

This idea for proving Penrose’s conjecture (in the time-symmetric case)
was suggested by Jang and Wald (1977), and was eventually made rigorous
by Huisken and Ilmanen (2001). The main difficulty was overcoming the
fact that solutions to (0.2) starting at the horizon Σ = ∂M3 generally run
into singularities of the form H → 0 before the surfaces are able to expand
to infinity. To overcome this, Huisken and Ilmanen studied the level set
formulation of the flow, which asks for a function u : M3 → R satisfying{

div
(
∇u
|∇u|

)
= |∇u|

u|∂M3 = 0 .
(0.3)

The level sets Σt + ∂{p ∈ M3 : u(p) ≤ t} of a function u satisfying (0.3)
will be smooth and satisfy (0.2) wherever |∇u| 6= 0. The advantage of the
level set formulation is that a global solution can be constructed (including
possibly points where |∇u| degenerates), which thereby allows the continu-
ation of the inverse mean curvature flow through singularities. On the other
hand, proving that the ADM mass is non-decreasing across critical times
requires additional arguments.

The general (i.e. non time-symmetric) Penrose inequality remains an
open problem.
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0.11. Curvature flow. The curve shortening flow drives an immersed
curve γ : M1 →M2 on a Riemannian surface M2 with velocity equal to its
curvature vector ~κ,

∂tγ = ~κ .

Its name comes from the fact that it is the L2-gradient flow of the length
functional, so it tends to decrease the length of the curve in the vicinity of
any given point.

Appropriately viewed, the curve shortening flow can be seen as a para-
bolic partial differential equation. With respect to the arc-length parameter
s, it takes the form

∂tγ = ∂2
sγ ,

which looks an awful lot like the heat equation.

With respect to a local coordinate x : U ⊂ M1 → R for the 1-manifold
M1 (topologically either S1 or R), curve shortening flow (in the plane) be-
comes

∂γ

∂t
=

∣∣∣∣∂γ∂x
∣∣∣∣−2(∂2γ

∂x2

)⊥
=

∣∣∣∣∂γ∂x
∣∣∣∣−2
(
∂2γ

∂x2
−
∣∣∣∣∂γ∂x

∣∣∣∣−2〈∂2γ

∂x2
,
∂γ

∂x

〉
∂γ

∂x

)
,

a degenerate system of nonlinear parabolic equations.

If, instead, we view γ locally as the graph of a family of functions u(·, t) :
U ⊂ R→ R, then curve shortening flow (in the plane) becomes

ut =
uxx

1 + (ux)2
.

If we view the (planar) curves γ, assumed now to be convex, as the t-
level sets of a function u : R2 → R, then u satisfies the level set (curve
shortening) flow

−|Du|div

(
Du

|Du|

)
= 1 .

The curve shortening flow has much better convergence properties than
other geometric flows. Indeed, Grayson (1987), building on work of Gage–
Hamilton (1986), proved that every closed embedded planar curve converges
to a single point (becoming round in the process) under curve shortening
flow. In fact, this behaviour holds in more general ambient spaces (e.g.
compact surfaces), leading to numerous geometric applications (e.g. simple
proofs of the Lusternik–Schnirelmann theorem on the existence of at least
three closed geodesics on any Riemannian two-sphere (S2, g), and Smale’s
theorem on the retractibility of Diff(S2) to SO(3)).
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The curve shortening flow also improves the isoperimetric ratio of an
initial embedded curve, leading to further applications.

The curve shortening flow is also a model for grain boundaries in an-
nealing metals and the shapes of worn stones (in two dimensions). It has
found useful applications in image processing as it can be implemented to
smooth the boundaries between shapes, making them easier for computer
software to recognize.

There are many higher dimensional generalizations of the curve short-
ening flow, where the normal speed κ is replaced by some function F (A)
of the shape operator A satisfying certain structure conditions. Important
examples are the mean curvature flow of submanifolds (for which the
velocity is the mean curvature vector) and the Gauss curvature flow of
convex hypersurfaces (for which the inward normal speed is the Gauss cur-
vature). The mean curvature flow is a model for many dynamical processes
which involve surface tension (such as soap films and black-hole horizons);
the Gauss curvature flow is a model for wearing processes (such as lens mak-
ing, or the erosion of pebbles on a beach). These higher dimensional flows
generally encounter singularities before smooth convergence (possibly after
rescaling) to a model space, in contrast to curve shortening flow. So called
“weak” formulations of these flows, such as their level set flows, are able to
extend solutions beyond singularities, at the expense of losing topological
information across singular times.

A powerful tool for studying singularities in curvature flows is the so-
called “blow-up” method, whereby one “zooms in” at the singularity —
rescaling so that the curvature becomes normalized. In the limit, we find
a regular solution, often of a very special nature. Particularly important
special solutions are the translating solutions (or travelling wave
solutions), which satisfy the translator equation

F (A) = 〈ν , en+1〉
at any particular time, and move through space by translation with constant
velocity en+1. In the graphical case, the translator equation becomes the
graphical translator equation

F (Du,D2u) =
1√

1 + |Du|2
.

For example, when F (A) is the mean curvature, we obtain

div

(
Du√

1 + |Du|2

)
=

1√
1 + |Du|2

.

0.12. Ricci flow and the Poincaré conjecture. The Ricci flow is an
evolution equation for a Riemannian manifold (M, g) which deforms the
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metric g in the direction of its Ricci tensor Rc. That is,

∂tg = −2 Rc .

Appropriately viewed, this is a parabolic system of differential equations. In
fact, it is a very natural analogue of the heat equation. Indeed, in harmonic
coordinates {xi}ni=1, the Ricci tensor takes the form

Rcij = −1

2
gkl∂k∂lgij +Qij(g, ∂g) ,

where Qij(g, ∂g) denotes terms that are quadratic in the components of g
and their first partial derivatives.

In two dimensions, the Ricci curvature is equal to 1
2 R g, where R is the

scalar curvature. So the two-dimensional Ricci flow becomes

∂tg = −R g .

Since the right hand side is, in this case, just a multiple of g, we can expect
the flow to preserve the conformal structure. In a neighbourhood of any
point of M , there exist “isothermal” coordinates (x, y), which just means
that the metric takes the form g = e2u(dx2 + dy2). In such coordinates,
the scalar curvature is equal to R = −e−2u∆u, where ∆ = ∂2

x + ∂2
y is the

coordinate Laplacian. So we can write the Ricci flow locally in this chart as
the logarithmic fast diffusion equation

∂tu = e−2u∆u .

Ricci flow is motivated by the principle that diffusion equations drive so-
lutions towards equilibria, where the diffusing quantity becomes maximally
diffuse. So the hope is that the Ricci flow should diffuse the metric, making
it more and more homogeneous. Since the process is smooth and homoge-
neous spaces are easier to understand than general spaces, this should lead
to valuable topological information about the initial manifold.

This philosophy has yielded spectacular advances in some situations (but
is far too optimistic in the general case). For instance, Chow (1991) and
Hamilton (1988) proved that the Ricci flow of an initial metric on a closed
surface always converges, after appropriate time-dependent rescaling, to a
metric of constant curvature.

In three and higher dimensions, the Ricci flow on closed manifolds gen-
erally encounters curvature singularities before converging ‘nicely’, except
in certain special cases (for instance when the initial metric has positive
Ricci curvature; Hamilton 1982). Overcoming singularity formation was the
key to Hamilton’s programme for proving the Poincaré conjecture (Poincaré
1904) and the more general geometrization conjecture (Thurston 1982). This
programme was finally completed by Perelman in 2003.
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1. Potential theory

We begin with a quick review of basic potential theory. For a more in depth
discussion, including a number of details we have left out, see [2, Chapter
2].

A function u ∈ C2(Ω), Ω ⊂ Rn is said to be harmonic if it satisfies the
Laplace equation:

−∆u = 0 ,

where

∆ + div ◦ grad = tr ◦Hess =

n∑
i=1

∂2

(∂xi)2

is the Laplacian. Given any f ∈ C0(Ω), the inhomogeneous Laplace equa-
tion

−∆u = f (1.1)

for u ∈ C2(Ω) is called Poisson’s equation.

A function u ∈ C2(Ω) is subharmonic (resp. superharmonic) if

−∆u ≤ 0 (resp. −∆u ≥ 0) .

By the divergence theorem, any subharmonic (resp. superharmonic) func-
tion u ∈ C2(Br(x0)) satisfies

−
ˆ
∂Br(x0)

∇u ·N dσ = −
ˆ
Br(x0)

div(∇u) dL

= −
ˆ
Br(x0)

∆u dL

≤ (resp. ≥) 0 , (1.2)

where N is the outward unit normal field to ∂Ω, ∇u + gradu, L denotes
the Lebesgue measure on Rn and σ denotes the standard spherical measure
on ∂Br(x0). In particular, equality holds for a harmonic function.

Theorem 1.1 (Mean value theorem). If u ∈ C2(Br(x0)) is subharmonic
(resp. superharmonic), then

u(x0) ≤ (resp. ≥)
1

|Br(x0)|

ˆ
Br(x0)

u dL

and

u(x0) ≤ (resp. ≥)
1

|∂Br(x0)|

ˆ
∂Br(x0)

u dσ .

In particular, if u is harmonic, then equality holds in both cases.

Proof. Exercise. (Hint: evaluate the integral in polar coordinates and apply
(1.2).) �
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The following is a straightforward consequence of the mean value in-
equalities.

Theorem 1.2 ((Strong) maximum principle). Let u ∈ C2(Ω) ∩ C0(Ω) be
a subharmonic (resp. superharmonic) function. If u(x) = supΩ u (resp.
u(x) = infΩ u) for some interior x ∈ Ω \ ∂Ω, then u is constant on the
connected component of Ω containing x.

Proof. It suffices to consider the subharmonic case.

Set M + supΩ u and define ΩM + {x ∈ Ω \ ∂Ω : u(x) = M}. Since u is
continuous, ΩM is closed. By hypothesis, ΩM is non-empty. Given x ∈ ΩM ,
there exists r > 0 such that Br(x) ⊂ Ω, so that u is subharmonic on Br(x).
Since ∆M = 0, u −M is also subharmonic on Br(x) and the mean value
theorem yields

0 = u(x)−M ≤ 1

|Br(x)|

ˆ
Br(x)

(u(x)−M)dL ≤ 0 ,

and hence u(x) ≡ M on Br(x). This means that Br(x) ⊂ ΩM , and we
deduce that ΩM is open. The claim follows. �

The following two corollaries are immediate applications of the strong
maximum principle.

Corollary 1.3 ((Weak) maximum principle). Let u ∈ C2(Ω) be a subhar-
monic (resp. superharmonic) function. If Ω is bounded, then

sup
Ω
u ≤ sup

∂Ω
u (resp. inf

Ω
u ≥ inf

∂Ω
u) .

Corollary 1.4. If u, v ∈ C2(Ω)∩C0(Ω) satisfy ∆u = ∆v and u|∂Ω ≡ v|∂Ω,
then u ≡ v.

A further consequence of the mean value theorem is the Harnack in-
equality for harmonic functions.

Theorem 1.5 (Harnack inequality). Given Ω ⊂ Rn and any connected
Ω′ b Ω, there is a constant C <∞ such that any non-negative subharmonic
function u ∈ C2(Ω) satisfies

sup
Ω′

u ≤ C inf
Ω′
u .

Proof. Consider any x ∈ Ω and r > 0 such that B4r(x) ⊂ Ω. Given any
x, x ∈ Br(x), the mean value inequalities give

u(x) =
1

|Br(x)|

ˆ
Br(x)

u dL ≤ 1

|Br(x)|

ˆ
B2r(x)

u dL
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and

u(x) =
1

|B3r(x)|

ˆ
B3r(x)

u dL ≥ 1

|B3r(x)|

ˆ
B2r(x)

u dL

Consequently,

sup
Br(x)

u ≤ |B3r(x)|
|Br(x)|

inf
Br
u = 3n inf

Br
u .

Now choose x and x in Ω′ so that u(x) = maxΩ′ u and u(x) = minΩ′ u and
choose r > 0 so that dist(Ω′,Rn \Ω) > 4r. By the Heine–Borel theorem, Ω′

is covered by a finite number of balls of radius r. Some subset of these balls
certainly covers a path from x to x. Taking N to be the smallest number
such that there are N balls with this property (which will thus depend only
on Ω and Ω′), we find, by applying the above inequality N times, that

sup
Ω′

u ≤ 3Nn inf
Ω′
u . �

Corollary 1.4 establishes, in particular, that harmonic functions (and,
more generally, solutions to the Poisson equation) defined in bounded do-
mains are uniquely determined by their boundary values (so long as they
are continuous up to the boundary of their domains). Existence of solutions
with prescribed boundary data is a little more difficult (but nonetheless pos-
sible) to establish. In fact, we will only do so in case Ω is a ball. (Existence
of solutions over more general domains can be obtained from the existence
result on balls via Perron’s method, which we describe in §4.)

First observe that the function

Γ(x) +


|x|2−n

(2− n)|∂Bn
1 |

if n ≥ 3

1

2π
log |x| if n = 2

is harmonic in Rn \ {0} (and hence the function x 7→ Γ(x − y) is harmonic
in Rn \ {y} for any y ∈ Rn). The function Γ is called the fundamental
solution to the Laplace equation.

By carefully applying the divergence theorem, it is possible to derive
the remarkable representation formula (called Green’s representation
formula)

u(y) =

ˆ
B

Γ(x− y)∆u(x)L(x)

+

ˆ
∂B

(
u(x)∇NΓ(x− y)− Γ(x− y)∇Nu(x)

)
dσ(x) (1.3)
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for any u ∈ C2(B) ∩ C1(B), where B is any ball and N is its outward unit
normal. Fixing a centre and taking the radius of B to infinity, we obtain

u(y) =

ˆ
Rn

Γ(x− y)∆u(x)L(x) (1.4)

for any u ∈ C2(Rn) with compact support. On the other hand, for any
harmonic u ∈ C2(B) ∩ C1(B), Green’s representation formula yields

u(y) =

ˆ
∂B

(
u(x)∇NΓ(x− y)− Γ(x− y)∇Nu(x)

)
dσ(x) .

In particular, this implies that any harmonic u ∈ C2(B) is analytic in B!
Note that the right hand side is just the convolution Γ∗∆u of Γ and ∆u.

Conversely, if f ∈ C0(Rn) is compactly supported, then the Newtonian
potential (corresponding to f),

γf (y) + −
ˆ
Rn

Γ(x− y)f(x)L(x) ,

is a smooth solution to Poisson’s equation (1.1) on Rn, and hence on any
domain4 Ω ⊂ Rn. This solution is not unique, however, since adding any
harmonic function h ∈ C2(Ω) to γf |Ω yields another solution to Poisson’s
equation on Ω. On the other hand, given boundary data φ ∈ C0(∂Ω), if we
are able to find a harmonic function hφ ∈ C2(Ω) ∩ C0(Ω) taking boundary
data φ−γf |∂Ω, then γf +hφ satisfies Poisson’s equation with boundary data

φ. In fact, by Corollary 1.4, it is the unique solution of class C2(Ω)∩C0(Ω).

Next observe that, by adding a harmonic function h to Γ, we obtain the
more general representation formula

u(y) =

ˆ
B
G(x, y)∆u(x)L(x)

+

ˆ
∂B

(
u(x)∇NG(x, y)−G(x, y)∇Nu(x)

)
dσ(x) ,

where G(x, y) + Γ(x− y) + h(x). If we can determine a harmonic function
h such that G(·, y) vanishes on ∂B, then, for a harmonic u, this will become

u(y) =

ˆ
∂B
u(x)∇NG(x, y)dσ(x) ,

a representation formula for harmonic functions with prescribed boundary
data. The function G, if it exists, is unique by Corollary 1.4, and is known
as Green’s function (for the ball B).

Constructing a suitable (explicit) harmonic function h for the unit ball
is typically achieved by the method of images. In short, we find that any

4Note that, if Ω ⊂ Rn is bounded and f ∈ C0(Ω), then f admits a continuous extension to
Rn which is compactly supported in some large ball.

24



1. POTENTIAL THEORY

harmonic function u ∈ C2(Bn
1 ) ∩ C1(Bn

1 ) satisfies the Poisson integral
formula

u(y) =

ˆ
∂Bn1

K(x, y)u(x) dσ(x) ,

where the Poisson kernel K = ∇NG is defined by

K(x, y) +
1− |x|2

|∂Bn
1 |

1

|x− y|n
.

In fact, a little more work (an approximation argument) reveals that the
Poisson integral formula actually holds for all harmonic u ∈ C2(Bn

1 ) ∩
C0(Bn

1 ). Moreover, with not too much effort, we obtain the converse:

Theorem 1.6. Given any φ ∈ C0(Bn
1 ) the function u : Bn

1 → R defined by

u(x) +


ˆ
∂Bn1

K(x, y)φ(x) dσ(x) if x ∈ Bn
1

φ(x) if x ∈ ∂Bn
1

belongs to C2(Bn
1 ) ∩ C0(Bn

1 ) and is harmonic in Bn
1 .

Note that, although we only stated the result for the unit ball centred
at the origin in Rn, it applies to any ball Br(x) since we may translate and
scale boundary data on Br(x) to obtain boundary data on Bn

1 , apply the
result to obtain a solution on Bn

1 , and scale and translate back to obtain the
desired solution on Br(x).

We conclude that, for any ball B ⊂ Rn, any f ∈ C0(B), and any φ ∈
C0(∂B), there exists a unique solution u ∈ C2(B) ∩ C0(B) to the Dirichlet
problem {

−∆u = f in B

u = φ on ∂B .

Moreover, if f = 0, then u is analytic in B.

1.1. Exercises.

Exercise 1.1. Let u ∈ C2(Ω) be a harmonic function defined in Ω ⊂ Rn.
Convince yourself that the function ua,λ,R,v ∈ C2(Ωλ,R,v) is harmonic for
any a ∈ R, λ > 0, R ∈ O(n) and v ∈ Rn, where

ua,λ,R,v(x) + au(λR(x− v)) and Ωλ,R,v + {R−1λ−1x+ v : x ∈ Ω} .

Exercise 1.2. Prove the mean value inequalities (Theorem 1.1).
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2. The maximum principle

The most importrant tool in the study of elliptic pde of second order is the
maximum principle.

2.1. The weak maximum principle. The weak maximum principle
guarantees that subsolutions to certain linear elliptic pde necessarily attain
their maxima at the boundary of their domain.

Denote by Sn×n the set of symmetric n× n matrices.

Theorem 2.1 (The (weak) maximum principle). Let Ω ⊂ Rn be a bounded
open set. Suppose that the coefficients (a, b, c) : Ω→ Sn×n × Rn × R satisfy

aij(x)ξiξj ≥ 0 for all x ∈ Ω and all ξ ∈ Rn , (2.1)

c(x) ≤ 0 for all x ∈ Ω , (2.2)

and

aij(x)ξiξj + bk(x)ξk + c(x) > 0 for all x ∈ Ω for some ξ ∈ Rn . (2.3)

If u ∈ C2(Ω)∩C0(Ω) is a subsolution to the corresponding equation, that is,

−
(
aijuij + biui + cu

)
≤ 0 in Ω ,

then u ≤ max∂Ω u+, where u+ + max{u, 0} is the non-negative part of u.

A linear operator L = aijDiDj + biDi + c (or equation −Lu = f) satis-
fying (2.4) is called elliptic (or weakly elliptic). If the inequality (2.4)
is strict, we call L strictly (or locally uniformly) elliptic.

Proof of Theorem 2.1. Given ε > 0, set uε(x) + u(x) + εex·ξ, where
ξ ∈ Rn is chosen so that

aij(x)ξiξj + bk(x)ξk + c(x) > 0 for all x ∈ Ω .

We claim that uε ≤ max∂Ω(uε)+ in Ω. Suppose, to the contrary, that

uε(x0) > max
∂Ω

(uε)+

for some point x0 ∈ Ω. We may assume that x0 is a local maximum of uε.
But then, at x0,

0 ≤ − (aijDiDj + bkDk)uε

= − (aijDiDj + bkDk)u− ε(aijDiDj + bkDk)e
x·ξ

≤ cu− εex·ξ
(
aijξiξj + bkξk

)
= cuε − εex·ξ

(
aijξiξj + bkξk + c

)
< 0 ,
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which is absurd. We conclude that uε ≤ max∂Ω(uε)+ in Ω for all ε > 0. The
claim follows since ε was arbitrary. �

We emphasize that no further conditions (e.g. continuity or regularity)
on the coefficients beyond (2.1)–(2.3) are required in Theorem 2.1. Note
that (2.1) and (2.3) are implied by the pair of conditions

aij(x)ξiξj ≥ λ|ξ|2 for all x ∈ Ω and all ξ ∈ Rn , (2.4)

and

λ−2|b(x)|2 − λ−1c(x) ≤ Λ for all x ∈ Ω (2.5)

for some λ > 0 and Λ <∞. An operator L = aijDiDj+b
iDi+c (or equation

−Lu = f) satisfying (2.4) is called uniformly elliptic.

Since the difference between any two solutions to an affine linear equation
satisfies the corresponding linear equation, the maximum principle immedi-
ately implies the following uniqueness property for the Dirichlet boundary
value problem.

Corollary 2.2. Let Ω ⊂ Rn be a bounded open set. Suppose that the coeffi-
cients (a, b, c) : Ω→ Sn×n×Rn×R satisfy (2.1)–(2.3). Given any f : Ω→ R
and any ϕ ∈ C0(∂Ω), there exists at most one u ∈ C2(Ω)∩C0(Ω) satisfying
the Dirichlet problem{

−
(
aijuij + biui + cu

)
= f in Ω

u = ϕ on ∂Ω .

The maximum principle is also a useful tool in proving a priori estimates.
We illustrate this with the following estimate, which we will need later when
we solve the Dirichlet problem for linear elliptic equations.

Proposition 2.3. Let Ω ⊂ Rn be a bounded open set with diam(Ω) ≤ R.
Suppose that the coefficients (a, b, c) : Ω→ Sn×n×Rn×R satisfy (2.1)–(2.3).
In particular,

λ + aijξiξj + biξi + c > 0 in Ω

for some ξ ∈ Rn. If u ∈ C2(Ω) ∩ C0(Ω) satisfies

−
(
aijuij + biui + cu

)
≤ f in Ω ,

then

sup
Ω
u ≤ max

∂Ω
u+ + C sup

Ω

f+

λ
,

where C + e|ξ|R.

Proof. Consider the function

v + u−max
∂Ω

u+ − e−d
(

ed − ex·ξ
)

sup
Ω

f+

λ
,
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where d + supx∈Ω ξ · x and d + infx∈Ω ξ · x. Observe that

−
(
aijvij + bivi + cv

)
≤ f −

(
aijDiDj + biDi + c

)
ex·ξ−d sup

Ω

f+

λ

= f −
(
aijξiξj + biξi + c

)
ex·ξ−d sup

Ω

f+

λ

≤ 0 .

Since v|∂Ω ≤ 0, the maximum principle (Theorem 2.1) yields v ≤ 0 in Ω,
and hence

sup
Ω
u ≤ max

∂Ω
u+ + sup

Ω

f+

λ
sup

Ω

(
ed−d − ex·ξ−d

)
≤ max

∂Ω
u+ + e|ξ|R sup

Ω

f+

λ
. �

2.2. The strong maximum principle. The weak maximum principle
guarantees that solutions to certain linear elliptic pde attain their maxi-
mum at the boundary. The strong maximum principle guarantees that the
maximum cannot also be attained in the interior, except in the extreme case
that the solution is constant. It is a consequence of the Hopf lemma.

Theorem 2.4 (Hopf Lemma). Let Ω = BR(p) be the open ball in Rn of
radius R centred at p ∈ Rn. Suppose that the coefficients (a, b, c) : BR(p)→
Sn×n × Rn × R satisfy, for some λ > 0 and Λ <∞,

aij(x)ξiξj ≥ λ|ξ|2 for all x ∈ BR(p) and all ξ ∈ Rn (2.6)

c(x) ≤ 0 for all x ∈ BR(p) , (2.7)

and

λ−1 tr(a(x)) ≤ Λ and λ−2|b(x)|2 − λ−1c(x) ≤ Λ for all x ∈ BR(p). (2.8)

Let u ∈ C2(BR(p))∩C1(BR(p)) be a subsolution to the corresponding equa-
tion:

−
(
aijuij + biui + cu

)
≤ 0 in BR(p) .

If, for some x0 ∈ ∂BR(p), u(x) < u(x0) = 0 for all x ∈ BR(p), then

Du|x0 · ν(x0) > 0 ,

where ν(x0) = x0−p
|x0−p| is the outer unit normal to BR(p) at x0.

Proof. It suffices to consider the case that BR(p) = B1 is the unit ball
centred at the origin. Indeed, if u is defined on BR(p), then we may consider
the function ũ defined on B1 by

ũ(x) + u(p+Rx) .
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This function satisfies the equation

−
(
ãij ũij + b̃iũi + c̃ũ

)
≤ 0 in B1(0) ,

where

ãij(x) + R−2aij(p+Rx) , b̃k(x) + R−1bk(p+Rx) and c̃(x) + c(p+Rx) .

So the hypotheses of the theorem are met by ũ and the new coefficients,
with λ replaced by λ̃ = λR−2. Supposing then that the theorem is proved
in case B = B1(0), we conclude, for a point p + Rx0 ∈ ∂BR(p) satisfying
u(p+Rx) < u(p+Rx0) = 0 for all x ∈ B1(0), that

0 < Dũ|x0 · ν̃(x0) = RDu|p+Rx0 · ν(p+Rx0) .

So let us continue under the assumption BR(p) = B1. Given ε > 0 and
µ > 0, define the function

uε,µ(x) + u(x) + ε
(

e−µ|x|
2 − e−µ

)
.

Observe that

−
(
aijDiDj + biDi + c

)
uε,µ

≤ − ε
(
aijDiDj + biDi + c

) (
e−µ|x|

2 − e−µ
)

= − εe−µ|x|2
(

4µ2aijxixj − 2µaijδij − 2µbkxk + c
)

+ εce−µ

≤ − εe−µ|x|2
(

3µ2λ|x|2 − 2µ tr(a)− λ−1|b|2 + c
(

1− e−µ(1−|x|2)
))

≤ − εe−µ|x|2
(
3µ2λ|x|2 − 2µλΛ− λΛ

)
.

where we made use of the Cauchy–Schwarz inequality to estimate

2µbkxk ≤ µ2λ|x|2 + λ−1|b|2 .

So we may choose µ sufficiently large that

−
(
aijDiDj + biDi + c

)
uε,µ ≤ 0 for all x ∈ B1 \B1/2 .

On the other hand, since u(x) < 0 in B1, we can find δ > 0 such that
u(x) < −δ in B1/2, and hence choose ε sufficiently small that

uε,µ = u+ ε
(

e−µ/4 − e−µ
)

≤ − δ + ε
(

e−µ/4 − e−µ
)

< 0

on ∂B1/2. Since, by continuity of u, uε,µ ≤ 0 on ∂B1, the maximum principle
implies that uε,µ ≤ 0 in B1 \ B1/2. Since uε,µ(x0) = 0, we conclude that x0
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is a maximum of uε,µ in B1 \B1/2 and hence

0 ≤ Duε,µ|x0 · ν(x0) =
(
Du− 2εµe−µ|x|

2
x
)∣∣∣
x0

· ν(x0)

= Du|x0 · ν(x0)− 2εµe−µ .

The claim follows. �

Theorem 2.5 (Strong maximum principle). Let Ω ⊂ Rn be a bounded open
set. Suppose that the coefficients (a, b, c) : Ω → Sn×n × Rn × R satisfy
(2.6)–(2.8). Let u ∈ C2(Ω) ∩ C0(Ω) be a non-positive subsolution to the
corresponding equation:

−
(
aijuij + biui + cu

)
≤ 0 in Ω .

If u(x0) = 0 for some x0 ∈ Ω, then u ≡ 0 in Ω.

Proof. Set

D + {x ∈ Ω : u(x) = 0} .
By hypothesis, D is non-empty. Since u is continuous, D is relatively closed
in Ω. So Ω \D is open in Ω.

Suppose, contrary to the claim, that Ω \D is non-empty. Then we can
find an open ball B ⊂ Ω \D with B ∩D 6= ∅ (take, for example, the largest
ball in Ω\D about a point whose distance to ∂Ω is greater than its distance
to D).

Choose some x0 ∈ B ∩D. Since the hypotheses of the Hopf Lemma are
satisfied at x0, we conclude that

Du|x0 · ν(x0) > 0 .

But this is impossible since x0 ∈ D is a local maximum of u. �

2.3. Exercises.

Exercise 2.1. Suppose that the coefficients (a, b, c) : Ω → Sn×n × Rn × R
satisfy (2.4) and (2.5). Show that they also satisfy satisfy (2.1) and (2.3).

Exercise 2.2. Suppose that the coefficients (a, b, c) : Ω → Sn×n × Rn × R
satisfy (2.1) and (2.3), and that c ≥ 0. Let u ∈ C2(Ω)∩C0(Ω) be a positive
supersolution to the corresponding linear equation. Show that minΩ u ≥
min∂Ω u.

Exercise 2.3. Prove Corollary 2.2.

Exercise 2.4. Suppose that u ∈ C2(Ω)∩C0(Ω) is a subsolution to Poisson’s
equation on the ball BR of radius R centred at the origin:

−∆u ≤ f in BR .
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Prove that

sup
BR

u ≤ sup
∂BR

u+ +
1

2n
R2 sup

BR

f+ .

Hint: Consider the function

v + u−max
∂BR

u+ −
1

2n
(R2 − |x|2) sup

BR

f+ .

Exercise 2.5 (Bernstein estimates). Let u : BR → R be a harmonic func-
tion. Observe that

−∆|Dku|2 = −2|Dk+1u|2 .
Let ρ : Rn → R be a smooth non-negative function satisfying the following
conditions

– ρ|Rn\BR ≡ 0 and ρ|BR/2 ≡ 1,

– |Diρ|2 ≤ 10ρ
R2 for each i, and

– |DiDjρ| ≤ 10
R2 for each i, j.

Note that such a function can be constructed by, say, mollifying the step
function

σB3R/4
(x) +

{
0 if x ∈ Rn \B3R/4

1 if x ∈ B3R/4 .

For each k ∈ N, set

Qk +
k∑
j=0

ajR
2jρj |Dju|2 ,

where, say,

a0 = 1 and aj +
aj−1

10nj(3j + 2)
for j ≥ 1 .

(a) Show that

−∆Qk ≤ 0 .

Hint: By the Cauchy–Schwarz inequality (with Peter giving 2j to
Paul),

−2Dj+1u ·
(
Dju⊗ Dρ

ρ

)
≤ 2j

|Dρ|2

ρ2
|Dju|2 +

1

2j
|Dj+1u|2

wherever ρ 6= 0.

(b) Deduce that

max
BR/2

|Dju| ≤ AjR−j ,

where

Aj + max
∂BR
|u|a−

1
2

j .
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(c) Deduce that there are no harmonic functions u : Rn → R of growth

|u(x)| ≤ o(|x|) as |x| → ∞
other than the constant ones. This is known as Liouville’s the-
orem.

(d) Deduce, furthermore, that every smooth harmonic function u : Ω→
R is actually analytic in Ω.
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3. SCHAUDER’S THEOREM

3. Schauder’s theorem

Schauder’s5 theorem, a fundamental result in the study of elliptic partial
differential equations, states, roughly speaking, that solutions to uniformly
elliptic affine linear equations are two Hölder derivatives more regular than
their coefficients. It is considered a perturbative result, in that it relies on
the fact that (under the conditions of the theorem) the equation closely
resembles the Laplace equation at sufficiently small scales. The theorem
consists of two results, the interior estimate, and the boundary (or global)
estimate.

Schauder’s theorem is phrased in terms of Hölder spaces. These spaces
play a crucial role in the development of the theory of nonlinear partial
differential equations, so it is worth reviewing them here.

3.1. Hölder spaces. Given α ∈ (0, 1], a function u : Ω→ R on a bounded
open set Ω ⊂ Rn is α-Hölder continuous at x ∈ Ω if

sup
y∈Ω\{x}

|u(y)− u(x)|
|y − x|α

<∞ .

A function u : Ω→ R is then called α-Hölder continuous if it is α-Hölder
continuous at all points, and uniformly α-Hölder continuous if

[u]Cα(Ω) + sup
(x,y)∈Ω×Ω\{(z,z):z∈Ω}

|u(y)− u(x)|
|y − x|α

<∞ .

We simply call u : Ω → R (uniformly) Hölder continuous (at x) if it
is (uniformly) α-Hölder continuous (at x) for some α ∈ (0, 1].

Observe that, for each α ∈ (0, 1], the set Cα(Ω) of α-Hölder continuous
functions on Ω forms a linear space under pointwise addition and scalar
multiplication. We equip Cα(Ω) with the norm6

|u|Cα(Ω) + |u|C0(Ω) + [u]Cα(Ω) .

Similarly, we equip the linear space Ck,α(Ω) of functions u on Ω all
of whose partial derivatives of order up to and including k are α-Hölder
continuous with the norm

|u|Cα(Ω) + |u|Ck(Ω) +
∑
|β|=k

[Dβu]Cα(Ω) .

5Juliusz Schauder was a Polish mathematician of Jewish origin. After the invasion of German
troops in Lwów 1941 it was impossible for him to continue his work. Even before the Lwów ghetto

was established he wrote to Ludwig Bieberbach pleading for his support. Instead, Bieberbach

passed his letter to the Gestapo and Schauder was arrested. In his letters to Swiss mathematicians,
he wrote that he had important new results, but no paper to write them down. He was executed

by the Gestapo, probably in October 1943.
6Note that [ · ]Cα(Ω) is not a norm, since it vanishes on constant functions. Moreover, we

allow |u|Cα(Ω) =∞, though |u|Cα(Ω′) <∞ for every u ∈ Cα(Ω) and Ω′ b Ω.
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Recall that, for an arbitrary subset F ⊂ Rn, a function u : F → R
is continuously differentiable if it extends to a continuously differentiable
function on a neighbourhood of F . Using this definition, the spaces Ck,α(Ω)
can be defined as for Ω, and in this case form Banach spaces.

The space Ck,α(F,Rm) of functions u from F ⊂ Rn into Rm all of whose
partial derivatives of order up to and including k have α-Hölder continuous
components, and its norm, are defined in the same manner.

The primary reason for the introduction of Hölder norms is that a se-
quence of functions uj which is bounded in the Ck topology typically loses
a derivative in passing to the limit (along a subsequence) by way of the
Arzelà–Ascoli theorem. If the sequence is bounded in Ck,α, α > 0, then the
sequence subconverges in Ck,β for every β < α. That is, we only need to
give up a fraction of a derivative. See Exercise 3.5.

3.2. The interior estimate. The interior version provides an estimate
away from the boundary of the domain.

Theorem 3.1 (Interior Schauder). There exists C = C(n, λ,Λ, α, ρ,R) <
∞ with the following property. Let Ω ⊂ Rn be an open set satisfying
diam Ω ≤ R and let a ∈ Cα(Ω, Sn×n), b ∈ Cα(Ω,Rn), c ∈ Cα(Ω) be co-
efficients satisfying

aij ≥ λδij in Ω , λ > 0

and

|a|Cα(Ω,Sn×n) + |b|Cα(Ω,Rn) + |c|Cα(Ω) ≤ Λ , Λ <∞ .

Suppose that u ∈ C2,α(Ω) satisfies

−(aijuij + biui + cu) = f .

If f ∈ Cα(Ω), then, given any Ω′ b Ω satisfying dist(Ω′, ∂Ω) ≥ ρ,

|u|C2,α(Ω′) ≤ C
(
|u|C0(Ω) + |f |Cα(Ω)

)
.

We first prove a basic Hölder estimate for the Hessian of C2 solutions to
the Poisson equation on Rn, from which everything will follow.

Lemma 3.2. There exists C = C(n, α) <∞ such that

[D2u]Cα(Rn) ≤ C[∆u]Cα(Rn)

for every u ∈ C2,α(Rn) such that ∆u ∈ Cα(Rn).

Proof. The proof proceeds by reductio ad absurdum. So suppose, contrary
to the claim, that there exists, for each ` ∈ N, some u` ∈ C2,α(Rn) such that
∆u` ∈ Cα(Rn) and yet

[D2u`]Cα > `[∆u`]Cα ,
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where [ · ]Cα + [ · ]Cα(Rn). If we set v` + λ`u`, where λ` + [D2u`]
−1
Cα , then

[D2v`]Cα = 1 and [∆v`]Cα ≤ `−1 .

By the pigeonhole principle, we can find i, j, k ∈ {1, . . . , n} such that, for
infinitely many `, there exist x` ∈ Rn and h` > 0 for which

|DiDjv`(x` + h`ek)−DiDjv`(x`)|
hα`

≥ 1

2n3
.

We now rescale once more: if we set

w`(x) + h−2−α
` v`(x` + h`x) + p`(x),

where p` is a quadratic polynomial, then

[D2w`]Cα ≤ 1 , [∆w`]Cα ≤ `−1 , and |DiDjw`(ek)−DiDjw`(0)| ≥ 1

2n3
.

We choose p` so that w` vanishes to second order at the origin,

w`(0) = 0 , Dw`(0) = 0 and D2w`(0) = 0 .

Applying the Arzelà–Ascoli theorem, we can find a subsequence of the func-
tions w` which converges locally uniformly in C2(Rn) to a harmonic function
w satisfying

D2w(0) = 0 and [D2w]Cα ≤ 1 , (3.1)

and yet

|D2w(ek)| ≥
1

2n3
.

But this is absurd: since w is harmonic, (3.1) and the Bernstein estimates
(see Exercise 2.5) imply that D2w ≡ 0. �

We now prove Theorem 3.1 by freezing the coefficients, introducing cut-
off functions, and applying Lemma 3.2. Note that, by a linear change of
coordinates, Lemma 3.2 holds with ∆ replaced by aijDiDj for any positive
definite a ∈ Sn×n, with the constant C now depending on a (see Exercise
3.6).

Proof of Theorem 3.1. We will only prove the claim for Ω = B2 and
Ω′ = B1. Once this is proved, a simple scaling argument yields the claim
for Ω = B2r and Ω′ = Br for any r > 0. A covering argument then yields
the claim for general domains Ω and Ω′ b Ω.

Fix any x0 ∈ B1 and set a0 + a(x0). In order to apply Lemma 3.2, we
multiply u with a cutoff function η with support in the ball Br of radius r
about x0, with r ≤ 1. Observe that v + ηu satisfies

−aij0 vij = Lv + (aij − aij0 )vij + bivi + cv in Br ,

where

L + −(aijDiDj + biDi + c) .
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We may estimate

[(aij − aij0 )vij ]Cα(Br) ≤ [D2v]Cα(Br)|a− a0|C0(Br) + [a− a0]Cα(Br)|D
2v|C0(Br)

≤ Λrα[D2v]Cα(Br) + Λ|D2v|C0(Br) . (3.2)

Thus, applying Lemma 3.2 (in conjunction with a coordinate transformation
and a rescaling),

[D2v]Cα(Br) = [D2v]Cα(Rn)

≤ C[aij0 vij ]Cα(Rn)

= C[aij0 vij ]Cα(Br)

= C[Lv + (aij − aij0 )vij + bivi + cv]Cα(Br)

≤ C[Lv]Cα(Br) + [(aij − aij0 )vij ]Cα(Br) + [bivi]Cα(Br) + [cv]Cα(Br)

where C = C(n, α, λ,Λ) (i.e. C depends only on n, λ,Λ and α). Applying
(3.2) and choosing r sufficiently small, we may absorb the first term on the
right of (3.2). This yields an estimate of the form

[D2v]Cα(Br) ≤ C([Lv]Cα(Br) + |v|C2(Br)) ,

where C = C(n, α, λ,Λ, ρ).

Now, if we we arrange that η ≡ 1 in Bσr, where σ < 1, then

[D2u]Cα(Bσr) = [D2v]Cα(Bσr) ≤ [D2v]Cα(Br) .

On the other hand, we may crudely estimate

[Lv]Cα(Br) = [ηLu+ (aijηij + biηi)u+ aijηiuj ]Cα(Br)

≤ C(|f |Cα(Br) + |u|C2(Br)) ,

where C = C(n, λ,Λ, η), and

|v|C2(Br) ≤ C|u|C2(Br) ,

where C = C(n, η). Thus, by covering B1 with suitable balls of radius r and
choosing η appropriately, we obtain

|u|C2,α(B1) ≤ C(|f |Cα(B3/2) + |u|C2(B3/2)) , (3.3)

where C = C(n, α, λ,Λ).

The final step is to replace the C2-norm on the right hand side by the
C0 norm using the following interpolation inequality (whose proof we omit):

|D`w|C0(B1) ≤ ε[Dkw]Cα(B1) + Cε|w|C0(B1) (3.4)

for 1 ≤ ` ≤ k, where Cε = Cε(n, α, k, ε). Though this does not look good
enough, since the norms on the right are over the larger ball B3/2, it can ac-
tually still be achieved by exploiting the fact that (3.3) holds for all solutions
to equations satisfying the hypotheses.
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Fix any y ∈ B2, set σ = 1
3 dist(y, ∂B2), and consider the function ũ :

B2 → R defined by

ũ(x) + u(y + σx) .

Observe that

L̃ũ(x) = σ2Lu(y + σx) ,

where

L̃(x) + aij(y + σx)DiDj + σbi(y + σx)Di + σ2c(y + σx) .

Since y + σB2 ⊂ B2 and σ ≤ 1, the estimate (3.3) yields

|ũ|C2,α(B1) ≤ C([L̃ũ]Cα(B2) + |ũ|C2(B2))

≤ C([Lu]Cα(B2) + |u|C0(B2) + σ2|D2u|C0(B2σ(y))) , (3.5)

where C = C(n, α, λ,Λ), and we used the standard interpolation inequality
to estimate

2σ|Du|2C0(B2) ≤ C(n)
(
|u|2C0(B2) + σ2|D2u|2C0(B2)

)
.

Applying the interpolation inequality (3.4), we may estimate

1

9
dist(y, ∂B2)2|D2u(y)| ≤ σ2|D2u|C0(Bσ(y))

= |D2ũ|C0(B1)

≤ ε|ũ|C2,α(B1) + Cε|ũ|C0(B1) .

Recalling (3.5) and choosing ε = 1
18C , we obtain

1

9
dist(y, ∂B2)2|D2u(y)| ≤ C

(
|Lu|2Cα(B2) + |u|C0(B2)

)
+

1

18
Q ,

where

Q(x) + sup
x∈B2

dist(x, ∂B2)2|D2u(x)|2 .

Since y was arbitrary, we conclude that

|D2u|C0(B3/2) ≤ 4Q ≤ 8C
(
|f |2Cα(B2) + |u|C0(B2)

)
.

This completes the proof. �

3.3. The boundary estimate. The boundary estimate provides an esti-
mate in the neighbourhood of any boundary point (with additional depen-
dence on the boundary data). Together, the interior and boundary estimates
yield a global estimate.

An open set Ω ⊂ Rn is said to be of class Ck,α, if each point p of
its boundary ∂Ω admits a neighbourhood U in Rn and an injective map
φ : U → Rn onto V ⊂ Rn such that

φ(Ω ∩ U) ⊂ Rn+ , φ(∂Ω ∩ U) ⊂ ∂Rn+ , φ ∈ Ck,α(U) and φ−1 ∈ Ck,α(V ) ,
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where Rn+ is the upper half-space Rn−1 × (0,∞) in Rn. The pair (φ,U)
is called a chart for Ω. If k ≥ 1, then, by the implicit function theorem,
∂Ω may also be represented as a graph over its tangent plane (see Exercise
3.7).

Theorem 3.3 (Global Schauder). There exists C = C(n, λ,Λ, α,Ω) < ∞
with the following property. Let Ω ⊂ Rn be a bounded open set with bound-
ary of class C2,α and let a ∈ Cα(Ω, Sn×n), b ∈ Cα(Ω,Rn), c ∈ Cα(Ω) be
coefficients satisfying

aij ≥ λδij in Ω , λ > 0

and
|a|Cα(Ω,Sn×n) + |b|Cα(Ω,Rn) + |c|Cα(Ω) ≤ Λ , Λ <∞ .

Suppose that u ∈ C1(Ω) ∩ C0(Ω) satisfies{
−(aijuij + biui + cu) = f in Ω

u = ϕ on ∂Ω

If f ∈ Cα(Ω) and ϕ ∈ C2,α(Ω), then

|u|C2,α(Ω) ≤ C
(
|u|C0(Ω) + |f |Cα(Ω) + |ϕ|C2,α(∂Ω)

)
.

The key estimate in this case is a Hölder estimate for the Hessian of C2

solutions to Poisson’s equation in the halfspace Rn+ + Rn−1 × [0,∞).

Lemma 3.4. There exists C = C(n, α) <∞ such that

[D2u]Cα(Rn+) ≤ C
(

[∆u]Cα(Rn+) + [D2u|∂Rn+ ]Cα(∂Rn+)

)
for every u ∈ C2,α(Rn+) such that ∆u ∈ Cα(Rn+) and D2u|∂Rn+ ∈ C

α(∂Rn+).

Proof. It suffices to prove the claim in the case D2u|∂Rn+ ≡ 0. Indeed, in

the general case, we set, for each (x, xn) ∈ Rn−1 × [0,∞),

ϕ(x, xn) + u|∂Rn+(x)

Observe that the function v + u − ϕ vanishes on ∂Rn+. So, assuming the
theorem holds in this case, we find that

[D2u]Cα(Rn+) = [D2v +D2ϕ]Cα(Rn+)

≤ [D2v]Cα(Rn+) + [D2ϕ]Cα(Rn+)

≤ C[∆v]Cα(Rn+) + [D2ϕ]Cα(Rn+)

= C[∆u−∆ϕ]Cα(Rn+) + [D2ϕ]Cα(Rn+)

≤ C ′
(

[∆u]Cα(Rn+) + [D2ϕ]Cα(Rn+)

)
= C ′

(
[∆u]Cα(Rn+) + [D2ϕ]Cα(∂Rn+)

)
,
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where C ′ = C ′(n, α).

So we may assume that D2u|∂Rn+ ≡ 0. The proof in this case proceeds, as

in Lemma 3.4, by reductio ad absurdum. So suppose, contrary to the claim,
that there exists, for each ` ∈ N, some u` ∈ C2(Rn+) such that ∆u` ∈ Cα(Rn+)
and D2u`|∂Rn+ ≡ 0, and yet

[D2u`]Cα > `[∆u`]Cα ,

where [ · ]Cα + [ · ]Cα(Rn+). If we set v` + λ`u`, where λk + |D2u`|−1
Cα , then

[D2v`]Cα = 1 and [∆v`]Cα ≤ `−1 .

By the pigeonhole principle, we can find i, j, k ∈ {1, . . . , n} such that, for
infinitely many `, there exist x` ∈ Rn and h` > 0 for which

|DiDjv`(x` + h`ek)−DiDjv`(x`)|
hα`

≥ 1

2n3
.

After passing to a subsequence, we may arrange that either

h−1
` dist(x`, ∂Rn+)→∞ as `→∞ ,

or

sup
`
h−1
` dist(x`, ∂Rn+) <∞ .

In the first case, we may proceed exactly as in the proof of Lemma 3.2: by
rescaling and translating appropriately, and adding a suitable quadratic, we
obtain a sequence of functions w` with |D2v`(0)| ≥ 1

2n3 which converges in

the C2 topology on compact subsets of Rn to the zero function, an impos-
sibility.

If, instead, γ + sup` h
−1
` dist(x`, ∂Rn+) < ∞, then we can find, for all

sufficiently large `, some z` ∈ ∂Rn+ such that dist(x`, z`) ≤ 2γh`. Consider,
for each `, the function

w`(x) + h−2−α
` v`(z` + h`x) + p`(x),

where p` is a quadratic polynomial. Note that w` is still defined on the
halfspace Rn+ and that the point y` + h−1

` (x` − z`) lies, for all `, in a fixed

compact set (the ball B2γ ∩ Rn+). Moreover,

[D2w`]Cα ≤ 1, [∆w`]Cα ≤ `−1, and |DiDjw`(y`+ek)−DiDjw`(y`)| ≥
1

2n3
.

We again choose p` so that w` vanishes to second order at the origin. Apply-
ing the Arzelà–Ascoli theorem, we can find y ∈ B2γ ∩Rn+ and a subsequence
of the functions w` which converges locally uniformly in C2(Rn+) to a har-
monic limit w which satisfies

D2w(0) = 0 and [D2w]Cα ≤ 1 , (3.6)
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and yet

|D2w(y + ek)−D2w(y)| ≥ 1

2n3
.

But this is absurd: since w vanishes along ∂Rn+, it extends by reflection
across ∂Rn+ to a harmonic function on Rn, so the Bernstein estimates and
(3.6) imply that D2w ≡ 0. �

Freezing the coefficients, introducing cutoff functions, “straightening the
boundary” using charts and applying the interpolation inequality as in the
proof of Theorem 3.1 leads to an estimate for linear equations on bounded
domains in a neighbourhood of the boundary (which now depends on the
boundary condition and the boundary charts). Combined with the interior
estimate, this proves Theorem 3.3. We omit the details.

3.4. Exercises.

Exercise 3.1. Provide an example of

(a) a function u : [0, 1]→ R which is in Cα([0, 1]) but not in Cβ([0, 1])
for any β > α.

(b) a function u : [0, 1]→ R which is in C1,1([0, 1]) but not in C2([0, 1]).

Exercise 3.2. Suppose that f : [0, 1] → R is continuously differentiable.
Show that f is α-Hölder continuous for all α ∈ (0, 1].

Exercise 3.3. Let Ω ⊂ Rn be a bounded open set. Show, for any choice of
k ∈ N and α ∈ (0, 1], that Ck,α(Ω) is a Banach space.

Exercise 3.4. Let Ω ⊂ Rn be a bounded open set. Given u, v ∈ Cα(Ω),
α ∈ (0, 1], show that

[uv]Cα(Ω) ≤ sup
Ω
|u|[v]Cα(Ω) + sup

Ω
|v|[u]Cα(Ω) .

Exercise 3.5. Let Ω ⊂ Rn be a bounded open set. Given α, β ∈ (0, 1] with
β ≤ α, show that

– Cα(Ω) ⊂ Cβ(Ω).

– the inclusion map ι : Cα(Ω)→ Cβ(Ω) is continuous.

– the embedding ι : Cα(Ω)→ Cβ(Ω) is compact7 if β < α. Hint: by
the Arzelà–Ascoli theorem, a bounded sequence {uj}j∈N ⊂ Cα(Ω)
admits a subsequence which converges in the uniform topology to
some limit u. Show that vj + uj − u converges to zero in the β-
Hölder topology.

7That is, bounded subsets of Cα(Ω) are relatively compact in Cβ(Ω).
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Exercise 3.6. Given a positive definite a ∈ Sn×n+ , suppose that u ∈ C2(Rn)
satisfies

−aijuij = 0 .

Find a linear change of coordinates A ∈ GL(Rn) such that x 7→ u(Ax) is
harmonic.

Exercise 3.7. Suppose that Ω ⊂
open

Rn is of class Ck,α for some k ≥ 1. The

tangent space (or tangent plane) Tx∂Ω to ∂Ω at x ∈ ∂Ω is the affine
subspace of Rn defined by

Tx∂Ω + {x+Dvφ
−1 : v ∈ ∂Rn+} ,

where φ : U → Rn is some chart for Ω with x ∈ U . The outward unit
normal vector ν(x) to Ω at x is the unit normal vector to Tx∂Ω with the
property that x+ εν(x) ∈ Rn \ Ω for all ε sufficiently small.

(a) Show that Tx∂Ω does not depend on the choice of chart about x.

(b) Show that, for each x ∈ ∂Ω, there is a function u ∈ Ck,α(Tx∂Ω)
and a neighbourhood U of x in Rn such that

Ω ∩ U = {y + rν(x) : y ∈ Tx∂Ω and r < u(y)} ∩ U
and

∂Ω ∩ U = {y + u(y)ν(x) : y ∈ Tx∂Ω} ∩ U .
Hint: You will need the impilict function theorem.

More generally, a subset M ⊂ Rn is called an embedded submanifold
(of dimension ` < n and class Ck,α) if, for each x ∈ M , there is a neigh-
bourhood U of x in Rn and a diffeomorphism φ : U → V ⊂ Rn of class Ck,α

such that φ(U ∩M) = V ∩ (R` × {0}). If k ≥ 1, then M admits a tangent
space and unit normal at each point, and may be represented as the graph
of a Ck,α function over each tangent space.
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4. Solubility in Hölder spaces of the Dirichlet problem for
linear elliptic equations

Estimates of the kind proven by Schauder are referred to as a priori esti-
mates, as they provide uniform regularity of all solutions to a given equation
prior to any knowledge of the existence of a solution. Somewhat counter-
intuitively, a priori estimates play a crucial role in proving the existence of
solutions as well. Using the Schauder theorem, we will prove (using multiple
approaches) the following theorem.

Theorem 4.1 (Solving the Dirichlet problem in Hölder spaces8). Let Ω ⊂
Rn be a bounded domain of class C2,α and suppose that the coefficients
(a, b, c) : Ω→ Sn×n×Rn×R are α-Hölder continuous, a is positive definite,
and c ≤ 0. If f ∈ Cα(Ω) and φ ∈ C2,α(Ω), then the Dirichlet problem{

−(aijuij + biui + cu) = f in Ω

u = φ on ∂Ω
(4.1)

admits a unique solution in C2,α(Ω).

Theorem 4.1 says that the spaces C2,α(Ω) and Cα(Ω) × C2,α(∂Ω) are
isomorphic, and the linear map

u 7→
(
− (aijuij + biui + cu), u|∂Ω

)
is an isomorphism.

Note that we have already proved uniqueness (in the larger space C2(Ω)∩
C0(Ω)) as a consequence of the maximum principle (Corollary 2.2).

Moreover, in order to prove existence, it suffices to consider the case
φ ≡ 0. This is because

f ′ + f −
(
aijφij + biφi + cφ

)
∈ Cα(Ω)

and adding φ to any solution v ∈ C2,α(Ω) to the problem{
aijvij + bivi + cv = f ′ in Ω

u = 0 on ∂Ω

yields a solution u ∈ C2,α(Ω) to the problem (4.9).

Finally, by hypothesis, we can find λ > 0 such that

aij ≥ λδij in Ω

and Λ <∞ such that

|a|Cα(Ω) + |b|Cα(Ω) + |c|Cα(Ω) ≤ Λ .

8In fact, we shall see that the Dirichlet problem (4.9) can also be (uniquely) solved in the

larger space C2,α(Ω) ∩ C0(Ω) if the coefficients (a, b, c) and the inhomogeneity f are merely
bounded and α-Hölder continuous in Ω, and φ ∈ C0(∂Ω).
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4.1. Approximation by smooth equations. Our first approach exploits
the existence of smooth solutions to linear equations with smooth coefficients
over smooth domains, which we take for granted. (It may be proved indepen-
dently using the Sobolev theory — the Fredholm alternative, the maximum
principle for weak solutions, and Sobolev embeddings; see [1]).

We note that any bounded domain of class Ck,α may be approximated
by smooth domains Ωj ⊂ Ω such that, for any β < α, Ωj → Ω in Ck,β in
the sense that there exist εj → 0 and δ > 0 such that

{x ∈ Ω : dist(∂Ω, x) > εj} ⊂ Ωj

for all j and, for each x ∈ ∂Ω, we can find charts (φ,U) for Ω and (φj , Uj)

for Ωj such that Bδ(x) ⊂ U ∩Uj and |φ−1
j −φ−1|C2,β(Bδ(x)) → 0 uniformly in

x. We can also arrange that |φ−1
j |Bδ(x) is bounded independently of j and

x. This may be proved by mollifying the distance-to-the-boundary function
(which is of class C2,α on a sufficiently small neighbourhood of ∂Ω). We will
study the distance-to-the-boundary function further in §7.

Proof of Theorem 4.1. (assuming smooth solubility over smooth
domains.) Approximate Ω by a sequence of smooth domains Ωk as above.
Denote by ηε the standard mollifier with spt ηε ⊂ Bε. For each k ∈ N, set

aijk + η1/k ∗ aij , bik + η1/k ∗ bi , ck + η1/k ∗ c and fk + η1/k ∗ f .

These coefficients are all smoothly defined on Ω and converge locally uni-
formly on compact subsets of Ω to the original coefficients. They satisfy

aijk ≥ λkδ
ij and ck ≤ 0 in Ωk

and

|ak|Cα(Ωk) + |bk|Cα(Ωk) + |ck|Cα(Ωk) ≤ Λk ,

where λk → λ and Λk → Λ as k →∞.

By the Sobolev theory, there exists a solution uk ∈ C∞(Ωk) to the
Dirichlet problem{

−(aijk u
k
ij + biku

k
i + cku

k) = fk in Ωk

uk = 0 on ∂Ωk .

By the Schauder estimates,

|uk|C2,α(Ωk) ≤ C|fk|Cα(Ωk) ,

where, for k sufficiently large, C depends only on n, λ, Λ, α and Ω. It
now follows from the Arzelà–Ascoli theorem that a subsequence of these
solutions converges locally uniformly in the C2,β topology, for any β < α,
to a solution u ∈ C2,α(Ω) to the original problem. �
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4.2. The method of continuity. Another approach to establishing ex-
istence of solutions to pde, which will prove particularly fruitful later in
the context of nonlinear equations, is the method of continuity. In
this approach, one embeds the problem in a continuous family of problems
which connect the problem in question to a solved problem, and then shows
that the family of parameters corresponding to solved problems is the entire
interval. Typically, this is done by showing that this family is both open
and closed; a priori estimates are employed in deducing closedness.

In the case at hand, we make use of Banach’s fixed-point theorem and
the solubility of Poisson’s equation.

Lemma 4.2. Let B be a Banach space and V be a normed linear space and
let L0 and L1 be bounded linear operators from B into V . For each t ∈ [0, 1],
consider the bounded linear map

Lt + tL0 + (1− t)L1 .

Suppose that

min
t∈[0,1]

min
x∈B\{0}

|Ltx|V
|x|B

> 0 . (4.2)

If L0 is surjective, then L1 is surjective.

Proof. By (4.2), Lt is injective for each t ∈ [0, 1]. Suppose that Ls is
surjective for some s ∈ [0, 1]. Then Ls is invertible and, by (4.2),

|L−1
s | ≤ C +

1

mint∈[0,1] minx∈B\{0}
|Ltx|V
|x|B

.

We claim that t is invertible for t sufficiently close to s. Observe that the
equation

Ltx = y

is equivalent to the equation

x = L−1
s y − (t− s)L−1

s (L1 − L0)x .

By the contraction mapping theorem, this equation is soluble for

|t− s| < δ +
1

C(|L0|+ |L1|)
since this ensures that the mapping

x 7→ Tx + L−1
s y − (t− s)L−1

s (L1 − L0)x (4.3)

is a contraction mapping.

Since δ > 0, we may cover [0, 1] by a finite number of intervals of length
δ. Since L0 is surjective, the claim follows by induction. �
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The Schauder estimate and Lemma 4.2 now yield solutions to linear
elliptic pde in Hölder spaces, assuming only the solubility in Hölder spaces
of Poisson’s equation. The latter result, known as Kellogg’s theorem,
may be established as in §4.1 (using the global Schauder estimate) once
solubility in C∞ for smooth data has been established9.

Proof of Theorem 4.1. (assuming the solubility in Hölder spaces
of Poisson’s equation). Consider the family of problems{

Ltu = f in Ω

u = 0 on ∂Ω
(4.4)

for t ∈ [0, 1], where

Lt + t(a
ijDiDj + biDi + c) + (1− t)∆ .

Observe that the coeficients (at, bt, ct) + t(a, b, c) + (1− t)(δ, 0, 0) satisfy

aijt ≥ λtδij in Ω

and

|at|Cα(Ω) + |bt|Cα(Ω) + |ct|Cα(Ω) ≤ Λt ,

where λt + min{1, λ} and Λt + max{1,Λ}.
Observe that Lt maps C2,α

0 (Ω) + {u ∈ C2,α(Ω) : u|∂Ω ≡ 0} into Cα(Ω)
and, as a linear map between these spaces, is bounded. Invertability of Lt
is equivalent to the solubility of the Dirichlet problem (4.4) in C2,α(Ω) for
any f ∈ Cα(Ω).

We need to verify (4.2) in Lemma 4.2. So fix some u ∈ C2,α
0 (Ω). Since

u|∂Ω ≡ 0, Proposition 2.3 yields

|u| ≤ C sup
Ω
|Ltu| ≤ C|Ltu|Cα(Ω) ,

where C depends only on n, λ, Λ, and the diameter of Ω. Schauder’s estimate
(Theorem 3.3) then yields

|u|C2,α(Ω) ≤ C|Ltu|Cα(Ω) .

Since u ∈ C2,α
0 (Ω) was arbitrary, we conclude that

min
t∈[0,1]

min
u∈C2,α

0 (Ω)\{0}

|Ltu|Cα(Ω)

|u|C2,α(Ω)
> 0 .

Since L0 is invertible, Lemma 4.2 implies that L1 is invertible. �

9The latter may be established by various methods. Traditionally, solutions were obtained

using potential theory. Another approach is via the L2 theory for equations of divergence form.
We will provide a proof in the following subsection using Perron’s method, which reduces the

general case to the case Ω = B1. We take this case for granted since it is typically covered in

undergraduate PDE courses (by deriving an explicit representation formula for solutions).
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4.3. Perron’s method. Finally, we present Perron’s method, which re-
duces solubility of an equation in a general domain Ω to its solubility in small
balls. The idea here is to exploit the maximum principle, which implies that
(for suitable equations) any subsolution taking the same boundary values as
a solution u necessarily lies below u. If there exists at least one subsolution,
then the “largest” subsolution exists. If this happens to be smooth, then it
must actually be a solution.

4.3.1. Barrier subsolutions. Consider, then, the linear elliptic operator

L + aijDiDj + biDi + c .

We assume throughout this section that the operator L satisfies the hypothe-
ses of Theorem 4.1. In particular, L adheres to the maximum principle and
the strong maximum principle. We shall, in addition, assume a local solubil-
ity condition for Dirichlet problems corresponding to L (to be made precise
below). This condition may be verified independently for Poisson’s equation
(and hence, by the method of continuity, for all L satisfying our hypotheses).

We say that a function v : Ω → R satisfies −Lv ≤ f (or that v is a
subsolution to the equation −Lu = f) in the barrier sense if, for every
Ω′ b Ω and ϕ ∈ C2(Ω′) with −Lϕ = f in Ω′,

v ≤ ϕ on ∂Ω′ =⇒ v ≤ ϕ in Ω .

Since L adheres to the maximum principle, any classical subsolution v ∈
C2(Ω) is a subsolution in the barrier sense.

If f is continuous and we are able to solve the Dirichlet problem for
the equation −Lu = f in C2 for sufficiently small balls about any point
of Ω, then the converse is also true; that is, every barrier subsolution v ∈
C2(Ω) is a classical subsolution. To see this, suppose, to the contrary, that
−Lv(x0) > f(x0) at some point x0 ∈ Ω for some barrier subsolution v. Since
f and Lv are continuous, we can find r > 0 such that −Lv > f on Br(x0)
(in the classical sense). If r is sufficiently small, then, by hypothesis, we
may solve the boundary value problem{

−Lϕ = f in Br(x0)

ϕ = v on ∂Br(x0)

in C2(Br(x0)) ∩C0(Br(x0)). So the maximum principle implies that v ≥ ϕ
in Br(x0). On the other hand, v ≤ ϕ since v is a subsolution, so we conclude
that v ≡ ϕ. But then −Lv ≡ f , in contradiction with our assumption.

In fact, we will assume a slightly stronger local solubility condition10.
Namely, for fixed α ∈ (0, 1), bounded domain Ω ⊂ Rn, and right hand side

10The following local solubility condition will suffice to obtain global solutions with C2,α

interior regularity. To obtain C2,α regularity up to the boundary for the global solutions, we will
need to make a corresponding local solubility assumption. This is the subject of §4.3.4.
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f ∈ Cα(Ω), we assume that we can find, for every x ∈ Ω, some r > 0 and
some δ ∈ (0, 1) such that Br(x) b Ω and the Dirichlet problem{

−Lu = f in Bδr(y)

u = φ on ∂Bδr(y)
(4.5)

is soluble in C2,α(Bδr(y))∩C0(Bδr(y)) over every Bδr(y) ⊂ Br(x) for every
φ ∈ C0(∂Bδr).

We may define barrier supersolutions analogously, and these will satisfy
corresponding supersolution properties.

Next observe that barrier sub- and supersolutions admit a comparison
principle.

Proposition 4.3. Suppose that u, v ∈ C0(Ω) satisfy, respectively, −Lu ≤ f
and −Lv ≥ f in the barrier sense. If u ≤ v on ∂Ω, then u ≤ v in Ω.

Proof. Set M + supΩ(u − v) and suppose, contrary to the claim, that
M > 0. Since u − v ≤ 0 on ∂Ω, we can find x0 ∈ Ω and r > 0 such
that u(x0) − v(x0) = M and u − v 6≡ M on ∂Br(x0). In fact, we can
also arrange that r is as small as we like, so that we may find solutions
u, v ∈ C2(Br(x0)) ∩ C0(Br(x0)) to the Dirichlet problem for L in Br(x0)
with respective boundary data u and v on ∂Br(x0). Note that u ≤ u and
v ≥ v in Br(x0). So the maximum principle implies that

M = (u− v)(x0) ≤ (u− v)(x0) ≤ max
∂Br(x0)

(u− v) = max
∂Br(x0)

(u− v) ≤M ,

and hence (u−v)(x0) = maxBr(x0)(u−v). That is, u−v attains its maximum

at an interior point. But this violates the strong maximum principle since
u− v is not constant. �

Corollary 4.4. If u, v ∈ C0(Ω) are both barrier subsolutions to the equation
−Lϕ = 0, then the function max{u, v} is also a subsolution.

Proof. Exercise. �

Consider now the Dirichlet problem{
−Lu = f in Ω

u = φ on ∂Ω .
(4.6)

Define a function u : Ω→ R by

u(x) + sup{v(x) : v ∈ C0(Ω) , −Lv ≤ f in Ω , and v ≤ φ on ∂Ω} .

We shall call a function v ∈ C0(Ω) satisfying −Lv ≤ f in Ω (in the barrier
sense) and u ≤ φ on ∂Ω a (barrier) subsolution to the Dirichlet
problem (4.6).
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Observe that u takes finite values. Indeed, choosing ξ so that

λ + aijξiξj + biξi + c > 0

and setting d + supx∈Ω(ξ · x) and d + infx∈Ω ξ · x, we find that the function

u ∈ C0(Ω) defined by

u(x) + − sup
∂Ω

(−φ)+ − e−d
(

ed − ex·ξ
)

sup
Ω

(−f)+

λ

satisfies −Lu ≤ f in Ω and u ≤ φ on ∂Ω. Thus (by definition of u) u ≥ u in
Ω and hence

inf
Ω
u ≥ − sup

∂Ω
(−φ)+ − e|ξ|R sup

Ω

(−f)+

λ
, (4.7)

where R ≥ diam Ω. On the other hand, by Proposition 4.3 (cf. Proposition
2.3),

sup
Ω
u ≤ sup

∂Ω
φ+ + e|ξ|R sup

Ω

f+

λ
.

We conclude that

sup
Ω
|u| ≤ sup

∂Ω
|φ|+ C sup

Ω
|f | , (4.8)

where C depends only on n, R, and the coefficients of L.

4.3.2. Smoothness of the Perron (sub)solution. We claim that u ∈ C2,α(Ω)
and −Lu = f . To see this, fix some x ∈ Ω and let uj ∈ C0(Ω) form a
sequence of subsolutions to (4.6) such that uj(x) → u(x). Given r ≤ 1

sufficiently small, we can, by hypothesis, find a function Uj ∈ C0(Ω) ∩
C2,α(Br(x)) satisfying Uj ≡ uj on Ω \Br(x) and{

−LUj = f in Br(x)

Uj = uj on ∂Br(x) .

The interior Schauder estimate (Theorem 3.1), Proposition 2.3 and the es-
timate (4.8) yield

|Uj |C2,α(Br/2(x)) ≤ C
(

sup
∂Ω
|φ|+ |f |Cα(Ω)

)
,

where C depends only on n, α, and the coefficients of L. So the Arzelà–
Ascoli theorem implies that a subsequence of the functions Uj converges
in C2(Br/2(x)) to some limit U ∈ C2,α(Br/2(x)) satisfying −LU = f in
Br/2(x). Moreover, since uj(x) → u(x) and (by Proposition 4.3) uj ≤ Uj ,
we find that U(x) = u(x). Moreover, by definition of u, U ≤ u in Br/2.

We claim that U ≡ u in Bδr(x) for some δ > 0. Suppose, to the contrary,
that for any δ > 0 we can find y ∈ Bδr(x) such that U(y) < u(y). By the
definition of u, we can find a subsolution v ∈ C0(Ω) to (4.6) such that
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U(y) < v(y) ≤ u(y). Set vj + max{Uj , v}. For δ sufficiently small, we can

find a function Vj ∈ C0(Ω) satisfying Vj ≡ vj on Ω \B4δr(y) and{
−LVj = f in B4δr(y)

Vj = vj on ∂B4δr(y) .

Since Uj ≤ Vj on ∂B4δr, we have Uj ≤ Vj in B4δr(y). Since Vj is a subsolu-
tion to the Dirichlet problem (4.6), we also have Vj ≤ u by the definition of
u. Since v is a subsolution and v ≤ Vj on ∂B4δr, we also have v ≤ Vj in B4δr.
In particular, limj→∞ Vj(x) = u(x), and U(y) < limj→∞ Vj(y) ≤ u(y).

Since Vj ≡ vj ≥ Uj on Ω \ B4δr(y), the interior Schauder estimate,
Propositions 2.3 and 4.3 and the estimate (4.8) yield, for j sufficiently large,

|Vj |C2,α(B2δr(y)) ≤ C
(

sup
∂Ω
|φ|+ |f |Cα(Ω)

)
,

where C depends on n, α, and the coefficients of L. So the Arzelà–Ascoli the-
orem implies that a subsequence of the functions Vj converges in C2(B2δr(y))
to some limit V ∈ C2,α(B2δr(x)) satisfying −LV = f and U ≤ V ≤ u in
B2δr(x), and U(y) < V (y). Since −LU = −LV = f in B2δr(y), U ≤ V
and U(x) = V (x) at x ∈ Bδr(y), the strong maximum principle implies that
U ≡ V in B2δr(y), in contradiction with the inequality U(y) < V (y).

We conclude that U ≡ u in Bδr(x). But then u ∈ C2,α(Bδr) and −Lu =
f in Bδr. The claim follows since x was arbitrary.

4.3.3. Continuity of the Perron solution up to the boundary. So we have
found a solution u ∈ C2(Ω) to the equation −Lu = f . However, we have
not yet shown that u attains the boundary values φ. This will be possible
so long as Ω is of class C2. In fact, it suffices for Ω to satisfy the exterior
ball condition, which means that for each point x0 ∈ ∂Ω we can find a
ball B ⊂ Rn \ Ω such that B ∩ Ω = {x0}.

So fix x0 ∈ ∂Ω. We need to show that u(x) → φ(x) as x → x0. To
do this, we shall construct upper and lower barriers for u near x0 which
take values arbitrarily close to φ(x0) at x0. First observe that we can find
a function w : Ω → R such that −Lw ≥ 1 in Ω, w > 0 on ∂Ω \ {x0}, and
w(x0) = 0. Indeed, given a ball Br(p) in Rn \Ω such that Br(p)∩Ω = {x0},
we can set

w(x) = wµ,σ + µ
(
r−σ − |x− p|−σ

)
for suitable µ > 0 and σ > 0. To see this, observe that

−Lwµ,σ ≥
µ

|x− p|σ+2

(
σ(σ + 2)aij

(x− p)i
|x− p|

(x− p)j
|x− p|

− σ
(
tr a+ bi(x− p)i

))
.

The claim follows from the uniform positivity of a and the bounds for a and
b.
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Now fix any sequence of numbers εi ↘ 0 and, for each i, choose δi > 0
such that |φ(x)− φ(x0)| < εi for x ∈ Bδi(x0) ∩ ∂Ω. We may further choose
ki > 0 so that

kiw ≥ sup
∂Ω
|φ|+ C sup

Ω
|f |+ |φ(x0)| on ∂Bδi(x0) ∩ Ω ,

where C is the constant in the estimate (4.8). If we also ensure that ki ≥
supΩ |f + cφ(x0)|, then we find that the functions

wi + φ(x0)− kiw − εi and wi + φ(x0) + kiw + εi ,

satisfy 
−Lwi ≤ 0 in Bδi(x0) ∩ Ω

wi ≤ φ on Bδi(x0) ∩ ∂Ω

wi ≤M + − sup
∂Ω
|φ| − C sup

Ω
|f | on ∂Bδi(x0) ∩ Ω

and 
−Lwi ≥ 0 in Bδi(x0) ∩ Ω

wi ≥ φ on Bδi(x0) ∩ ∂Ω

wi ≥M + sup
∂Ω
|φ|+ C sup

Ω
|f | on ∂Bδi(x0) ∩ Ω .

Finally, we set

ui +

{
max{ui,m} in Bδi(x0) ∩ Ω

m in Ω \Bδi(x0)

and

ui +

{
min{ui,m} in Bδi(x0) ∩ Ω

m in Ω \Bδi(x0) ,

where m ≥ M , resp. m ≤ M , is a subsolution, resp. supersolution, to the
Dirichlet problem (4.6). For example, we could take

m + sup
∂Ω

φ+ + e−d
(

ed − ex·ξ
)

sup
Ω

f+

λ

and

m + − inf
∂Ω

(−φ)+ − e−d
(

ed − ex·ξ
)

sup
Ω

(−f)+

λ
.

By Corollary 4.4, ui and ui are, respectively, sub- and supersolutions to
the Dirichlet problem (4.6), so we find that ui ≤ u ≤ ui. Taking i→∞ then
yields u(x0) = φ(x0). Since x0 was arbitrary, we conclude that u|∂Ω = φ.

It remains to prove that u is of class C2,α up to the boundary of Ω
(assuming Ω is of class C2,α, φ ∈ C2,α(Ω) and f ∈ Cα(Ω)). But let us first
note that we have proved the following result.
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Theorem 4.5. Let Ω ⊂ Rn be a bounded domain which satisfies the exterior
ball condition (e.g. ∂Ω is of class C2) and suppose that the coefficients
(a, b, c) : Ω → Sn×n × Rn × R are bounded and α-Hölder continuous, a is
positive definite, and c ≤ 0. If f is bounded and α-Hölder continuous and
φ ∈ C0(∂Ω), then the Dirichlet problem{

−(aijuij + biui + cu) = f in Ω

u = φ on ∂Ω
(4.9)

admits a unique solution in C2,α(Ω) ∩ C0(Ω).

4.3.4. Smoothness of the Perron solution up to the boundary. Finally, we
prove (under the full hypotheses of Theorem 4.1) that u ∈ C2,α(Ω), so long
as the local solutions (to the problems (4.5)) are of class C2,α up to the
boundary.

Fix some x0 ∈ ∂Ω. Since Ω is of class C2,α, we can find a neighbourhood
(in Rn) U of x0 an open set V ⊂ Rn containing B1, a C2,α diffeomorphism
Φ : U → V , and some ρ > 0 such that B1 ⊂ Φ(Ω) and Bρ(x̃0) ∩ ∂B1 ⊂
Φ(∂Ω ∩ U) ⊂ ∂B1, where x̃0 + Φ(x0).

Set (ã, b̃, c̃) + (a, b, c) ◦Φ−1|B1
, f̃ + f ◦Φ−1|B1

, and ũ + u ◦Φ−1|B1
, and

let φ̃ : B3/2 → R be the radial extension of ũ; that is, φ̃(x) + |x|ũ(x/|x|)
for x 6= 0 and φ̃(0) + 0. For each k ∈ N, consider φ̃k + φ̃ ∗ η1/k, where ηε

is the standard mollifier. Note that φ̃k → φ in the uniform topology and
|φ̃k|C2,α(Bρ(x̃0)) ≤ 2|φ̃|C2,α(Bρ(x̃0)) for k sufficiently large.

By hypothesis, we can find, for each k ∈ N, a solution ũk ∈ C2,α(Ω) to
the Dirichlet problem {

−L̃ũk = f̃ in B1

ũk = φ̃k on ∂B1 ,

where L̃ + ãijDiDj + b̃kDk + c̃. It follows from the maximum principle,
the interior Schauder estimate, and the boundary Schauder estimate, in
conjunction with the Arzelà–Ascoli theorem, that, after passing to a subse-
quence, the solutions ũk converge to some limit ũ∞ ∈ C0(B1) ∩ C2(B1) ∩
C2,α(B1 ∩Bρ(x̃0)) uniformly in B1, in C2 on compact subsets of B1 and in

C2(B1 ∩ Bρ(x̃0)). But since ũ∞ takes the same boundary values as ũ, we
must have ũ∞ ≡ ũ. The claim follows.

4.4. Epilogue. The previous sections provide a number of different paths
to Theorem 4.1. For example, one could exploit the full force of the Sobolev
theory to obtain C∞ solutions to our general class of linear equations, and
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then proceed by approximation using the Schauder theory (as in §4.1). Al-
ternatively, one could avoid the Sobolev theory altogether, instead using po-
tential theory (or L2 theory) to solve Poisson’s equation in C∞ (and hence
in C2,α by approximation) and applying the method of continuity. In fact,
Perron’s method reduces the problem to the solution of Poisson’s equation
in C∞ over the unit ball.

In case the condition c ≤ 0 is not met, existence or uniqueness of solu-
tions may fail. However, it is still possible to state a Fredholm alternative
(see [2, Theorem 6.15]).

4.5. Exercises.

Exercise 4.1. Prove Corollary 4.4.

Exercise 4.2. Suppose that the coefficients (a, b, c) : Ω→ Sn×n×Rn×R and
the function f : Ω → R are α-Hölder continuous. Suppose that u ∈ C2(Ω)
satisfies −Lu = f in Ω. Show that u ∈ C2,α(B) for every ball B b Ω.

Exercise 4.3. Suppose that the coefficients (a, b, c) : Ω → Sn×n × Rn × R
and the function f : Ω→ R are of class Ck,α (resp. C∞) and the boundary
datum φ is of class Ck+2,α (resp. C∞). Suppose that u ∈ C2(Ω) satisfies
−Lu = f in Ω. Show that u ∈ Ck+2,α(B) (resp. C∞(B)) for every ball
B b Ω. Hint 1: If u is of class Cj+2 for some j < k, then the equation
−Lu = f may be differentiated j times. Hint 2: Given a function v : Ω→ R,
a unit coordinate direction e`, x ∈ B, and sufficiently small h, consider the
difference quotient

δh` v(x) +
v(x+ he`)− v(x)

h
.

A similar argument provides higher boundary regularity, assuming higher
boundary regularity of the data. See [2, §6.4].
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5. Quasilinear equations — an introduction

Hilbert’s 19th problem11 asks whether minimizers u : Ω → R of elliptic
energy functionals

E(u) +
ˆ

Ω
F (x, u(x), Du(x))dx (5.1)

are necessarily smooth. Here, Ω ⊂ Rn is any bounded open set and we
require that F be smooth in all arguments (x, z, p) ∈ Rn×R×Rn and strictly
convex with respect to the third (this is the “ellipticity” requirement). In
order to ensure smoothness up to ∂Ω, ∂Ω should be smooth too, but this is
not a requirement for interior regularity.

Minimization problems of the form (5.1) are ubiquitous in physics. In-
deed, the Lagrangian school of thought (Fermat’s principle) postulates that
physical laws must emerge from an underlying energy minimization princi-
ple. Elliptic minimization problems also arise frequently in geometry.

Observe that any smooth stationary point u of (5.1) (with respect to
smooth, compactly supported perturbations) satisfies the equation12

aij(·, u,Du)uij + b(·, u,Du) = 0 , (5.2)

where

aij(·, u,Du) +
∂2F

∂pi∂pj
(·, u,Du)

and

b(·, u,Du) +
∂2F

∂pi∂z
(·, u,Du)ui +

∂2F

∂pi∂xi
(·, u,Du)− ∂F

∂z
(·, u,Du) .

Indeed, given any η ∈ C∞(Ω) with spt η b Ω,

0 =
d

ds

∣∣∣
s=0

E(u+ sη) =
d

ds

∣∣∣
s=0

ˆ
Ω
F (x, (u+ sη)(x), D(u+ sη)(x))dx

=

ˆ
Ω

(
∂F

∂pi
(·, u,Du)ηi +

∂F

∂z
(·, u,Du)η

)
dx (5.3)

= −
ˆ

Ω

(
Di
∂F

∂pi
(·, u,Du)− ∂F

∂z
(·, u,Du)

)
η dx

= −
ˆ

Ω

(
∂2F

∂pi∂pj
(·, u,Du)uij +

∂2F

∂pi∂z
(·, u,Du)ui

+
∂2F

∂pi∂xi
(·, u,Du)− ∂F

∂z
(·, u,Du)

)
η dx .

11In fact, Hilbert’s formulation demands that u be analytic (assuming, of course, that F is

analytic).
12Equation (5.2) is called the Euler–Lagrange equation corresponding to the energy E.
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The equation (5.2) is not necessarily a linear equation, since the coeffi-
cients a and b may depend on x, u and Du in a nonlinear way. On the other
hand, the second derivatives do appear in a linear way, so the equation is
referred to as quasilinear.

A function u ∈ W 1,1(Ω) is said to satisfy (5.2) weakly (in the sense
of distributions) if (5.3) holds. “Direct methods” in the calculus of
variations were already known to provide the existence of minimizers13

u ∈ W 1,2(Ω) of the functional E (with respect to appropriate boundary
conditions). So Hilbert’s 19th problem is reduced to proving that solutions
to equations of the form (5.2) having one weak derivative in L2 are neces-
sarily smooth. Observe that the strict convexity of the density F ensures
that (5.2) is strictly elliptic; that is,

aij > 0 in Ω

in the sense of symmetric bilinear forms. However, since we only know
that u ∈ W 1,2(Ω), the coefficients of (5.2) need not be continuous nor even
bounded.

The existence of solutions to partial differential equations of the form
(5.2) (with appropriately prescribed boundary conditions) is the content of
Hilbert’s 20th problem.

A key observation is that any derivative of a solution to (5.2) satisfies a
divergence form linear equation. Indeed, by testing (5.3) against Dsη and
integrating by parts, we find that any weak derivative, v = Dsu ∈ L2(Ω), of
a solution u ∈W 1,2(Ω) of (5.2) satisfies (weakly)

Di

(
aijvj + biv

)
+ civi + dv = Dif

i + g , (5.4)

where

aij(x) +
∂2F

∂pi∂pj
(x, u(x), Du(x)) ,

bi(x) +
∂2F

∂pi∂z
(x, u(x), Du(x)) ,

ci(x) + − ∂2F

∂z∂pi
(x, u(x), Du(x)) ,

d(x) + − ∂2F

∂z2
(x, u(x), Du(x)) ,

f i(x) + − ∂2F

∂pi∂xs
(x, u(x), Du(x)) ,

13So long as E happens to be suitably coercive. Note that, by Hölder’s inequality, W 1,2(Ω) ⊂
W 1,1(Ω).
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and

g(x) +
∂2F

∂z∂xs
(x, u(x), Du(x)) .

Building on the work of Bernstein and Schauder, Hilbert’s 19th and
20th problems were resolved, independently, by Ennio de Giorgi and John
F. Nash Jr in 195714.

The essential breakthrough was an estimate for the Hölder continuity of
solutions to (5.4) (and hence of v = Du, where u is a stationary point of
(5.1)). This result has far-reaching consequences and is considered one of
the most significant mathematical breakthroughs of the 20th century15. It
is of a different nature than any of the regularity results which had existed
previously — these results can all be seen as arising from perturbations
of the Laplace equation (they are “perturbative results”); in Schauder-type
estimates, for example, one always exploits the fact that, when zooming in on
a solution at a point, the operator is closer and closer to the Laplacian. In the
de Giorgi–Nash theorem, this is no longer the case: the uniform ellipticity
is preserved by scaling, but the equation does not become “better”, nor any
closer to the Laplace equation.

We will prove the de Giorgi–Nash theorem in §6. We observe here that
it provides an affirmative resolution to the 19th problem since Schauder
had already proved that solutions with Hölder continuous first derivatives
are smooth. Indeed, let u ∈ W 1,2(Ω) be a minimizer of (5.1). Since any
derivative of u satisfies (5.4), the de Giorgi–Nash estimate implies that Du
is uniformly Hölder continuous on any domain compactly contained in Ω.
But then u is bounded and the coefficients of (5.2) are uniformly Hölder
continuous on any such domain, so the Schauder estimate16 implies that
D2u is uniformly Hölder continuous on any domain compactly contained in
Ω. Since differentiation of (5.2) k-times yields a linear equation for Dku
with the same leading coefficients aij and remaining coefficients depending
smoothly on D`u for ` at most k + 1, arguing inductively we conclude that
Dku is uniformly Hölder continuous on any domain compactly contained in
Ω for all k ≥ 0. In particular, u is smooth in Ω. Bernstein’s method then
shows that u is analytic if F is.

Moreover, as we shall see, by applying the method of continuity and
the implicit function theorem, the a priori estimates of de Giorgi–Nash and
Schauder also yield a satisfactory solution to Hilbert’s 20th problem.

14A different proof was later given by Jürgen Moser. The two dimensional case had previously
been solved by Morrey.

15It is oft said that had only one of the pair, de Giorgi or Nash, reached the solution, then

he would surely have been awarded the Fields medal for the discovery. But such is the nature of
awards.

16In fact, a “divergence form” counterpart of the estimate stated in Theorem 3.1.
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Finally, let us note that, by proving a version of the de Giorgi–Nash
estimate for linear equations in non-divergence form, we shall also be able
to establish the (unique) existence of smooth solutions to many fully nonlin-
ear elliptic equations (that is, equations which are nonlinear in the second
derivatives). This is the content of the celebrated Krylov–Safanov the-
ory, which will be taken up in Sections 10–11.

5.1. Appendix: Sobolev spaces. Recall that a function u : Ω → R,
Ω ⊂

open
Rn, is weakly differentiable if, for each i = 1, . . .N, there exists

a function ui ∈ L1
loc(Ω) such thatˆ

Ω
uiη = −

ˆ
Ω
uηi for all η ∈ C∞0 (Ω) .

The family of linear maps x 7→ Du|x : Rn → R defined by Du|x(v) +
Dvux + viui(x) is called the weak derivative of u. Since C∞0 (Ω) is
dense in L1

loc(Ω), the weak derivative of a function, if it exists, is unique
up to pointwise almost everywhere equivalence. So the weak derivative of
a continuously differentiable function agrees (up to pointwise everywhere
equivalence) with the pointwise derivative.

The Sobolev spaceW k,p(Ω) consists of the functions u ∈ Lp(Ω) which
admit k weak derivatives, each of which lies in Lp(Ω). It is equipped with
the norm |u|Wk,p(Ω) defined by

|u|p
Wk,p(Ω)

+
k∑
j=0

|Dju|pLp(Ω) ,

where Dju has the obvious interpretation as a multilinear map17. The re-
sulting normed linear space is complete, and hence W k,p(Ω) is a Banach
space.

A fundamental property of the Sobolev spaces is the fact that the smooth
functions form a dense subspace. That is, every Sobolev function u ∈
W k,p(Ω) may be approximated in the W k,p(Ω) topology by smooth func-
tions.

We refer the reader to the book of Evans [1] for further development
of the theory of Sobolev spaces and weak solutions to partial differential
equations.

5.2. Exercises.

Exercise 5.1. Show that the Laplace equation,

∆u = 0 ,

17We shall always use the Hilbert–Schmidt norm for multilinear maps.
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is the Euler–Lagrange equation for the Dirichlet energy,

E(u) +
ˆ

Ω
|∇u|2dx ,

where
∆u + div(∇u) .

Exercise 5.2. Show that the minimal surface equation,

Hgraphu = 0 ,

where

Hgraphu + div

(
∇u√

1 + |∇u|2

)
,

is the Euler–Lagrange equation for the area functional,

E(u) +
ˆ

Ω

√
1 + |∇u|2 dx .

Exercise 5.3. Given κ ∈ R and β ∈ C0(∂Ω), show that critical points of
the energy

E(u) +
ˆ

Ω

√
1 + |∇u|2 dx︸ ︷︷ ︸

surface energy

+
κ

2

ˆ
Ω
u2 dx︸ ︷︷ ︸

gravitational potential

+

ˆ
∂Ω
βu dx︸ ︷︷ ︸

wetting energy

with respect to perturbations η ∈ C∞(Ω) satisfy the capillary surface
problem {

Hgraphu = κu in Ω

〈ν , γ〉 = β on ∂Ω ,

where ν(x) is the upward unit normal to graphu at (x, u(x)) and γ is the
outward unit normal to Ω.
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6. The Harnack inequality of de Giorgi, Nash and Moser —
Hölder continuity of solutions to linear elliptic equations
of divergence form

Our goal is to prove an a priori Hölder estimate for weak solutions to linear
elliptic equations of divergence form. That is, equations of the form

− div
(
A(·, u,Du)

)
= B(·, u,Du) in Ω , (6.1)

where A : Ω× Rn × R→ Rn and B : Ω× Rn × R→ R are of the form

Ai(x, z, p) = aij(x)pj+b
i(x)z+f i(x) and B(x, z, p) = ci(x)pi+d(x)z+g(x) .

We recall that, assuming A and B are measurable, a function u : Ω→ R is
a weak solution to (6.1) if u ∈W 1,2(Ω) and

ˆ
Ω
A(·, u,Du) ·Dη =

ˆ
Ω
B(·, u,Du)η

for every η ∈ W 1,2
0 (Ω). By the divergence theorem, classical solutions are

weak solutions.

Our motivation, as outlined in §5, is to prove an a priori Hölder estimate
for the first derivative of solutions to quasilinear equations.

The Hölder estimate (Theorem 6.5 below) is obtained from the Harnack
inequality of de Giorgi and Nash (Theorem 6.3 below), which, in turn, results
from the combination of two estimates: a so-called mean value inequality for
subsolutions and a so-called weak Harnack inequality for supersolutions.

The mean value inequality provides an estimate for the supremum of a
non-negative subsolution to (6.1) in terms of its Lp-norm, p > 1, and the
equation data, while the weak Harnack inequality provides an estimate for
the Lp-norm, 1 ≤ p < n

n−2 , of a non-negative supersolution to (6.1) in terms
of its infimum and the equation data. Combining the two, we are able to
estimate the supremum of a solution to (6.1) in terms of its infimum and the
equation data; i.e. a Harnack inequality. We follow the argument of Moser
and John–Nirenberg.

Before proving these inequalities, let us illustrate the central idea in the
special case where b, c, d, f and g are all zero. The idea is to obtain integral
estimates for solutions using the divergence theorem and exploit the fact
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that, for a measurable function18 u : Ω→ R,

lim
p→∞

(ˆ
Ω
|u|p
) 1
p

= ess sup
Ω
|u| and lim

p→−∞

(ˆ
Ω
|u|p
) 1
p

= ess inf
Ω
|u| .

Suppose that u ∈ W 1,2(B1) and consider the test function ζ + uβη2,

where β 6= 0 and η is a smooth function with support in B1. If ζ ∈W 1,2
0 (B1),

then, assuming a ∈ L∞(B1(y), Sn×n),ˆ
B1

aijDiuDjζ = β

ˆ
B1

uβ−1η2aijDiuDju+ 2

ˆ
B1

uβηaijDiuDjη .

In case u is a subsolution, we consider only β > 0, and in case u is a
supersolution, we consider only β < 0, so that

|β|
ˆ
B1

uβ−1η2aijDiuDju ≤ 2

∣∣∣∣ˆ
B1

uβηaijDiuDjη

∣∣∣∣ .
Assuming a ≥ λδ and |a| ≤ Λ, the Cauchy–Schwarz inequality yields

|β|λ
ˆ
B1

uβ−1|Du|2η2 ≤ 2Λ

ˆ
B1

uβη|Du||Dη|

≤ |β|λ
2

ˆ
B1

uβ−1|Du|2η2 +
2Λ2

|β|λ

ˆ
B1

uβ+1|Dη|2

and hence ˆ
B1

uβ−1|Du|2η2 ≤ 4Λ2

β2λ2

ˆ
B1

uβ+1|Dη|2 .

Assuming β 6= −1, set 2γ + β + 1 and w + uγ , so thatˆ
B1

|Dw|2η2 ≤ 4Λ2γ2

β2λ2

ˆ
B1

w2|Dη|2

and hence ˆ
B1

|D(wη)|2 ≤
(

Λ2(β + 1)2

λ2β2
+ 1

)ˆ
B1

w2|Dη|2 .

We now apply the Sobolev inequality to obtain(ˆ
B1

|wη|2κ
) 1

2κ

≤ C
(ˆ

B1

w2|Dη|2
) 1

2

,

18Recall that the essential supremum of a function u is the least essential upper bound for
u, where a value a ∈ R is said to be an essential upper bound if the set of points whose value
exceeds a has measure zero. The essential infimum is defined similarly. The L∞ norm |u|L∞(Ω)

of a measurable function u : Ω→ R is the essential supremum over Ω of |u|. Since every essentially
bounded measurable function agrees almost everywhere with some bounded measurable function,
every u ∈ L∞(Ω) has a representative.
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where κ = n
n−2 when n ≥ 3 or any fixed number in (0,∞) when n = 2,

and, assuming β is bounded away from zero, C depends only on n and Λ/λ.
Choosing η so that η = 1 on B3/4 and |Dη| ≤ 10, we find that(ˆ

B3/4

|u|2κγ
) 1

2κ

≤ C
(ˆ

B1

|u|2γ
) 1

2

.

So we have bootstrapped an L2 estimate for uγ in B1 to an L2κ estimate in
the smaller ball B3/4. Note that κ > 1. The idea now is to iterate this until
we arrive at the desired estimates (in B1/2).

6.1. The mean value inequality.

Theorem 6.1. There exists C = C(n, p, q,Λ/λ, ν) < ∞ with the following
property. Suppose that the coefficients a ∈ L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn)

and d, g ∈ L
q
2 (Ω), q > n, satisfy

aij ≥ λδij in Ω and |a|L∞(Ω,Sn×n) ≤ Λ , λ > 0 , Λ <∞ (6.2)

and

R
2− 2n

q

λ2

(
|b|2Lq(Ω,Rn) + |c|2Lq(Ω,Rn)

)
+
R

2− 2n
q

λ
|d|

L
q
2 (Ω)
≤ ν , ν <∞ . (6.3)

Let u ∈ W 1,2(Ω) be a subsolution to (6.1). If p > 1 and B2R(y) ⊂ Ω, then
u ∈ L∞(BR(y)) and

sup
BR(y)

u ≤ C

(
R
−n
p |u+|Lp(B2R(y)) +

R
1−n

q

λ
|f |Lq(B2R(y),Rn) +

R
2− 2n

q

λ
|g|

L
q
2 (B2R(y))

)
.

Proof. We may assume, without loss of generality, that R = 1/2 and u ≥ 0.
We consider only the case that f and g are zero. The general case is proved
by replacing

u 7→ u+ λ−1
(
|f |Lq(B1(y),Rn) + |g|

L
q
2 (B1(y))

)
in the proof.

We proceed as outlined above. Given β > 0 and a smooth function η
with support compactly contained in B1, consider the function ζ + G(u)η2,
where G(z) + zβ if β ≤ 1 and

G(z) +

{
zβ if z ≤ N

Nβ + βNβ−1(z −N) if z > N

if β > 1 (this modification is needed to ensure that ζ ∈ W 1,2
0 (B1)). If

u ∈ L2γ(Bs), where 2γ + β + 1 and s ≤ 1, then we may proceed as above,
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applying the Hölder inequality to control the terms involving b, c and d,
choosing η appropriately and taking N →∞, to obtain the estimate(ˆ

Br

|u|2κγ
) 1

2κγ

≤
(
Cγ

s− r

) 1
γ
(ˆ

Bs

|u|2γ
) 1

2γ

for any r < s, where C = C(n,Λ/λ).

We now iterate this inequality to obtain an L∞ estimate: set 2γj + κjp
and define rj by r0 + 1 and rj+1 + 1

2(1
2 + rj). Then(ˆ

Brj

upκ
j

) 1

pκj

≤ C
2
p

j

(ˆ
B1

up
) 1
p

,

where

Cj +
j∏
i=0

(Cp)κ
−i

2(i+1)κ−iκiκ
−i

= (Cp)
∑j
i=0 κ

−i
2
∑j
i=0(i+1)κ−iκ

∑j
i=0 iκ

−i
.

Since κ > 1,
∑∞

i=0 κ
−i <∞ and

∑∞
i=0 iκ

−i <∞, taking j →∞, we conclude
that

sup
B1/2

u ≤ C
(ˆ

B1

|u|2p
) 1

2p

. �

6.2. The weak Harnack inequality.

Theorem 6.2. There exists C = C(n, p, q,Λ/λ, ν) < ∞ with the following
property. Suppose that the coefficients a ∈ L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn)

and d, g ∈ L
q
2 (Ω), q > n, satisfy (6.2) and (6.3). Let u ∈ W 1,2(Ω) be a

non-negative supersolution to (6.1). If 1 ≤ p < n
n−2 and B4R(y) ⊂ Ω, then

R
−n
p |u|Lp(B2R(y)) ≤ C

(
inf
BR(y)

u+
R

1−n
q

λ
|f |Lq(B2R(y),Rn) +

R
2− 2n

q

λ
|g|

L
q
2 (B2R(y))

)
.

Proof. We may assume, without loss of generality, that R = 1. We consider
only the case that f and g are zero. The general case is proved by replacing

u 7→ u+ λ−1
(
|f |Lq(B1(y)) + |g|

L
q
2 (B1(y))

)
in the proof.

Proceeding as above, we obtain the estimate(ˆ
Br

|u|2κγ
) 1

2κγ

≤
(
Cγ

s− r

) 1
γ
(ˆ

Bs

|u|2γ
) 1

2γ

(6.4)
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if γ > 0, or (ˆ
Bs

|u|2γ
) 1

2γ

≤
(
C|γ|
s− r

) 1
|γ|
(ˆ

Br

|u|2κγ
) 1

2κγ

(6.5)

if γ < 0, where C = C(n,Λ/λ).

Fix p0 > 0. Iterating (6.5) with 2γj = −κjp0 yields(ˆ
B3/2

u−p0

)− 1
p0

≤ C inf
B1/2

u ,

where C = C(n, p0,Λ/λ).

On the other hand, iterating (6.4) with 2γj = κ−jp yields, for any 0 <
p < κ, (ˆ

B1

up
) 1
p

≤ C

(ˆ
B3/2

uκ
−jp

) 1

κ−jp

for all j = 1, 2, . . . , where C = C(n, p,Λ/λ). If p > p0, then taking j
sufficiently large and applying the Hölder inequality yields(ˆ

B1

up
) 1
p

≤ C

(ˆ
B3/2

up0

) 1
p0

.

The theorem now follows from the fact that(ˆ
B3/2

up0

)(ˆ
B3/2

u−p0

)
≤ C

for some p0 ∈ (0, 1) and C = C(n). This is a consequence of the John–
Nirenberg inequality; however, we shall not prove it here (the details can be
found in [2, §8.6]). �

6.3. The Harnack inequality. Combining the mean value and weak Har-
nack inequalities yields the following Harnack inequality.

Theorem 6.3. There exists C = C(n, p, q,Λ/λ, ν, r, R) <∞ with the follow-
ing property. Let Ω ⊂ Rn be a connected open set with diam Ω ≤ R. Suppose

that the coefficients a ∈ L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn) and d, g ∈ L
q
2 (Ω),

q > n, satisfy (6.2) and (6.3). If u ∈ W 1,2(Ω) is a non-negative solution to
(6.1), then u ∈ L∞loc(Ω) and, for every Ω′ b Ω with dist(Ω′,Ω) ≥ r,

sup
Ω′

u ≤ C
(

inf
Ω′
u+ λ−1

[
|f |Lq(Ω,Rn) + |g|

L
q
2 (Ω)

])
.
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Proof. Fix some p ∈ (1, n
n−2). Given any ball B4R(y) b Ω, Theorems 6.1

and 6.2 yield

sup
BR(y)

u ≤ C

(
inf
BR(y)

u+
R

1−n
q

λ
|f |Lq(B2R(y),Rn) +

R
2− 2n

q

λ
|g|

L
q
2 (B2R(y))

)
, (6.6)

where C = C(n, p, q,Λ/λ, ν). We may cover Ω′ by a finite collection of open
balls Bj = BRj(yj), j = 0, 1, . . . , N , such that B4Rj (yj) b Ω and ∪Nj=0Bj is

connected, where Rj ≤ diam Ω and N = N(dist(Ω′, ∂Ω)).

Given any pair of points x, y ∈ Ω′ we can find a path γ : [0, 1]→ ∪nj=0Bj
joining x = γ(0) and y = γ(1). After possibly relabelling the balls, we may
arrange that γ(0) ∈ B0, γ(1) ∈ BM , M ≤ N , and divide [0, 1] into intervals
[tj−1, tj ], 0 = t0 < t1 < · · · < tM = 1 such that that γ(tj) ∈ Bj−1 ∩ Bj for
1 ≤ j ≤M − 1.

After possibly perturbing x, y and tj slightly (to account for the fact
that u is only defined up to sets of zero measure), (6.6) implies that

u(γ(tj)) ≤ sup
Bj(y)

u

≤ C

 inf
Bj(y)

u+
R

1−n
q

j

λ
|f |Lq(Ω,Rn) +

R
2− 2n

q

j

λ
|g|

L
q
2 (Ω)


≤ C

u(γ(tj+1)) +
R

1−n
q

j

λ
|f |Lq(Ω,Rn) +

R
2− 2n

q

j

λ
|g|

L
q
2 (Ω)


and hence

u(x) ≤ C ′
(
u(y) + λ−1

[
|f |Lq(Ω,Rn) + |g|

L
q
2 (Ω)

])
,

where C = C(n, p, q,Λ/λ, ν, r, R). Taking the essential supremum over x ∈
Ω′ and the essential infimum over y ∈ Ω′ yields the claim. �

6.4. Hölder continuity of solutions to linear elliptic equations of
divergence form. The key application of the de Giorgi–Nash–Moser the-
ory is a Hölder estimate for solutions to linear elliptic equations of divergence
form.

We will need the following lemma.

Lemma 6.4. Given γ, τ < 1 and µ ∈ (0, 1), there exist C = C(γ, τ) < ∞
and α = α(γ, τ, µ) ∈ (0, 1) with the following property. Let ω : (0, R0] → R
be a non-decreasing function satisfying, for all R ∈ (0, R0],

ω(τR) ≤ γω(R) + σ(R)
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for some non-decreasing function σ. For any R ∈ (0, R0],

ω(R) ≤ C
((

R

R0

)α
ω(R0) + σ(RµR1−µ

0 )

)
.

Proof. Fix some 0 < R1 < R0. Iterating the hypothesis yields

ω(τmR) ≤ γmω(R) +
m−1∑
i=1

σ(R)

≤ γmω(R) +
σ(R)

1− γ

for all m ∈ N and R ≤ R0. Fix R1 ≤ R0. Given R ∈ (0, R1], we can choose
m so that τmR1 ≤ R ≤ τm−1R1, so that, by the monotonicity of ω and σ,

ω(R) ≤ ω(τm−1R1)

≤ γm−1ω(R1) +
σ(R1)

1− γ

≤ γm−1ω(R0) +
σ(R1)

1− γ
.

Since τm ≤ R/R1,

γm ≤
(
R

R1

) log γ
log τ

,

and hence

ω(R) ≤ 1

γ

(
R

R1

) log γ
log τ

ω(R0) +
σ(R1)

1− γ
.

If we take R1 + R
1−µ
0 Rµ, then

ω(R) ≤ 1

γ

(
R

R0

)(1−µ) log γ
log τ

ω(R0) +
σ(R1−µ

0 Rµ)

1− γ
.

The claim follows. �

Theorem 6.5 (de Giorgi–Nash). There exist C(n,Λ/λ, ν, q, R, ρ) <∞ and
α(n,Λ/λ, νR, ρ) ∈ (0, 1) with the following property. Let Ω ⊂ Rn be a
connected open set with diam Ω ≤ R. Suppose that the coefficients a ∈
L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn) and d, g ∈ L

q
2 (Ω), q > n, satisfy (6.2) and

(6.3). If u ∈W 1,2(Ω) is a solution to (6.1), then u ∈ Cα(Ω) and

|u|Cα(Ω′) ≤ C
(
|u|L2(Ω) + λ−1

[
|f |Lq(Ω,Rn) + |g|

L
q
2 (Ω)

])
for every Ω′ b Ω with dist(Ω′, ∂Ω) ≥ ρ.
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Proof. Suppose that BR0 + BR0(x) ⊂ Ω. Given r ≤ R0, define

Mr + sup
Br

u and m + inf
Br
u

and set
M + sup

BR0

|u| .

Applying the Harnack inequality19 (Theorem 6.3) with p = 1 to M4R − u
and u−m4R on the domain on B4R, where R ≤ R0/4, yields

M4R −mR ≤ C(M4R −MR + k(R))

and
MR −m4R ≤ C(mR −m4R + k(R)) ,

where

k(R) +
R

1−n
q

λ

(
|f |Lq(BR0

,Rn) +M |b|Lq(BR0
,Rn)

)
+
R

2− 2n
q

λ

(
|g|

L
q
2 (BR0

)
+M |d|

L
q
2 (BR0

)

)
.

Adding the two inequalities yields

(M4R −m4R) + (MR −mR) ≤ C (M4R −m4R − (MR −mR) + 2k(R)) .

Thus, if we define

ω(R) + oscBR u + sup
x,y∈BR

(u(x)− u(y)) ,

then we find that
ω(R) ≤ γω(4R) + 2k(R) ,

where γ = γ(n, λ/Λ, νR0, q).

Taking σ(R) + 2k(R/4) for R ≤ R0, Lemma 6.4 now yields

ω(R) ≤ C
((

R

R0

)α
ω(R0) + σ(RµR1−µ

0 )

)
for R ≤ R0, where α = α(n, λΛ , νR0, q, µ) ∈ (0, 1) and C = C(n, λΛ , νR0, q) <
∞. Estimating

σ(RµR1−µ
0 ) ≤ 2

(
R

R0

)µ(1−n/q)
k(R0)

and choosing µ so that µ(1− n/q) = α, we obtain

ω(R) ≤ C
(
R

R0

)α (
ω(R0) + k(R0)

)
≤ C

(
R

R0

)α(
sup
BR0

|u|+ k(R0)

)
,

where C = C(n, λ/Λ, νR0, q) <∞ and α = α(n, λ/Λ, νR0, q).

19In fact, we could also invoke the weak Harnack inequality here.
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Applying the mean value inequality (Theorem 6.1), we conclude that

ω(R) ≤ C
(
R

R0

)α (
|u|L2(BR0

) + k(R0)
)
. (6.7)

The claim follows from a chaining argument in the usual way, since this
estimate holds on any ball BR0(x) in Ω. �

6.5. Estimates up to the boundary. The mean value and weak Harnack
inequalities both admit boundary versions. These may be stated, respec-
tively, as follows.

Theorem 6.6. There exists C = C(n, p, q,Λ/λ, ν) < ∞ with the following
property. Suppose that the coefficients a ∈ L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn)

and d, g ∈ L
q
2 (Ω), q > n, satisfy (6.2) and (6.3). Let u ∈ W 1,2(Ω) be

a subsolution to (6.1). If p > 1 and sup∂Ω∩B2R(y) u+ ≤ M , then u ∈
L∞(BR(y) ∩ Ω) and

sup
BR(y)

uM ≤ C

(
R
−n
p |uM |Lp(B2R(y)) +

R
1−n

q

λ
|f |Lq(B2R(y),Rn) +

R
2− 2n

q

λ
|g|

L
q
2 (B2R(y))

)
,

where

uM +

{
max{u(x),M} if x ∈ Ω

M if x /∈ Ω .

Theorem 6.7. There exists C = C(n, p, q,Λ/λ, ν) < ∞ with the following
property. Suppose that the coefficients a ∈ L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn)

and d, g ∈ L
q
2 (Ω), q > n, satisfy (6.2) and (6.3). Let u ∈W 1,2(Ω) be a non-

negative supersolution to (6.1). If 1 ≤ p < n
n−2 and inf∂Ω∩B4R(y) u ≥ m,

then

R
−n
p |um|Lp(B2R(y)) ≤ C

(
inf
BR(y)

um +
R

1−n
q

λ
|f |Lq(B2R(y),Rn) +

R
2− 2n

q

λ
|g|

L
q
2 (B2R(y))

)
,

where

um +

{
min{u(x),m} if x ∈ Ω

m if x /∈ Ω .

The inequalities sup∂Ω∩B2R(y) u+ ≤ M and inf∂Ω∩B4R(y) u ≥ m in The-
orems 6.6 and 6.7 are interpreted in the following sense: a function u ∈
W 1,2(Ω) is said to satisfy u ≤ 0 in a subset T of Ω if u+ is the limit of a
sequence of functions in C1

0 (Ω \ T ).

Note that the only difference with respect to the interior versions is the
replacement of u by uM and um. Indeed, Theorems 6.6 and 6.7 are proved
as in the proofs of Theorems 6.1 and 6.7, with u replaced by uM or um,
respectively, and the cutoff function modified accordingly (see [2, §8.10]).
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Combining Theorems 6.6 and 6.7 yields a global Hölder estimate, so long
as Ω satisfies the exterior cone condition. This means that each point
x ∈ ∂Ω admits a neighbourhood U and a right circular cone Cx with vertex
x such that C ∩U ∩Ω = {x}. We denote by ϑ(Cx) the half-opening angle of
Cx. Note that the exterior cone condition is weaker than the exterior sphere
condition.

Theorem 6.8. There exist constants C(n,Λ/λ, ν, q, α0, R, ϑ0) < ∞ and
α(n,Λ/λ, νR, α0, ϑ0) ∈ (0, 1) with the following property. Let Ω ⊂ Rn be
a connected open set satisfying the exterior cone condition. Suppose that
diam(Ω) ≤ R and minx∈∂Ω ϑ(Cx) ≥ ϑ0 > 0, and that the coefficients a ∈
L∞(Ω, Sn×n), b, c, f ∈ Lq(Ω,Rn) and d, g ∈ L

q
2 (Ω), q > n, satisfy (6.2) and

(6.3). If u ∈W 1,2(Ω) is a solution to (6.1) and

osc∂Ω∩Br(x0) u ≤ Krα0 for all x0 ∈ ∂Ω and r > 0 ,

then u ∈ Cα(Ω) and

|u|Cα(Ω) ≤ C
(

sup
Ω
|u|+K + λ−1

[
|f |Lq(Ω,Rn) + |g|

L
q
2 (Ω)

])
.

Proof. See [2, Theorems 8.27 and 8.29]. �
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7. Equations of mean curvature type

As we shall see, the Hölder estimate of de Giorgi and Nash reduces the
solution of (suitable) quasilinear elliptic boundary value problems to the
establishment of a priori estimates in C1. We will illustrate this in the
context of equations of mean curvature type, which play an important role
in many areas of geometry, materials science, mathematical physics and
topology.

7.1. Graphical hypersurfaces. We will need to recall some basic differ-
ential geometry of graphical hypersurfaces. So suppose that M = graphu ⊂
Rn+1 is the graph of a C2 function u : Ω → R, for some open set Ω ⊂ Rn.
We may parametrize graphu using the map X : Ω→ Rn+1 defined by

X(x) + x+ u(x)en+1 .

This map is an embedding — it is a homeomorphism onto its image and its
derivative DX : Rn → Rn+1 is non-degenerate. So the tangent space TpM
to M at a point p = x+u(x)en+1 is spanned by the coordinate tangent
vectors ∂iX|x, which are given by

∂iX +
∂X

∂xi
= ei + uien+1 .

From this, we see that the downwards pointing unit normal field is given by

ν =
(Du,−1)√
1 + |Du|2

and the induced metric tensor (a.k.a. the first fundamental form)
is given by g = gijdX

i ⊗ dXj , where

gij = 〈∂iX , ∂jX〉 = δij + uiuj .

The cometric is then given by gij∂iX ⊗ ∂jX, where

gij = δij −
uiuj

1 + |Du|2
.

In particular, the gradient vector field grad f of a differentiable function
f : graphu→M is given by

grad f = gij∂if∂jX .

The differential covector field ∇f is defined by its action on tangent
vectors via v 7→ ∇vf = vi∂if . Since the two are related to each other by
the metric,

g(v, grad f) = ∇vf ,
we will often denote the gradient by ∇f as well.

Next, we recall that the induced covariant derivative ∇ and sec-
ond fundamental form A of graphu are, respectively, the tangential and
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normal components of the Hessian of X. In graphical coordinates, they are
determined by ∇∂iX(∂jX) = Γij

k∂k = gk`Γij`∂k and A = Aijdx
i ⊗ dxj ,

where

Γijk = g(∇∂iX(∂jX), ∂k) =

〈
∂2X

∂xi∂xj
, ∂kX

〉
= uijuk

and

Aij = −
〈

∂2X

∂xi∂xj
, ν

〉
=

uij√
1 + |Du|2

.

They are therefore related to each other by the Weingarten equation

∂2X

∂xi∂xj
= ∇∂iX(∂jX)−Aijν .

Modulo identification of the parallel hyperplanes Tp graphu and Tν(p)S
n,

the shape operator A + Dν : T graphu→ TSn coincides with the Wein-
garten tensor A : T graphu→ T graphu, which is the automorphism of
T graphu related to the second fundamental form by the metric isomorphism
T graphu ∼= T ∗ graphu (it is given by Ai

jdXi ⊗ ∂jX, where Ai
j = gjkAik).

This justifies the use of the same symbol to denote all three tensors.

The mean curvature H is the trace of the Weingarten tensor. Thus,

H = gijAij

=
∑
i,j

(
δij −

uiuj
1 + |Du|2

)
uij√

1 + |Du|2

= div

(
Du√

1 + |Du|2

)
. (7.1)

The mean curvature also arises as the first variation of area. The area
of a compact set K ⊂ graphu is given by

area(K) + µ(K) =

ˆ
K
dµ ,

where the induced measure20 µ is given by

dµ(x+ u(x)en+1) =
√

1 + |Du(x)|2 dL(x) ,

20This coincides with the ambient n-dimensional Hausdorff measure.
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where L denotes the Lebesgue measure on Rn. In particular, if uε = u+ εη
is a smooth perturbation of u with spt η b Ω, then

d

dε

∣∣∣∣
ε=0

area(graphuε) =

ˆ
Ω

d

dε

∣∣∣∣
ε=0

√
1 + |Duε|2 dL

=

ˆ
Ω

Du ·Dη√
1 + |Du|2

dL

= −
ˆ

Ω
div

(
Du√

1 + |Du|2

)
η dL

= −
ˆ

Ω
Hη dL .

We note that the induced measure µ coincides on measurable subsets of
graphu with the n-dimensional Hausdorff measure in Rn+1.

7.2. Equations of mean curvature type. We will consider equations of
the form

−Hgraphu = ψ(·, u,Du) in Ω , (7.2)

where H|graphu is the mean curvature of the graph of u. By (7.1), equa-
tion (7.2) is quasilinear and strictly elliptic. It is only uniformly elliptic if
supΩ |Du| <∞, however.

Let us record some important examples.

Examples 7.1.

(1) The (graphical) minimal surface equation asks for a surface
with zero mean curvature. So in this example

ψ(x, z, p) = 0 .

(2) (Graphical) Capillary surfaces satisfy (7.2) with

ψ(x, z, p) = −κz ,

where κ is a positive constant.

(3) The (graphical) prescribed mean curvature equation asks for
a surface whose mean curvature is a prescribed function of points
in ambient three-space. So in this example

ψ(x, z, p) = −f(x, z)

for some function f : Rn+1 → R.

(4) The right hand side of the (graphical) translator equation is
given by

ψ(x, z, p) = − 1√
1 + |p|2

.
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Solutions to the translator equation correspond to hypersurfaces
which evolve by translation with constant velocity ~v = en+1 under
mean curvature flow. Such solutions arise naturally in the analysis
of singularities and ancient solutions of the flow.

Our goal will be to solve the Dirichlet problem{
−Hgraphu = ψ(·, u,Du) in Ω

u = φ on ∂Ω .
(7.3)

We shall assume that Ω is bounded and of class C2,α, φ ∈ C2,α(Ω) and
(x, z, p) 7→ ψ(x, z, p) is of class C2 and nondecreasing in z. In contrast to the
linear setting, however, these conditions will not be sufficient to guarantee
the existence of a solution to the problem (7.3). Indeed, if we do find a
solution u to (7.3), then the divergence theorem implies that

ˆ
Ω
ψ(·, u,Du) = −

ˆ
Ω

div

(
Du√

1 + |Du|2

)

=

ˆ
∂Ω

Du ·N√
1 + |Du|2

≤ |∂Ω| , (7.4)

where N is the outward unit normal field to ∂Ω and |∂Ω| is its n-dimensional
Hausdorff measure. So the relationship between Ω and ψ cannot be arbitrary
(see Exercise 7.3, Examples 7.2 and 7.3, and [2, §14.4]).

Similarly, given any η ∈ C∞(Ω) with spt η b Ω, ψ(·, u,Du) must satisfyˆ
Ω
ψ(·, u,Du) η ≤

ˆ
Ω
|Dη| . (7.5)

Example 7.2 (The Grim Reaper). Consider the one-dimensional translator
equation

uxx
1 + u2

x

= 1 .

This is a second order ode which is readily solved directly. Its solutions are
the two-parameter family of translates of the Grim Reaper u : (−π

2 ,
π
2 )→

R, which is defined by

u(x) + − log cosx .

Note that u(x)→∞ as x→ ±π
2 . In particular, this means that the Dirichlet

problem 
uxx

1 + u2
x

= 1 in (a, b)

(u(a), u(b)) = (A,B)

is soluble only if b− a < π.
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7.3. The height estimate. The maximum principle implies the following
basic observation.

Proposition 7.1 (Comparison principle). Suppose that u, v ∈ C2(Ω) ∩
C0(Ω) satisfy

−H|graphu − ψ(·, u,Du) ≤ −H|graph v − ψ(·, v,Dv) ,

where ψ ∈ C1(Ω×R×Rn) is non-increasing in z ∈ R. If u ≤ v on ∂Ω and
either supΩ |Du| <∞ or supΩ |Dv| <∞, then u ≤ v in Ω.

Proof. Set uϑ + ϑu+ (1− ϑ)v and

a(p) +
1√

1 + |p|2

(
I − p⊗ p

1 + |p|2

)
.

Observe that

0 ≤ a(Du) ·D2u+ ψ(·, u,Du)− a(Dv) ·D2v − ψ(·, v,Dv)

=

ˆ 1

0

d

dϑ

(
a(Duϑ) ·D2uϑ + ψ(·, uϑ, Duϑ)

)
dϑ

= aijwij + bkwk + cw ,

where w + u − v and the coefficients a : Ω → Sn×n, b : Ω → Rn and
c : Ω→ R are defined by

aij(x) +
ˆ 1

0
a(Duϑ(x))ijdϑ ,

bk(x) +
ˆ 1

0
apk(Duϑ(x))ij(uϑ)ijdϑ−

ˆ 1

0
ψpk(x, uϑ(x), Duϑ(x)) dϑ ,

and

c(x) +
ˆ 1

0
ψz(x, uϑ(x), Duϑ(x)) dϑ .

The claim now follows from the maximum principle since a is uniformly
positive definite (due to the boundedness of either |Du| or |Dv|) and c is
non-positive (due to the monotonicity of ψ). �

This reduces the establishment of an a priori estimate in C0 for solutions
to (7.3) to the construction of sub- and supersolutions. We say that a
function v is a subsolution to the Dirichlet problem (7.3) if{

−Hgraph v ≤ ψ(·, v,Dv) in Ω

v ≤ φ on ∂Ω .

Supersolutions are defined analogously.
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Corollary 7.2. Suppose that ψz ≤ 0 and that u ∈ C2(Ω) ∩ C0(Ω) satisfies
the Dirichlet problem (7.3). If (7.3) admits a supersolution u, then

sup
Ω
u ≤ sup

Ω
u

If (7.3) admits a subsolution u, then

inf
Ω
u ≥ inf

Ω
u .

Sub- and supersolutions arise naturally in certain situations, but they
may not always be available. Let us present an alternative argument, which
holds under a slightly stronger constraint than the necessary condition (7.5).

Proposition 7.3. Suppose that u ∈ C2(Ω) ∩ C0(Ω) satisfies the Dirichlet
problem (7.3) with ψ non-increasing in z. If there exists ε > 0 such that

ˆ
Ω
ψ(·, η,Dη) η ≤ (1− ε)

ˆ
Ω
|Dη| (7.6)

for all non-negative η ∈W 1,2(Ω) with spt η b Ω, then

sup
Ω
u ≤ sup

∂Ω
φ+ + C(n, ε, |Ω|) .

If there exists ε > 0 such that (7.6) holds for all non-positive η ∈ W 1,2(Ω)
with spt η b Ω, then

inf
Ω
u ≥ inf

∂Ω
φ− − C(n, ε, |Ω|) .

Proof. Given any k ≥ k0 + max∂Ω φ+, define21

uk + (u− k)+ and Ak + {x ∈ Ω : u(x) > k} .

Observe that uk|∂Ω = 0 and uk ∈ C0,1(Ω) = W 1,∞(Ω) ⊂ W 1,2(Ω). Note
also that |Ak| is monotonically decreasing in k.

21We will avoid the use of subscripts to denote derivatives for the remainder of the proof.
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Since uk ∈ W 1,2(Ω), the divergence theorem and the hypotheses for ψ
yield

ˆ
Ak

|Duk|2√
1 + |Duk|2

=

ˆ
Ω

Du ·Duk√
1 + |Du|2

= −
ˆ

Ω
div

(
Du√

1 + |Du|2

)
uk

=

ˆ
Ω
ψ(·, u,Du)uk

≤
ˆ

Ω
ψ(·, uk, Duk)uk

≤ (1− ε)
ˆ

Ω
|Duk|

= (1− ε)
ˆ
Ak

|Duk| .

Thus, ˆ
Ak

|Duk| ≤
ˆ
Ak

√
1 + |Duk|2

=

ˆ
Ak

1 + |Duk|2√
1 + |Duk|2

=

ˆ
Ak

1√
1 + |Duk|2

+

ˆ
Ak

|Duk|2√
1 + |Duk|2

≤ |Ak|+ (1− ε)
ˆ
Ak

|Duk| ,

and hence ˆ
Ak

|Duk| ≤ ε−1|Ak| .

We now employ the Sobolev inequality to estimate(ˆ
Ak

u
n
n−1

k

)n−1
n

≤ C
ˆ
|Duk| ≤ Cε−1|Ak| ,

where C = C(n) is the Sobolev constant.

Hölder’s inequality now yields

ˆ
Ak

uk ≤ |Ak|
1
n

(ˆ
Ak

u
n
n−1

k

)n−1
n

≤ Cε−1|Ak|1+ 1
n .
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On the other hand, given any h > k ≥ k0,

(h− k)|Ah| =
ˆ
Ah

(h− k) ≤
ˆ
Ah

(u− k) =

ˆ
Ah

uk ≤
ˆ
Ak

uk .

We conclude that

(h− k)|Ah| ≤ Cε−1|Ak|1+ 1
n . (7.7)

By iterating this inequality, we can deduce that Ak = 0 for k sufficiently
large.

Given k ≥ k0, set ϕ(k) + |Ak|. For each r = 1, 2, . . . , set

kr + k0 + d− d

2r
,

where d > 0 will be determined. Note that

kr+1 − kr =
d

2r+1
and kr → k0 + d as t→∞ .

Since kr+1 > kr ≥ k0, (7.7) yields

ϕ(kr+1) ≤ Cε−1 2r+1

d
ϕ(kr)

1+ 1
n . (7.8)

We claim that, upon choosing

d + 2n+1Cε−1ϕ(k0)
1
n ,

we may estimate, for all r,

ϕ(kr) ≤ 2−nrϕ(k0) . (7.9)

This is proved by induction. Indeed, the base case r = 0 is clear, so suppose
that (7.9) holds for some r ≥ 0. Then (7.8) and our choice of d yield

ϕ(kr+1) ≤ Cε−1 2r+1

d
ϕ(kr)

1+ 1
n

≤ Cε−1 2r+1

d
· 2−(n+1)rϕ(k0)1+ 1

n

= Cε−1 2n+1

d
· 2−n(r+1)ϕ(k0)1+ 1

n

= 2−n(r+1)ϕ(k0) .

This proves (7.9). Taking r → ∞, we conclude that |Ak0+d| = 0, which
means that

sup
Ω
u ≤ k0 + d .

The first claim follows.

The second claim follows from the first, since the function v + −u sat-
isfies

−Hgraph v = −ψ(·,−v,−Dv) . �
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The argument employed in Proposition 7.3 is known as Stampacchia
iteration, after Guido Stampacchia.

We conclude by noting that, although the condition (7.6) is very natural
(in view of (7.5)), it is not easy to check in general. Since ψz ≤ 0, it
suffices to check the condition with ψ(·, η,Dη) replaced by ψ(·, 0, Dη). In
the important special case of prescribed mean curvature equations (where
ψ = ψ(x, z)), it then suffices to check thatˆ

ψ(·, 0)η ≤ (1− ε)
ˆ
|Dη|

for all η ∈W 1,2(Ω).

7.4. The gradient estimate. Next, we obtain an a priori estimate for the
gradient of solutions to (7.3). We first estimate the modulus of the gradient
at any interior point by its values at the boundary, using the maximum
principle.

7.4.1. Interior gradient estimate. Consider the function v : graphu → R
defined by

v + −〈ν , en+1〉 .

Note that

v(x+ u(x)en+1) =
1√

1 + |Du(x)|2
.

We will estimate v from below (and hence |Du| from above) by a constant
depending on n, min∂ graphu v, and supΩ |u| using the maximum principle.

We want to compute ∆v, where

∆ + div grad = gij∇i∇j = gij(∂i∂j − Γij
k∂k)

is the induced Laplace–Beltrami operator, so let us assume that u ∈
C3(Ω)∩C1(Ω) (we will weaken this to C2(Ω)∩C1(Ω) later, by an approxi-
mation argument). Observe that

∂iv = 〈∂iν , en+1〉

= Ai
j 〈∂jX , en+1〉

and hence

grad v = A(e>n+1) ,

where grad is the gradient operator on graphu and ·> : Rn → T graphu is
the tangential projection map. It follows that

−∆v = |A|2v +∇e>n+1
H , (7.10)
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where |A|2 = gikgjlAijAkl is the squared norm of the second fundamental
form.22 We can already deduce our estimate in the most important cases:
the minimal, constant mean curvature and translator equations. Indeed, if
H is constant, then the second term on the right vanishes. If H ≡ v, then it
is a gradient term. Since v > 0, we conclude from (7.10) and the maximum
principle (see Exercise 7.9) that it cannot realize an interior minimum, and
hence

min
graphu

v ≥ min
∂ graphu

v .

That is,

max
Ω
|Du| ≤ max

∂Ω
|Du| .

For general ψ, we must assume, in addition to the monotonicity condition
ψz ≤ 0, that

sup
Ω×{0}×Rn

(
|ψx|+ |p|2|ψp|

)
<∞ , (7.11)

where ψx is the derivative of ψ with respect to the first factor and ψp is its
derivative with respect to the third factor. Note that (7.11) is easily verified
for the minimal, constant mean curvature, capillary surface and translator
equations, and also all prescribed mean curvature equations satisfying the
very mild condition ψ(·, 0) ∈ C1(Ω).

We need to estimate the term ∇e>n+1
H. Observe that

∇e>n+1
H = 〈gradH , en+1〉

=
〈
gij∂iH∂jX , en+1

〉
= gij∂iHuj

= − gij(ψxi + ψzui + ψpkuki)uj ,

where we are implicitly evaluating the derivatives of ψ at (·, u,Du). By
hypothesis,

−ψzgijuiuj ≥ 0 ,

22One may wonder why we have chosen to apply the Laplacian to v, and not some other
elliptic operator. The reason is not (just) that the Laplace–Beltrami operator ∆ is the most

natural second order elliptic operator arising from a given metric, but rather that the operator
−(∆ + |A|2) arises as the linearization of the mean curvature. See Exercise 7.8.

82



7. EQUATIONS OF MEAN CURVATURE TYPE

so this term is not harmful. Note also that the final term can be rewritten
as a gradient term. Indeed,

vk = gijAik 〈∂jX , en+1〉

= gijAikuj

=
gijuikuj√
1 + |Du|2

= vgijuikuj ,

so that

ψpkg
ijuikuj =

ψpkvk
v

.

Rewriting

gijuj =

(
δij −

uiuj
1 + |Du|2

)
uj

= ui

(
1− |Du|2

1 + |Du|2

)
=

ui
1 + |Du|2

= v2ui ,

we may estimate

gijψxiuj = v2ψxiui

≤ v2|ψx||Du|
≤ v|ψx|.

Thus,

−∆v ≥
(
|A|2 − |ψx|

)
v − ψpkvk

v
.

To deal with the negative reaction term, we will estimate eλhv from
below for some λ > 0, where the height function h : graphu → R is
defined by

h(p) = 〈p , en+1〉 .
Note that h(x+ u(x)en+1) = u(x).

Observe that

gradh = e>n+1

= en+1 + vν

and

−∆h = −Hv .
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Thus,

∇(eλhv) = eλh∇v + λeλhv∇h
and hence

−∆(eλhv) = − eλh∆v − v∆eλh − 2
〈
∇eλh , ∇v

〉
= − eλh∆v − λveλh∆h− λ2eλhv|∇h|2 − 2λeλh 〈∇h , ∇v〉

≥ eλhv

(
|A|2 − |ψx| −

ψpkvk
v2

)
− λeλhv2H − λ2veλh|∇h|2

− 2λeλh 〈∇h , ∇v〉 .

Thus,

−∆(eλhv)

eλhv
+

〈
2λ∇h− gk`ψpk∂x`

v
,
∇(eλhv)

eλhv

〉
≥ |A|2 − |ψx|+ λ

ψpkhk
v
− λvH + λ2|∇h|2 .

Observe that

|∇h|2 = 1− v2

and

|A|2 ≥ 1
nH

2 .

Thus, estimating

λvH ≤ 1
nH

2 + n
4λ

2v2

and, since hk(x+ u(x)en+1) = uk(x) and v−1 =
√

1 + |Du|2 ≤ |Du|,
ψpkhk
v
≥ −|Du|2|ψp| ,

we arrive at

−∆(eλhv)

eλhv
+

〈
2λ∇h− gk`ψpk∂x`

v
,
∇(eλhv)

eλhv

〉
(7.12)

≥ − sup
Ω×R×Rn

(
|ψx|+ |p|2|ψp|

)
+ λ2

(
1− (1 + n

4 )v2
)
.

If we set

λ2 + 2 sup
Ω×R×Rn

(
|ψx|+ |p|2|ψp|

)
,

then (1 + n
4 )v2 ≥ 1

2 at any interior minimum of eλhv, and hence

eλhv ≥ min

{
min

∂ graphu

(
eλhv

)
,
√

2
n+4 eλh

}
.

We conclude that

sup
Ω
|Du| ≤ C , (7.13)

where C = C
(
n, supΩ×R×Rn

(
|ψx|+ |p|2|ψp|

)
, supΩ |u|,max∂Ω |Du|

)
.
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We now show that the estimate (7.13) holds under the weaker regularity
condition u ∈ C2(Ω) ∩ C1(Ω). Indeed, since we may approximate such u in
the C2(Ω)∩C1(Ω) topology by smooth functions, the inequality (7.12) still
holds, albeit in the integral form (note that integration over graphu obeys
the divergence theorem; see Exercise 7.1)ˆ 〈

∇(eλhv) , ∇η
〉

+

ˆ
∇V (eλhv)η ≥ −λ2(1 + n

4 )

ˆ (
2

n+4 − v
2
)

eλhvη

for all non-negative η ∈W 1,2(graphu) with spt η b graphu, where

V + 2λ∇h− gk`ψpk∂x`

v
, λ2 + 2 sup

Ω×{0}×Rn

(
|ψx|+ |p|2|ψp|

)
,

and the integrals are taken with respect to the induced measure µ.

If we set η + (m− eλhv)+ , where

m +

√
2

n+ 4
min

graphu
eλh ,

then, since v ≤
√

2
n+4 wherever eλhv ≤ m, we obtain

ˆ
|∇η|2 +

��
����1

2

ˆ
∇V η2 ≤ λ2(1 + n

4 )

ˆ (
2

n+4 − v
2
)

eλhvη ≤ 0 .

It follows that η is constant and ( 2
n+4 − v2)η ≡ 0, from which we may

conclude that η ≡ 0. That is, eλhv ≥ m.

In summary, we have proved the following.

Proposition 7.4. There exists C = C(n,K,L,M) <∞ with the following
property. Let Ω be a bounded open subset of Rn. Let u ∈ C2(Ω) ∩ C1(Ω) be
a solution to

−H|graphu = ψ(·, u,Du) ,

where ψ ∈ C1(Ω× Rn × Rn) satisfies

ψz ≤ 0 and sup
Ω×{0}×Rn

(
|ψx|+ |p|2|ψp|

)
≤ L .

If supΩ |u| ≤ K and max∂Ω |Du| ≤M , then

|Du| ≤ C. (7.14)

7.4.2. Boundary gradient estimate. If the domain Ω and the boundary con-
dition φ are of class C1, then we may estimate the gradient of any solution
u to (7.3) in directions tangent to the boundary by those of the boundary
values φ. Indeed, if τ is a unit tangent vector to ∂Ω at x ∈ ∂Ω, then (by
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definition of tangent vectors) we can find a curve γ : (−s0, s0) → ∂Ω such
that γ′(0) = τ . Since u coincides with φ on ∂Ω, we find that

0 ≡ d

ds

∣∣∣∣
s=0

(u− φ) ◦ γ = Dτu(x)−Dτφ(x) .

So it remains to estimate Du in directions normal to ∂Ω. This is straight-
forward if the problem (7.3) admits upper and lower barriers u, u ∈ C1(Ω)
which take the boundary values φ. Indeed, since u ≤ u ≤ u in Ω, we find
that

0 ≤ lim
s↘0

u(x+ sν(x))− u(x+ sν(x))

s

= lim
s↘0

u(x+ sν(x))− u(x) + u(x)− u(x+ sν(x))

s

= Dν(x)u−Dν(x)u

and

0 ≥ lim
s↘0

u(x+ sν(x))− u(x+ sν(x))

s

= lim
s↘0

u(x+ sν(x))− u(x) + u(x)− u(x+ sν(x))

s

= Dν(x)u−Dν(x)u ,

where ν(x) is the inward pointing unit normal to ∂Ω at x. Thus,

Dν(x)u ≤ Dν(x)u ≤ Dν(x)u .

We conclude that

|Du(x)|2 ≤ |∇φ(x)|2 + max{|Dν(x)u|2, |Dν(x)u|2} ,

where ∇ is the induced gradient operator on ∂Ω.

Note that we only need to construct barriers in a neighbourhood the
boundary.

7.4.3. Construction of barriers near the boundary. We first note that it is
not always possible to construct barriers — there is a necessary condition
arising from the geometry of ∂Ω.

Example 7.3. The function u ∈ C∞(B1) defined by

u(x) = −
√

1− |x|2

satisfies the Dirichlet problem{
Hgraphu = n in B1

u = 0 on ∂B1 .
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But

Du(x) · x
|x|
→ ∞

as x→ ∂B1.

To pinpoint what goes wrong in the above example, consider a graphical
hypersurface M = graphu which is smooth up to its boundary, so that
there is a smoothly embedded hypersurface M̃ such that M b M̃ . If the
boundary ∂M is smooth but |Du(x)| becomes unbounded as x → x0, then

the tangent plane to M̃ at x0 + u(x0)en+1 is vertical. This means that it is
also the tangent plane to the bounding cylinder ∂Ω×R. We may represent
M̃ and ∂Ω×R in a neighbourhood U of x0 +u(x0)en+1 as graphs of smooth
functions v : L→ R and w : L→ R over the mutual tangent plane L. Note
that v(0) = w(0) = 0 and Dv(0) = Dw(0). The latter implies that

AM̃ |x0+u(x0)en+1
= ±D2v(0) and A∂Ω×R|x0+u(x0)en+1

= D2w(0) ,

where the positive sign is taken if the downward pointing normal to graphu
coincides with the outward pointing normal to ∂Ω×R at x0, and the negative
sign is taken if these normals have opposite orientation at x0. Since v > w at
points of M , and “half” of the boundary tangent directions at x0+u(x0)en+1

point into M , Taylor’s theorem implies that

D2v(0) ≥ D2w(0)

and hence

HM̃ (x0 + u(x0)en+1) ≥ ±H∂Ω×R(x0 + u(x0)en+1) ,

where the signs correspond to the orientation of graphu with respect to
∂Ω × R as before. Since H∂Ω×R(x + u(x)en+1) = H∂Ω(x) for any x ∈ ∂Ω,
where H∂Ω is the mean curvature of ∂Ω with respect to its outward pointing
unit normal field, this behaviour is impossible if

H∂Ω(x) > lim sup
|p|→∞

|ψ(x, φ(x), p)| (7.15)

for all x ∈ ∂Ω, where φ + u|∂Ω. The condition 7.15 on ∂Ω, φ and ψ will
actually be sufficient to construct barriers.

Our barriers will be constructed as functions of the distance-to-the-
boundary function. So fix a bounded open subset Ω ⊂ Rn and denote
by d : Rn → R the distance to ∂Ω,

d(x) + min
p∈∂Ω

|x− p| .

We claim that d is Lipschitz (with Lipschitz constant 1). To see this, fix
x, y ∈ Rn. Since ∂Ω is compact (and non-empty) there must exist at least
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one point q ∈ ∂Ω such that d(y) = |y − q|. So the triangle inequality yields

d(x)− d(y) = min
p∈∂Ω

|x− p| − |y − q|

≤ |x− q| − |y − q|
≤ |x− y| .

The claim follows since x and y were arbitrary.

Now assume that ∂Ω is of class C1, so that it admits a tangent space
Tx∂Ω and an outer unit normal vector ν(x) at each x ∈ ∂Ω (both of which
depend continuously on x). Moreover, for each x0 ∈ ∂Ω, we can find a
neighbourhood U (in Rn) and a C1 function u : Tx∂Ω→ R such that

∂Ω ∩ U = {x+ u(x)ν(x0) : x ∈ Tx0∂Ω} ∩ U .

That is, ∂Ω coincides in U with the image of the embedding X : Tx0∂Ω →
Rn+1 defined by

X(x) + x+ u(x)ν(x0) .

We may identify Tx0∂Ω with Rn−1 by choosing an orthonormal basis {ei}n−1
i=1 .

We thus obtain coordinates {xi}n−1
i=1 for ∂Ω ∩ U via xi(yjei + u(yjej)) + yi.

If ∂Ω is of class Ck for some k ≥ 2, then it admits a second fundamental
form A, and this is given in our coordinates {xi}n−1

i=1 by

Aij =
uij√

1 + |Du|2
.

In particular,

(Ax0)ij = uij(x0).

For convenience, we may further choose the basis {ei}n−1
i=1 so that each ei

is an eigenvector of Ax0 = D2u(x0) (called a principal direction), with
eigenvalue κi (called a principal curvature).

Proposition 7.5. Let Ω ⊂ Rn be a bounded open set with boundary of class
Ck for some k ≥ 2. There exists µ > 0 such that d ∈ Ck(Γµ), where

Γµ + {x ∈ Ω : d(x) < µ} .

Proof. Since ∂Ω is of class C2 and Ω is bounded, ∂Ω satisfies a uniform
interior ball condition (see Exercise 7.10). That is, we can find µ > 0 such
that Bµ(x0 − µν(x0)) ⊂ Ω for each x0 ∈ ∂Ω. In particular, κi ≤ 1/µ for
each i = 1, . . . , n−1. Moreover, for every x ∈ Γµ there exists a unique point
p(x) ∈ ∂Ω such that |x− p(x)| = d(x). Indeed,

p(x) = x+ d(x)ν(x) .

Now fix x0 ∈ Γµ and set p0 + p(x0). As explained above, we may

choose a local graphical representation u ∈ Ck(Tx0∂Ω) and local coordinates
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{xi}n−1
i=1 for ∂Ω in neighbourhood of p0 so that

(Ap0)ij = uij(x0) = κiδij .

Define a function g : Tp0∂Ω×R→ Rn by moving the point y+u(y)ν0 on
∂Ω corresponding to y ∈ Tp0∂Ω a distance r in its inwards normal direction,
where ν0 + ν(p0). That is,

g(y, r) + y + u(y)ν0 − rν(y + u(y)ν0) .

Note that g(p0, d0) = x0, where d0 + d(x0). Observe that g is of class Ck−1.
Its derivative Dg is given by

Dvg = v +Dvuν0 − rA(v)

when v is tangent to the first factor, and

∂rg = −ν(y + u(y)ν0) .

Since u(p0) = Du(p0) = 0,

Dg(p0,d0) = diag(1− d0κ
0
1, . . . , 1− d0κ

0
n−1,−1) , (7.16)

where κ0
i + κi(p0). Since d0 < µ and κi ≤ 1/µ, we conclude that Dg is

non-degenerate at (p0, d0), so the inverse function theorem implies that it
admits an inverse h of class Ck−1 on some neighbourhood V ⊂ U of x0.
This inverse is given explicitly by projecting x ∈ Ω ∩ V onto ∂Ω, and then
onto Tx0Ω. That is,

h(x) +
(
π(p(x)), d(x)

)
,

where π(x) + x − 〈x , ν0〉 ν0 is the projection of ∂Ω ∩ U onto Tp0∂Ω. This

implies that d is of class Ck−1 near x0. In fact, since

d(x) = 〈p(x)− x , ν(p(x))〉
and Dvp ∈ Tx∂Ω for any v ∈ Rn, we find that

Dvd(x) = 0 for v ‖ Tp(x)∂Ω

and

Dvd(x) = −1 for v ‖ ν(p(x))

Thus,

Dd = −ν ◦ p , (7.17)

which is of class Ck−1! So d is actually of class Ck near x0. The claim
follows since x0 ∈ Γµ was arbitrary. �

Observe furthermore that, by (7.17),

Dv(Dd)|x = −Ap(x)(Dp(v)) for v ‖ Tp(x)∂Ω

On the other hand, since |Dd| ≡ 1, we must have Dv(Dd) ⊥ Dd. So

Dv(Dd)|x = 0 for v ‖ ν(p(x)) .
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By (7.16), we find, with respect to the principal coordinates {xi}ni=1, that

∂ip(x0) =
ei

1− d0κ0
i

for each i = 1, . . . , n− 1. Since x0 ∈ Γµ was arbitrary, we conclude that

D2d = −
n−1∑
i=1

κi
1− dκi

ei ⊗ ei ,

where {ei}ni=1 is a principal frame for ∂Ω and both κi and ei evaluated on
∂Ω after applying the projection p. In particular,

∆d = −
n−1∑
i=1

κi
1− dκi

= −
n−1∑
i=1

κi

(
1 +

κid

1− κid

)
≤ −

n−1∑
i=1

κi = −H∂Ω .

Returning now to the construction of boundary barriers, consider a func-
tion u : Γδ → R of the form u(x) + φ(x)+η(d(x)) for some to-be-determined
δ ∈ (0, µ) and η : R→ R, where φ ∈ C2(Ω) is the prescribed boundary data
for the Dirichlet problem (7.3). We want u to be a supersolution in Γδ and
take the boundary values φ on ∂Ω (so we require η(0) = 0). We also need
η to exceed any desired height, K, (determined by our a priori height es-
timate) at the inner boundary ∂Γδ \ ∂Ω (so we require η(δ) > K − φ(x)).
Observe that

ui = φi + η′di and uij = φij + η′dij + η′′didj .

Recalling that Dd is a null eigenvector of D2d, we thus obtaiin

Hgraphu =

(
δij −

uiuj
1 + |Du|2

)
uij√

1 + |Du|2

=

(
δij −

(φi + η′di)(φj + η′dj)

1 + |Dφ+ η′Dd|2

)
φij + η′′didj√

1 + |Dφ+ η′Dd|2

+

(
δij −

φiφj
1 + |Dφ+ η′Dd|2

)
η′dij√

1 + |Dφ+ η′Dd|2
.

We may estimate ∆d ≤ −H∂Ω and(
δij −

(φi + η′di)(φj + η′dj)

1 + |Dφ+ η′Dd|2

)
φij ≤ |D2φ| .

Moreover, if δ ≤ µ/2, then the eigenvalues of −D2d satisfy κi
1−dκi ≤

2
µ , so

that

−dijφiφj ≤
2

µ
|Dφ|2 in Γδ .
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Assuming further that η′ ≥ 0 and η′′ ≤ 0, we may therefore estimate√
1 + |Dφ+ η′Dd|2Hgraphu

≤ |D2φ| − η′H∂Ω +
η′′
(
1 + |Dφ|2 − (Dφ ·Dd)2

)
− η′dijφiφj

1 + |Dφ+ η′Dd|2

≤ |D2φ| − η′H∂Ω +
η′′ + 2

µη
′|Dφ|2

1 + |Dφ+ η′Dd|2
.

We can choose η so that the final term is non-positive and the second term
dominates the first, at least for δ sufficiently small. Indeed, if we set

η(r) +
1

ν
log(1 + kr)

for positive k and ν (to be chosen in a moment), then

η(0) = 0 , η′ =
k

ν(1 + kr)
> 0 and η′′ = − k2

ν(1 + kr)2
< 0 .

If k > 0 and δ ≤ µ
2 are chosen so that k

1+kδ ≥
2
µ supΩ |Dφ|2, then

η′′ +
2

µ
η′|Dφ|2 =

k

ν(1 + kd)

(
2

µ
|Dφ|2 − k

1 + kd

)
≤ 0 in Γδ .

So it remains to estimate

η′H∂Ω ≥ |D2φ|+
√

1 + |Du|2ψ(·, u,Du) .

Since ∂Ω is compact we can find, by the hypothesis (7.15), some M < ∞
and ε > 0 such that

H∂Ω(x) ≥ ε+
√

1 + ε2 sup
|p|>M

ψ(x, φ(x), p)

for all x ∈ ∂Ω; so it suffices to estimate

1

η′

(
|D2φ|+

√
1 + |Du|2ψ(·, u,Du)

)
≤ ε+

√
1 + ε2 sup

|p|>M
ψ(x, φ(x), p)

in Γδ for suitable δ, k and ν.

If k
ν(1+kδ) ≥

supΩ |D2φ|
ε , then we may estimate

|D2φ|
η′

≤ ε in Γδ .
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If k
ν(1+kδ) ≥ supΩ |Dφ|+M , then we may estimate

|Du|2 = |Dφ|+ 2η′Dφ ·Dd+ (η′)2

≥ |Dφ|2 − 2η′|Dφ|+ (η′)2

= (η′ − |Dφ|)2

≥M2 in Γδ .

On the other hand,√
1 + |Du|2
η′

≤

√
1 +

1 + |Dφ|2 + 2η′|Dφ|
(η′)2

,

so we can also arrange that√
1 + |Du|2
η′

≤
√

1 + ε2 in Γδ

so long as

k

ν(1 + kδ)
≥

supΩ |Dφ|+
√

(1 + ε2) supΩ |Dφ|2 + ε2

ε2
.

Since ψz ≤ 0, we may also estimate

sup
|p|>M

ψ(x, φ(x) + η(d(x)), p) ≤ sup
|p|>M

ψ(x, φ(x), p)

for all x ∈ ∂Ω.

We conclude that
−Hgraphu ≥ ψ(·, u,Du) in Γδ

u = φ on ∂Ω

u ≥ K on Ω ∩ ∂Γδ

so long as
k

1 + kδ
≥ 2

µ
|Dφ|2C0(Ω) ,

k

ν(1 + kδ)
≥ max

{
|D2φ|C0(Ω)

ε
, |Dφ|C0(Ω) +M,

|Dφ|C0(Ω) +
√

(1 + ε2)|Dφ|2
C0(Ω)

+ ε2

ε2

 ,

and
1

ν
log(1 + kδ) ≥ |φ|C0(Ω) +K .
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These conditions can be arranged as follows: if we set k + 4
µ |Dφ|

2
C0(Ω)

and δ + 1
k , then the first condition is satisfied. We may now choose ν =

ν(|φ|C2(Ω), µ,M, ε,K) so small that the remaining conditions are satisfied.

The construction of a lower barrier is achieved either by an analogous
construction, or by replacing u with −u and ψ(x, z, p) with −ψ(x,−z,−p).

These barriers yield the following boundary gradient estimate.

Proposition 7.6. Let Ω be a bounded open set in Rn whose boundary is of
class C2. Suppose that ψ ∈ C0(Ω× R× Rn) and φ ∈ C2(Ω) satisfy

ψz ≤ 0 and H∂Ω(x) ≥ ε+
√

1 + ε2 sup
|p|>M

|ψ(x, φ(x), p)| for all x ∈ ∂Ω

for some ε > 0 and M < ∞, where H∂Ω is the mean curvature of ∂Ω with
respect to its outwards pointing unit normal. If u ∈ C2(Ω)∩C1(Ω) satisfies{

−H|graphu = ψ(·, u,Du) in Ω

u = φ on ∂Ω ,

then

sup
∂Ω
|Du| ≤ C

(
n, sup

Ω
|u|, |φ|C2(Ω), ε,M

)
. (7.18)

7.5. A Hölder estimate for the gradient. Fix a unit direction e ∈ Sn
and consider v + Deu. If u ∈ C2(Ω), then v ∈ C1(Ω) satisfies the divergence
form linear equation (cf. (5.4))

−Di(a
ijDjv) = Dif

i

in the weak sense, where

aij +
1√

1 + |Du|2

(
δij −

uiuj
1 + |Du|2

)
and f + ψ(·, u,Du)e .

If |u|C1(Ω) ≤M <∞, then

a ≥ λδ and |a| ≤ Λ ,

where λ > 0 and Λ < ∞ depend only on |u|C1(Ω), so the de Giorgi–Nash
Hölder estimate (Theorem 6.5) yields

|u|C1,α(Ω′) ≤ C

for any Ω′ b Ω, where C = C(n,M, supΩ×[−M,M ]×BM |ψ|,Ω,Ω
′) and α =

α(n,M,Ω,Ω′).

We would like to apply Theorem 6.8 to obtain a Hölder estimate for Du
up to the boundary of Ω. This is not immediately possible however, since,
roughly speaking, the boundary data only provide an oscillation estimate
for Deu in directions e which are tangent to the boundary. In order to
exploit Theorem 6.8, we straighten the boundary in a neighbourhood of a
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given boundary point x0 using a boundary chart. This results in a modified
equation (on a neighbourhood of 0 in the halfspace Rn−1 × [0,∞)) which
nonetheless satisfies the hypotheses of Theorem 6.8 (assuming the boundary
charts are of class C1,α). Theorem 6.8 then yields a Hölder estimate for Deu
at x0 for all directions e tangent to ∂Ω at x0. The remaining derivative is
estimated by a direct argument which exploits Morrey’s inequality. We omit
the details (see [2, §13.1]).

The resulting estimate may be stated as follows.

Proposition 7.7. Suppose that Ω is a bounded open set of class C2, φ ∈
C2(Ω), and that ψ ∈ C0(Ω×R×Rn). If u ∈ C2(Ω) satisfies |u|C1(Ω) ≤M <
∞ and solves the Dirichlet problem (7.3), then

|u|C1,α ≤ C ,

where C = C(n,M,maxΩ×[−M,M ]×BM |ψ|, |φ|C2(Ω),Ω) and α = α(n,M,Ω).

7.6. Solving the Dirichlet problem. We are now able to solve the Dirich-
let problem for mean curvature equations using the method of continuity.

Theorem 7.8. Let Ω ⊂ Rn be a bounded open set with boundary of class
C2,α. Given ψ ∈ C1,α(Ω × R × Rn) satisfying ψz ≤ 0 and φ ∈ C2,α(∂Ω),
suppose that ˆ

ψ(·, 0, Dη)η ≤ (1− ε)
ˆ
|Dη| (7.19)

for all non-negative/non-positive η ∈ C1(Ω) with spt η b Ω for some ε > 0,
and

H|∂Ω(x) > lim sup
|p|→∞

|ψ(x, φ(x), p)| for all x ∈ ∂Ω . (7.20)

The Dirichlet problem{
−Hgraphu = ψ(·, u,Du) in Ω

u = φ on ∂Ω
(7.21)

admits a unique solution u ∈ C2,α(Ω).

Proof. Consider, for each t ∈ [0, 1], the Dirichlet problem{
−Hgraphu = tψ(·, u,Du) in Ω

u = tφ on ∂Ω .
(7.22)

Observe that the problem corresponding to t = 0 admits the trivial solution
u ≡ 0. So it suffices to show that the set S of parameters t ∈ [0, 1] corre-
sponding to problems which are uniquely soluble in C2,α(Ω) is both open
and closed in [0, 1].
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Observe that Propositions 7.3, 7.4, 7.6 and 7.7 yield an estimate of the
form

|u|C1,β(Ω) ≤ C (7.23)

for any solution to (7.22) (independent of t) for some β = β(n, ψ,Ω, φ) and
C = C(n, ψ,Ω, φ). In particular, the gradient is uniformly bounded, so
uniqueness of solutions to (7.22) is a consequence of Proposition 7.1.

To see that S is closed, consider a sequence of parameters tk in S con-
verging to some t ∈ [0, 1]. Let uk ∈ C2,α(Ω) be the solution to (7.22)
corresponding to the parameter tk. If we define ak and fk by

ak(x) +
1√

1 + |Duk|2

(
δ − Duk ⊗Duk

1 + |Duk|2

)∣∣∣∣∣
x

and fk(x) + ψ(·, uk, Duk)
∣∣
x
,

then uk satisfies the linear elliptic equation

−aijk DiDjuk = fk in Ω .

By (7.23), this equation satisfies the hypotheses of Schauder’s estimate. If
β ≥ α, then we obtain

|uk|C2,α(Ω) ≤ C(n, ψ,Ω, φ) . (7.24)

If β < α, then we only obtain an estimate for |u|C2,β(Ω). However, since this

implies an estimate for |u|C1,α(Ω), we obtain (7.24) by applying Schauder’s
estimate a second time. The Arzelà–Ascoli theorem now provides a sub-
sequence of the solutions uk which converges in C2(Ω) to a solution u ∈
C2,α(Ω) to the problem (7.22) corresponding to the parameter t. So S is
indeed closed.

To see that S is open, we apply the implicit function theorem and the
solvability of the linearized problems. Consider the map T : C2,α(Ω) ×
[0, 1]→ Cα(Ω)× C2,α(∂Ω) defined by

T (u, t) + (−Hgraphu − tψ(·, u,Du), u|∂Ω − tφ) .

If t0 ∈ S, then we can find u0 ∈ C2,α(Ω) such that T (u0, t0) = (0, 0). In order
to apply the implicit function theorem, we need to show that the Fréchet
derivative of T in the first variable at the point (u0, t0) is an isomorphism.
It suffices to compute the Gateaux derivative DT : v 7→ DvT , where DvT is
the directional derivative in the direction v, so long as this is a continuous
linear operator (meaning that (u, t) 7→ DT |(u,t) is a continuous family of
continuous linear maps) in a neighbourhood of (u0, t0). So consider, for
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some (u, t) ∈ C2,α(Ω)× [0, 1] and v ∈ C2,α(Ω), the directional derivative

DvT |(u,t) +
d

ds

∣∣∣∣
s=0

T (u+ sv, t)

=
d

ds

∣∣∣∣
s=0

(
−Hgraph(u+sv) − tψ(·, u+ sv,D(u+ sv)),

(u+ sv)|∂Ω − tφ
)

=
(
− L(u,t)v, v|∂Ω

)
, (7.25)

where the linear map L(u,t) + a
ijDiDj + biDi + c is defined by

aij +
1√

1 + |Du|2

(
δij − DiuDju

1 + |Du|2

)
,

bi +
n∑
j=1

[
1√

1 + |Du|2

(
δij − DiuDju

1 + |Du|2

)]
j

+ tψpi(·, u,Du) ,

and

c + tψz(·, u,Du) .

The required continuity properties of L follow readily, so the map v 7→
(−L(u0,t0)v, v|∂Ω) coincides with the Fréchet derivative. By Theorem 4.1,
L(u0,t0) is an isomorphism, so the implicit function theorem provides some

δ > 0 and a function h : (t0−δ, t0+δ)→ C2,α(Ω) such that T (h(t), t) = (0, 0)
for all t ∈ (t0−δ, t0+δ). That is, (t0−δ, t0+δ) ⊂ S. So S is indeed open. �

Observe that the conclusion of Theorem 12.5 still holds if the condition
(7.19) is replaced by the existence of upper and lower barriers for each of the
Dirichlet problems (7.22) and/or condition (7.20) is replaced by the existence
of upper and lower barriers for the problems (7.22) in a neighbourhood of
any point x ∈ ∂Ω which take the boundary values at x.

In particular, we have proved that it is possible to solve the minimal
surface equation and the translator equation (see Exercise 7.4) over any
strictly mean convex domain of class C2,α. To solve the constant mean
curvature or capillary surface problems, we must impose stronger convexity
conditions on the boundary (see Exercise 7.3).

Assuming higher (interior or global) regularity of the data, we may ob-
tain correspondingly higher (interior or global, respectively) regularity of
the solution by appealing to Schauder’s estimates.

7.7. Epilogue. In order to apply the method of continuity to solve the
Dirichlet problem for mean curvature type equations (Theorem 12.5), we
needed two main ingredients. These were the solubility in Ck,α of the Dirich-
let problem for the linearized operator (12.14) (Theorem 4.1) and an a priori
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estimate in C1,α. This followed from the de Giorgi–Nash theory (Theorems
6.5 and 6.8), so long as we are able to obtain an a priori estimate in C1. The
key tools for proving the latter were the maximum principle, Stampacchia
iteration, and the construction of suitable barriers.

7.8. Exercises.

Exercise 7.1. Let M be the graph of a smooth function equipped with its
induced metric g and measure µ. Define the divergence of a vector field
V on M by

div V + tr(∇V ) = ∂iV
i + V kΓik

i .

Prove that the divergence theorem holds for µ. That is,ˆ
M

div V = 0

for every compactly supported V .

Exercise 7.2. Suppose that u : I → R satisfies the one dimensional trans-
lator equation. Show that u is of the form

u(x) = y0 − log cos(x− x0)

for some (x0, y0) ∈ R2. That is, u is part of a Grim Reaper.

Exercise 7.3. Given h ∈ R, show that the Dirichlet problem{
Hgraphu = h in BR

u = 0 on ∂BR

for the constant mean curvature equation admits no solution if |h| > n
R .

Exercise 7.4. Suppose that n ≥ 2. Show that, for a sufficiently large, the
paraboloid u(x) + u0 + a

2

(
|x− x0|2 −R2

)
is a subsolution to the translator

equation, where (x0, u0) ∈ Rn+1 and R ≥ 0 are arbitrary.

Exercise 7.5. Show that the constraint (7.6) holds for the prescribed mean
curvature equation

−H|graphu = ψ(·, u) in Ω

if ψz ≤ 0 and supx∈Ω |ψ(x, 0)| ≤ 1
C for some constant C = C(n,Ω, ε).

Exercise 7.6. Justify (7.10). Hint: You will need the Codazzi identity,
which implies that the tensor ∇A given by

∇kAij = ∂kAij − Γki
`A`j − Γkj

`Ai`

is totally symmetric.

Exercise 7.7. Verify (7.11) for the translator equation.
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Exercise 7.8. Let {Mn
ε }ε∈(−ε0,ε0) be a smooth one-parameter family of

minimal hypersurfaces Mn
ε ⊂ Rn+1, given as the image of the immersions

Xε : Mn → Rn+1. Show that the normal component

v + 〈V , ν〉
of the variation field V + d

dε

∣∣
ε=0

X satisfies the Jacobi equation

−(∆ + |A|2)v = 0

on Mn
0 . You may assume that Mε are graphs.

Exercise 7.9. Let (M, g) be a Riemannian manifold and let a ∈ Γ(TM ⊗
TM) be a non-negative definite symmetric tensor, b ∈ Γ(TM) be a smooth
vector field and c ∈ C∞(M) be a smooth function on M . Suppose that
(M, g) admits a strict subsolution φ ∈ C2(M) to the corresponding linear
equation. That is,

−(a · ∇2 + b · ∇+ c)φ < 0 ,

where ∇ is the Levi-Civita covariant differential and · denotes contraction.

(a) Suppose that v : M → R satisfies

−(a · ∇2 + b · ∇+ c)u ≤ 0 .

Assuming c ≤ 0, show that

max
M

u ≤ max
∂M

u+ .

(b) Suppose that v : M → R is positive and satisfies

−(a · ∇2 + b · ∇+ c)u ≥ 0 .

Assuming c ≥ 0, show that

min
M

u ≥ min
∂M

u .

Hint: If γ : (−s0, s0)→ M is the geodesic through x = γ(0) with γ′(0) = v,
and f ∈ C2(M), then

d

ds

∣∣∣∣
s=0

(f ◦ γ) = ∇f · v and
d2

ds2

∣∣∣∣
s=0

(f ◦ γ) = ∇2f(v, v) .

Exercise 7.10. Prove that every bounded open set of class C2 satisfies the
interior and exterior ball conditions.
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8. Fully nonlinear equations — an introduction

Consider now a completely general second order differential equation

F (x, u(x), Du(x), D2u(x)) = 0 (8.1)

for a function u : Ω → R. Here, Ω is some subset of Rn and F may be
any function at all which is defined on some subset Γ of Rn × R × Rn ×
Sn×n, where we recall that Sn×n denotes the space of symmetric n × n
matrices. Observe that, in case Γ ( Rn × R× Rn × Sn×n, the solutions we
seek are restricted to those functions which implicitly satisfy the condition
(x, u(x), Du(x), D2u(x)) ∈ Γ for all x ∈ Ω. Since no linearity properties for
F are supposed, such an equation is called fully nonlinear.

It will be convenient to introduce the k-jet of a function u ∈ Ck(Ω),
which is the map J ku : Ω→ Ω× R× Rn × Sn×n defined by

J ku(x) + (x, u(x), Du(x), . . . , Dku(x)) .

We will make use of the variables (x, z, p, r) to denote points of Ω × R ×
Rn × Sn×n.

An operator F : Γ ⊂ Rn × R × Rn × Sn×n → R is called elliptic (or
weakly elliptic) if

F (x, z, p, r +A) ≥ F (x, z, p, r)

for every (r, p, z, x) ∈ Γ and every positive definite A ∈ Sn×n such that
(x, p, z, r + A) ∈ Γ, strictly (or locally uniformly) elliptic if the
inequality is strict, and uniformly elliptic if there exists positive λ > 0
such that

F (x, z, p, r +A)− F (x, z, p, r) ≥ λ tr(A)

for every (r, p, z, x) ∈ Γ and every positive definite A ∈ Sn×n such that
(x, p, z, r + A) ∈ Γ. If F is continuously differentiable with respect to the r
variable, then ellipticity, strict ellipticity, and uniform ellipticity are equiv-
alent to
∂F

∂rij
ξiξj ≥ 0 ,

∂F

∂rij
ξiξj > 0 , and

∂F

∂rij
ξiξj ≥ λ|ξ|2 for all ξ ∈ Rn \ {0} ,

respectively, where the partial derivatives of F can be computed from the
formula

∂F

∂rij

∣∣∣∣
r

Aij =
d

ds

∣∣∣∣
s=0

F (r + sA) .

We will also say that F is (locally uniformly/uniformly) elliptic at
u for some u ∈ C2(Ω) if F is (locally uniformly/uniformly) elliptic on the
two-jet of u; that is, on the set J 2u(Ω).

As is generally the case when analyzing nonlinear objects, the lineariza-
tion is a useful tool (both conceptually and analytically). Suppose that u ∈

99



NONLINEAR ELLIPTIC PDE AND THEIR APPLICATIONS

C2(Ω) is a solution to (8.1) for some F ∈ C1(Γ), Γ ⊂
open

Rn×R×Rn×Sn×n.

If v ∈ C2(Ω), then

d

ds

∣∣∣∣
s=0

F (J 2(u+ sv)) = aijvij + bivi + cv ,

where

aij(x) +
∂F

∂rij

∣∣∣∣
J 2u(x)

, bi(x) +
∂F

∂pi

∣∣∣∣
J 2u(x)

, and c(x) +
∂F

∂z

∣∣∣∣
J 2u(x)

.

The operator

L + aijDiDj + biDi + c

is called the linearization of F at u and the corresponding linear equation
the linearization of (8.1). Note that (8.1) is (locally uniformly/uniformly)
elliptic at u if and only if its linearization at u is (locally uniformly/uniformly)
elliptic.

Clearly, the class of fully nonlinear elliptic equations includes all quasi-
linear elliptic equations, and all linear elliptic equations. Let us list a few
less trivial examples.

Examples 8.1.

(1) The Monge–Ampère equation:

det(D2u) = 1 .

The operator F (r) = det r is elliptic (but not uniformly) on the
positive cone

Sn×n+ + {A ∈ Sn×n : Aijv
ivj > 0∀ v ∈ Rn \ {0}} .

(2) Prescribing Gauss curvature:

K(x) = f(x, u(x)) ,

where

K =
det(D2u)

(1 + |Du|2)
n+2

2

is the Gauss curvature of the graph of u.

(3) (Powers of) Gauss curvature flow translators:

Kα =
1√

1 + |Du|2
.

(4) k-Hessian equations:

Sk(D
2u) = 0 ,
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where Sk : Sn×n → R denotes the elementary symmetric polyno-
mial of degree k:

Sk(r) +

(
n

k

)−1 ∑
1≤i1≤···≤ik≤n

ρi1 . . . ρik

with ρi denoting the eigenvalues of r. Sk is elliptic (but not uni-
formly) on the cone

Γk + {A ∈ Sn×n : Sl(A) > 0, 0 < l ≤ k} .

(5) Prescribing k-th mean curvature:

Hk(x) = f(x, u(x)) ,

where

Hk =
1

(1 + ‖Du‖2)
k
2

Sk

((
I − Du⊗Du

1 + ‖Du‖2

)
D2u

)
is the k-th mean curvature of the graph of u.

(6) (Powers of) k-th mean curvature flow translators:

Hα
k =

1√
1 + |Du|2

.

(7) The Bellman equation:

inf
α∈A
{Lαu} = f ,

where {Lα}α∈A is some family of linear operators

Lαu = aijαuij + bkαuk + cαu .

The Bellman equation is concave in (u,Du,D2u) (the infimum of a
family of linear maps is concave). Conversely, any equation of the
form

F (u,Du,D2u) = f

where F is concave in (u,Du,D2u) can be written as a Bellman
equation (this is a consequence of the Hahn–Banach theorem).

(8) The Isaacs equation:

sup
α∈A

inf
β∈B
{Lαβu} = f ,

where {Lαβ}(α,β)∈A×B is some family of linear operators

Lαβu = aijαβuij + bkαβuk + cαβu .
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In general, the Isaacs equation is neither concave nor convex in any
of its arguments. Any fully nonlinear equation of the form

F (u,Du,D2u) = f

for which F is Lipschitz in all arguments can be written in the form
of the Isaacs equation, since
(1) If F (r) is Lipschitz with constant Λ, then it is the infimum

over r0 of all cones C(r) = F (r0) + Λ‖r − r0‖.
(2) For fixed r0, each cone C(r) is the supremum of all linear

functions of the form L(r) = F (r0)+tr(A·(r−r0)) for ‖A‖ ≤ Λ.

Suppose that u satisfies (8.1) for some elliptic operator F . If F is of class
C1, then any derivative v + Dlu of u satisfies the linear elliptic equation

−Lv = f , (8.2)

where L is the linearization of F at u and

f(x) +
∂F

∂xl

∣∣∣∣
J 2u(x)

.

If L is uniformly elliptic and f and the coefficients of L are bounded, then
a priori estimates for the Hölder continuity of solutions to general linear
elliptic equations with bounded coefficients (analogous to the de Giorgi–
Nash–Moser estimates) would yield Hölder continuity for Du. This is the
content of the celebrated Krylov–Safonov theory, which we will see in
§10. However, note that the coefficients depend also on the second deriva-
tives of u. Therefore, to apply such a theorem, we would need to bound the
coefficients without a bound for the norm of D2u. This is possible in some
cases.

Recall that a cone Γ in a real linear space V is a subset with the property

x ∈ Γ =⇒ λx ∈ Γ for all λ > 0 .

A function F : Γ→ R is k-homogeneous, k ∈ R, if Γ is a cone and

F (λx) = λkF (x) for all x ∈ Γ and λ > 0 .

Example 8.2. Consider the Hessian equation

−F (D2u) = ψ(·, u,Du) (8.3)

for some F ∈ C1(Γ). If F is 1-homogeneous, then its derivative ∂F
∂rij

is

0-homogeneous. So in order to obtain uniform estimates for ∂F
∂rij

it suffices

to obtain estimates on the unit sphere {r ∈ Γ : ‖r‖ = 1}, since

∂F

∂rij
(r) =

∂F

∂rij

(
‖r‖ r

‖r‖

)
=

∂F

∂rij

(
r

‖r‖

)
.
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8. FULLY NONLINEAR EQUATIONS — AN INTRODUCTION

The above example provides a large class of equations which admit C1,α

estimates. However, even if the C1,α estimate does apply, this is still not
enough to apply the Schauder theory to obtain higher regularity: since the
coefficients in (8.2) also depend on second derivatives of u, we also need to
estimate the Hölder continuity of D2u to obtain a Hölder estimate for the
coefficients. This is a more difficult problem than the C1,α theory.

Example 8.3. Suppose that u ∈ C4(Ω) satisfies the Hessian equation

−F (D2u) = ψ , (8.4)

where ψ ∈ C2(Ω) depends only on x ∈ Ω. After differentiating (8.4) twice,
we find that any pure second derivative v + uee of u satisfies

− ∂F
∂rij

vij −
∂2F

∂rpq∂rrs
uepquers = ψee . (8.5)

The second term on the left is problematic: it involves third derivatives of
u which cannot be related to first derivatives of v; however, if we assume
that F is concave, then v is a subsolution to a linear elliptic equation. It
turns out that the Krylov–Safonov theory can then be used to obtain the
desired Hölder continuity for D2u. This is the content of the Evans–Krylov
Theorem, which we will see in §11. Note that these considerations also apply
to convex operators by considering the dual operator F∗(r) + −F (−r).

Other situations where a C2,α estimate may be obtained are:

(i) (Morrey, Nirenberg) when n = 2,

(ii) (Cordes–Nirenberg) for solutions to F (·, D2u) = 0 such that∥∥∥∥ ∂F∂rij (·, D2u)− δij
∥∥∥∥ ≤ ε0 .

(ii) for solutions to inverse concave Hessian equations, for which the
dual operator F∗ defined by

F∗(r
−1) + F (r)−1

is assumed to be concave.

An estimate for the Hölder continuity of second derivatives will be suffi-
cient to apply the Schauder estimate and the method of continuity to obtain
existence of smooth (Ck+2 if F is Ck) solutions to (8.1).

In summary, the existence of classical solutions will follow if we can
obtain a priori estimates in C2,α. We have described some situations in
which this can be achieved, which raises the question: can it be achieved in
general? The following theorem gives a negative answer to this question!
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Theorem 8.1 (Nadirashvili et al23 (2007–2012)). In every dimension n ≥ 5,
there is a C1,α function, α ∈ (0, 1), which solves a smooth Hessian equation
(in the “viscosity sense”) but is not even C1,1.

The reader may have noticed that this theorem still leaves open the pos-
sibility that classical solutions always exist in low dimensions. This problem
remains open.

Open Problem 1. Are all solutions of (8.1) for ‘nice’ F (smooth and
Hessian, say) in dimensions 3 and 4 necessarily smooth (Ck+2 if F is Ck)?

The construction of the counterexample of Theorem 8.1 is algebraic, and,
for algebraic reasons, does not work in dimensions 4 and less. According to
Nadirashvili and Vlǎduţ, this “suggests strongly that in 4 (and fewer) di-
mensions there is no homogenous non-classical solutions to uniformly elliptic
equations”.

8.1. Exercises.

Exercise 8.1. Consider the function F : Sn×n+ → R defined on the positive

definite symmetric matrices Sn×n+ by

F (r) + log det r .

Show that
DF |r = r−1 .

Exercise 8.2. Let F ∈ C1(Γ) be a k-homogeneous function. Prove that

Df |z · z = kf(z) .

This is known as Euler’s theorem (for homogeneous functions).

If f ∈ C2(Γ), deduce that

D2f |z(z, z) = k(k − 1)f(z) .

Exercise 8.3. Show that the symmetric function N : Sn×n → R which
gives the norm of a nonzero symmetric matrix,

N2(r) + tr(r2)

is strictly convex in nonradial directions; that is,

D2N |r(v, v) > 0

for all r ∈ Sn×n and all v ∈ Sn×n \ Rr. (Note that D2N |r(r, r) = 0 due to
Euler’s theorem.)

23See Nadirashvili and Vlǎduţ, Singular Solutions of Hessian Elliptic Equations in Five
Dimensions.
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9. The generalized maximum principle of Alexandrov

The key tool in the Krylov–Safanov theory is the generalized maximum
principle of Alexandrov. To state Alexandrov’s observation, we first need to
introduce some natural geometric objects.

First, recall that each non-vertical hyperplane Π in Rn+1 is the graph of
a linear function π : Rn → R given by

π(x) = π0 + p · (x− x0)

for some vector p ∈ Rn (the “gradient” of Π) and some point (x0, π0) ∈ Rn+1.

Definition 9.1. Let u : Ω → R be a continuous function. The upper
contact set Π+

u of u is the set

Π+
u + {y ∈ Ω : u(x) ≤ u(y) + p · (x− y) for all x ∈ Ω for some p ∈ Rn}

and the normal mapping χu : Ω→ P(Rn) is the mapping defined by

χu(y) + {p ∈ Rn : u(x) ≤ u(y) + p · (x− y) for all x ∈ Ω} .

So Π+
u is the set of points x ∈ Ω at which (x, u(x)) ∈ graphu is a point

of “first contact” with hyperplanes which are translated downwards from
infinity, and χu(x) is the set of gradients of planes which make first contact
at (x, u(x)). (Note that the vector p− en+1 is normal to Π.)

Recall that a supporting half-space for a set C ⊂ Rn+1 at a point
Y ∈ ∂C is any closed half-space H containing C such that ∂H contains Y .
The upper contact set Π+

u of u is then the set of points y ∈ Ω such that the
hypograph {(x, h) : x ∈ Ω, h < u(x)} of u admits at least one supporting
half-space at (y, u(y)), and (en+1 − p)/|en+1 − p| is the outward pointing
unit normal vector to such a half-space.

Clearly,

– χu(x) is non-empty if and only if x ∈ Π+
u .

– u is locally concave on the set Π+
u .

– u is concave if and only if Π+
u = Ω if and only if the hypograph of

u is a convex set.

– If u ∈ C1(Ω), then χu(x) = {Du(x)} for all x ∈ Π+
u and Π+

u is
the set of points x ∈ Ω for which the tangent plane to graphu at
(x, u(x)) lies above graphu.

Example 9.1. Consider the function ca,z,R : BR(z)→ R, defined by

ca,z,R(x) + a

(
1− |x− z|

R

)
,
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whose graph is the cone of radius R with base BR(z) and vertex (z, a).
Observe that

Π+
ca,z,R

= BR(z)

and

χca,z,R(y) =

−
a(y − z)
R|y − z|

if y 6= z

Ba/R(z) if y = z .

(9.1)

We can now state the generalized maximum principle of Alexandrov.

Theorem 9.2. Given a bounded open subset Ω ⊂ Rn and any a : Ω →
Sn×n ∩GL(n), every u ∈ C0(Ω) ∩W 2,n

loc (Ω) satisfies

sup
Ω
u ≤ max

∂Ω
u+

d

nω
1
n
n

∥∥∥∥∥ aijuij

(det a)
1
n

∥∥∥∥∥
Ln(Π+

u )

,

where d + diam(Ω) and ωn is the area of ∂Bn
1 .

By the Sobolev embedding theorem, functions u ∈ W 2,n(Ω) are contin-
uous in the interior of Ω. Thus, the condition u ∈ C0(Ω) is no restriction if
we simply replace max∂Ω u by lim supy→∂Ω u(y).

Note also that we have made no restrictions to the coefficients a other
than non-degeneracy. However, if the term aijuij/(det a)

1
n is not in Ln(Π+

u ),
then the right hand side is taken to be infinite.

Theorem 9.2 is a consequence of the following beautiful observation.

Lemma 9.3. If u ∈ C2(Ω) ∩ C0(Ω), then

sup
Ω
u ≤ max

∂Ω
u+ d

(
1

ωn

ˆ
Π+
u

|detD2u|
) 1
n

,

where d + diam(Ω) and ωn is the area of ∂Bn
1 .

Proof. Replacing u by u − max∂Ω u, we can assume that u ≤ 0 on ∂Ω.
Observe that D2u ≤ 0 in Π+

u . Thus, the Jacobian J(Du) = det(D2u) is
non-positive in Π+

u . If it were strictly negative, then the classical change of
variables formula would allow us rewrite the n-dimensional Lebesgue mea-
sure of the normal image of Ω as

|χu(Ω)| = |χu(Π+
u )| = |Du(Π+

u )| =
ˆ

Π+
u

| detD2u| . (9.2)

If det(D2u) is not strictly negative, we may still obtain the estimate by
applying the above argument to uε(x) + u(x) − ε

2 |x|
2 and taking ε → 0

(note that χuε = χu − εI).
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It remains to estimate u by |χu(Ω)|. Suppose that u takes a positive
maximum at an interior point x0 ∈ Ω (otherwise the claim is already true)
and let c : Ω→ R be the function whose graph is the cone over Ω with vertex
(x0, u(x0)). We claim that χc(Ω) ⊂ χu(Ω). Indeed, certainly Du(x0) ∈
χc(x0). On the other hand, each half-space other than Tx0 graphu which
is tangent to the cone graph c intersects graphu at more than one point
and, hence, must be parallel to a supporting half-space (simply translate it
upwards some finite distance until it detaches completely. The translate at
the last point(s) of contact must support graphu). This proves the claim.
Consider now the function C whose graph is the cone with vertex (x0, u(x0))
but base Bd(x0). Then χC(Ω) ⊂ χc(Ω), since each supporting half-space for
graphC lies above graph c but intersects it at the vertex. Consequently,

|χC(Ω)| ≤ |χu(Ω)| .
On the other hand, by (9.1), we can compute |χC(Ω)| explicitly. Indeed,

|χC(Ω)| = |Bu(x0)/d(x0)| = ωn

(
u(x0)

d

)n
.

Recalling (9.2), this completes the proof. �

If we set A + a and B + −D2u, then, provided u ∈ C2(Ω), Theorem 9.2
is an immediate consequence of the arithmetic-geometric mean inequality,

det(AB) ≤
(

tr(AB)

n

)n
.

The general case then follows by approximating u ∈ W 2,n(Ω) ∩ C0(Ω) by a
sequence of smooth functions uj ∈ C2(Ω) ∩ C0(Ω).
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10. The Harnack inequality of Krylov and Safanov —
Hölder continuity of solutions to linear elliptic equations
of non-divergence form

Consider the general non-divergence form linear elliptic equation

−Lu + −
(
aijuij + biui + cu

)
= f in Ω , (10.1)

where (a, b, c) : Ω→ Sn×n×Rn×R. Our ultimate goal is the Krylov–Safonov
Harnack inequality and Hölder estimate, which provides an analogue of the
de Giorgi–Nash–Moser theory for linear elliptic equations of divergence form.

Other than uniform ellipticity, we will require only very weak conditions
of the coefficients. This is, of course, crucial when we want to apply the
theory to the derivatives of solutions to fully nonlinear equations.

In the case of divergence form equations, we were able to consider
weak solutions which admit a weak first derivative. For equations of non-
divergence form, we need two weak derivatives. We say that a function u is
a (strong) solution to (10.1) if it has two weak derivatives and satisfies
(10.1) pointwise almost everywhere. Strong sub- and super-solutions are
defined analogously.

Just as in the de Giorgi–Nash–Moser theory, the Krylov–Safonov theory
is based on a Harnack inequality derived from two complimentary estimates:
a mean value inequality for subsolutions and a weak Harnack inequality for
positive supersolutions.

10.1. The mean value inequality. We begin with the mean value in-
equality.

Theorem 10.1. There exists C = C(n, γ, ν) < ∞ with the following prop-
erty. Suppose that (a, b, c) : B2R(y) → Sn×n × Rn × R satisfy, for some
λ > 0,

λδij ≤ aij ≤ γλδij and

(
|b|
λ

)2

+
|c|
λ
≤ ν

R2
. (10.2)

Given f ∈ Ln(B2R(y)) and p ≤ n, any subsolution u ∈ W 2,n(B2R(y)) ∩
C0(B2R(y)) to

−
(
aijuij + biui + cu

)
= f in B2R(y) (10.3)

satisfies

sup
BR(y)

u ≤ C

( 
B2R(y)

up+

) 1
p

+
R

λ
‖f‖Ln(B2R(y))

 .
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Proof. We will prove the theorem for the case B2R(y) = B1(0) and u ∈
C2(B1) ∩ C0(B1). The general case then follows by approximating u ∈
W 2,n(B1) ∩ C0(B1) by a sequence of functions uk ∈ C2(B1) ∩ C0(B1) and
considering the rescaled function uR(x) + 1

Ru
(x−y
R

)
.

For β ≥ 1 to be chosen momentarily, consider the smooth cut-off function
η : B1 → R+ given by

η(x) + (1− |x|2)β .

The function v + ηu is in C2(B1) ∩ C0(B1) and satisfies v ≡ 0 on ∂B1.

Note that

ηi = − 2βη
1− 1

β xi

and ηij = − 2βη
1− 1

β δij +

(
1− 1

β

)
ηiηj
η

= − 2β(1− |x|2)β−2
[
(1− |x|2)δij − 2(β − 1)xixj

]
.

By the the maximum principle of Alexandrov (Theorem 9.2), we can
estimate v by estimating −aijvij on the upper contact set Π+

v of v. So
consider

−aijvij = − ηaijuij − 2aijηiuj − aijηiju

≤ − ηaijuij + 4βη
1− 1

β aijxiuj + 2βuη
1− 1

β aijδij

≤ η(f + biui + cu) + 4βη
1− 1

β aijxiuj + 2βu η
1− 1

β aijδij

≤ η(f + |b||Du|+ cu) + 4βγλη
1− 1

β |x||Du|+ 2βnγλu η
1− 1

β . (10.4)

Since v is of class C1, we can estimate

v(y) ≤ v(x) +Dv|x · (y − x)

for any x ∈ Π+
v and any y ∈ B1. If Dv|x 6= 0, we can choose y ∈ ∂B1 so

that

y − x = −|y − x| Dv(x)

|Dv(x)|
.

Since |y − x| ≥ d(x, ∂B1) = 1− |x|, this yields

|Dv(x)| ≤ v(x)

1− |x|
.

Note also that v > 0, and hence u > 0, on Π+
v (this is because v ≡ 0 on

∂B1 and Π+
v is the set of points y for which the hypograph of v admits a
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supporting hyperplane at (y, u(y))). We can now estimate

η|Du| = |Dv − uDη|
≤ |Dv|+ u|Dη|

≤ v

1− |x|
+ u|Dη|

≤ 2(1 + β)η
1− 1

β u . (10.5)

Putting (10.4) and (10.5) together yields

−aijvij ≤ ηf +

(
η

2
β
|c|
λ

+ 2(1 + β)η
1
β
|b|
λ

+ 8β(1 + β)γ + 2βnγη
1
β

)
η
− 2
β λv

≤ f + Cη
− 2
β λv on Π+

v ,

where C = C(n, β, γ, ν). Applying the Alexandrov maximum principle
(Theorem 9.2), we obtain

sup
B1

v ≤ C
(∥∥∥η− 2

β v
∥∥∥
Ln(B1)

+
1

λ
‖f‖Ln(B1)

)
≤ C

(
(sup
B1

v)
1− 2

β ‖u
2
β ‖Ln(B1) +

1

λ
‖f‖Ln(B1)

)
,

where C = C(n, β, γ, ν). If β ≥ 2, writing p = 2n
β and applying Young’s

inequality yields

sup
B1

v ≤ C
(
‖u‖pLp(B1) +

1

λ
‖f‖Ln(B1)

)
.

The claim now follows by estimating η from below on B1/2. �

10.2. The weak Harnack inequality. We next prove a weak Harnack
inequality.

Theorem 10.2. There are constants σ = σ(n, γ, ν) ∈ (0, n] and C =
C(n, γ, ν) <∞ with the following property. Suppose that (a, b, c) : B2R(y)→
Sn×n × Rn × R satisfy (10.2) for some λ > 0. Given f ∈ Ln(B2R(y)), any
non-negative supersolution u ∈W 2,n(B2R(y)) ∩ C0(B2R(y)) to (10.3) satis-
fies ( 

BR(y)
uσ

) 1
σ

≤ C
(

inf
BR(y)

u+
R

λ
‖f‖Ln(B2R(y))

)
.

Proof. We may assume that B2R(y) = B1 + B1(0) and u ∈ C2(B1) ∩
C0(B1). Replacing L and f by λ−1L and λ−1f , we may also assume that
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λ = 1. Set, for any ε > 0,

u + u+ ε+ ‖f‖Ln(B1) , w + − log u , v + ηw and g + −f
u
,

where, as in the proof of the mean value inequality, η + (1−|x|2)β for β ≥ 1
to be chosen momentarily. We wish to apply the Alexandrov maximum
principle to v. Noting that

wi = −ui
u

and wij = −uij
u

+ wiwj ,

we find that

−aijvij = η
(
biwi − c

u

u
+ g − aijwiwj

)
− 2aijηiwj − waijηij .

Estimating, via Young’s inequality,

−2aijηiwj ≤
2

η
aijηiηj +

η

2
aijwiwj

and

biwi ≤ |b|2 +
1

4
|Dw|2 ,

and using the assumption aij ≥ δij yields

−aijvij ≤ η
(
|b|2 + |c|+ g

)
+

2

η
aijηiηj − waijηij .

Note that

−aijηij = 2β(1− |x|2)β−2
[
(1− |x|2)aijδij − 2(β − 1)aijxixj

]
.

If we fix α ∈ (0, 1) and choose β so that

β ≥ nγ

2α2
,

then, whenever |x| ≥ α, we obtain

aijδij ≤ nγ ≤ 2α2β ≤ |x|2aijδij + 2(β − 1)aijxixj

and we conclude

−aijηij ≤ 0 in B1 \Bα .

On the other hand, we can crudely estimate

−aijηij
η

≤ 2nβγ

1− α2
in Bα .
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Thus, on the set B+
1 + {x ∈ B1 : v > 0}, we obtain

−aijvij ≤ η
(
|b|2 + |c|+ g

)
+ v χBα sup

Bα

(
−aijηij
η

)
+ 4β2(1− |x|2)β−2aijxixj

≤ |b|2 + |c|+ g + 4β2γ +
2nβγ

1− α2
v χBα ,

where χBα is the indicator function of the ball Bα. Alexandrov’s maximum
principle (Theorem 9.2) now yields

sup
B1

v ≤ C(1 + ‖v+‖Ln(Bα)) , (10.6)

where C = C(n, α, γ, ν).

This implies a bound for v+ on Bα so long as α is small enough. In order
to exploit a Calderon–Zygmund type cube decomposition, we will need to
phrase this as an estimate on cubes. Given z ∈ Rn and R > 0, denote by

KR(z) + {x ∈ Rn : xi ∈ (zi −R, zi +R)}

the open cube parallel to the coordinate axes with centre z and side length
2R. Observe that, if α ≤ 1√

n
, then Bα ⊂ Kα + Kα(0) ⊂ B1. Thus, (10.6)

yields

sup
B1

v ≤ C(1 + ‖v+‖Ln(Kα))

≤ C
(

1 + |K+
α |

1
n sup
B1

v+

)
,

where K+
α + {x ∈ Kα : v(x) > 0}. Thus, if (note that |Kα| = (2α)n)

|K+
α |

|Kα|
≤ ϑ + 1

(2C)n(2α)n
,

then we obtain

sup
B1

v ≤ 2C

with the same constant C = C(n, α, γ, ν) from (10.6).

If we now fix α + 1
3n (and ϑ accordingly), then K3α b B1. So η is

bounded from below on K3α and we obtain

sup
K3α

w ≤ C(n, γ, ν) .

In fact, by an appropriate change of variables (namely, x 7→ α(x− z)/r), we
obtain

sup
K3r(z)

w ≤ C(n, γ, ν) (10.7)
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for any z ∈ B1 and r > 0 such that

B3r(z) ⊂ B1 and |K+
r (z)| ≤ ϑ|Kr(z)| .

Moreover, by replacing w by w − k in the arguments leading to (10.7),
we obtain

sup
K3r(z)

(w − k) ≤ C(n, γ, ν)

for any z ∈ B1 and r > 0 such that

B3r(z) ⊂ B1 and |K+
r (z)| ≤ ϑ|Kr(z)| ,

where now K+
R (z) + {x ∈ K(z) : w − k > 0}.

Consider the set

Uk + {x ∈ K0 : w(x) ≤ k} .

If we set δ + 1− ϑ and K0 + Kα(0) (where α = 1
3n), then

|K+
r | ≤ ϑ|Kr| =⇒ δ|Kr| ≤ |Kr| − |K+

r | = |Kr ∩ Uk| .

Lemma 10.3. Given a cube K0 ⊂ Rn, any w ∈ Ln(K0), and any k ∈ R,
set

Uk + {x ∈ K0 : w(x) ≤ k} .

Suppose there exist positive constants δ < 1 and C < ∞ such that, for any
Kr(z) ⊂ K0,

|Kr(z) ∩ Uk| ≥ δ|Kr(z)| =⇒ sup
K0∩K3r(z)

(w − k) ≤ C . (10.8)

If |Uk| > 0, then

sup
K0

(w − k) ≤ C
(

1 +
log(|Uk|/|K0|)

log δ

)
.

Proof of Lemma 10.3. It will suffice to show that

|Uk| ≥ δm|K0| =⇒ sup
K0

(w − k) ≤ mC (10.9)

for any m ∈ N. Indeed, if |Uk| > 0, then we can always choose m large
enough that |Uk| ≥ δm|K0|.

Certainly (10.9) holds when m = 1. So suppose that (10.9) holds for
some m ∈ N and that |Uk| ≥ δm+1|K0|. Set

Ũk +
⋃
{K3r(z) ∩K0 : |Kr(z) ∩ Uk| ≥ δKr(z)} .

By (10.8), w − k ≤ C on Ũk and hence Ũk ⊂ Uk+C . We claim that

|Ũk| ≥ δm|K0| . (10.10)
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It will then follow from the induction hypothesis that

sup
K0

(w − k) ≤ (m+ 1)C ,

which proves (10.9) (and hence the Lemma).

To prove (10.10), we perform a cube decomposition. First, bisect the
edges of K0 to obtain a family of 2n congruent subcubes; denote this family
of cubes by K1. Set uk + χUk and let K+

1 be the subset of these cubes K
satisfying ˆ

K
uk = |Uk ∩K| > δ|K| . (10.11)

Denote by K−1 = K1 \ K+
1 the collection of remaining cubes; that is, those

cubes K satisfying ˆ
K
uk = |Uk ∩K| ≤ δ|K| . (10.12)

Next, bisect the edges of K−1 to obtain a second generation of cubes, K2,
which are separated into the subset K+

2 satisfying (10.11) and the set K−2
satisfying (10.12). Continuing in this way, we obtain a countable family
K+ + ∪∞i=0K

+
i of subcubes satisfying (10.11). Each K+ ∈ K+ lies in some

K+
i and hence (unless i = 1) has some ‘parent’ cube K ∈ K−i−1. We denote

the set of all parent cubes of cubes in K+ by K−. Since each point of K0\K+

lies in a nested sequence of cubes satisfying (10.12) with diameters tending
to zero, Lebesgue’s differentiation theorem implies that

uk ≤ δ a.e. in K0 \ K+ .

Since δ < 1 and uk is an indicator function, this implies that

uk = 0 a.e. in K0 \ K+ ;

that is, up to a set of measure zero, Uk ⊂ K+. It follows that, up to a set
of measure zero, we can cover Uk by a family {K−i }i∈I of disjoint cubes in

K−i ∈ K−, and hence obtain

|Uk| =
∣∣∣∣Uk ∩ (∪i∈IK−i

)∣∣∣∣ ≤ δ ∣∣∣∣∪i∈IK−i
∣∣∣∣ .

Since each parent K of a cube Kr(z) lies inside the larger cube K3r(z), we

see that ∪i∈I K−i ⊂ Ũk. We thereby conclude that

|Uk| ≤ δ|Ũk| .

This proves (10.10), and, by choosing m appropriately, completes the proof
of Lemma 10.3. �
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Denote by

µt + |{x ∈ K0 : u(x) > t}|

the distribution function of u in K0. This is related to |Uk| via the change
of variables

µt = |Uk| , t = e−k .

Applying Lemma 10.3 yields

− log inf
K0

(
u

e−k

)
= sup

K0

(
− log

(
u

e−k

))
= sup

K0

(w − k)

≤ C
(

1 +
log(µe−k/|K0|)

log δ

)
.

Exponentiating both sides and replacing e−k = t, we obtain

inf
K0

(
u

t

)
≥ e−C

[
exp

(
log

(
µt
|K0|

))]− C
log δ

= e−C
(
µt
|K0|

) C
− log δ

.

We conclude that there are positive constants

C ′ + δ|K0| = C ′(n, γ, ν) and κ +
− log δ

C
= κ(n, γ, ν)

such that

µt ≤ C ′
(

inf
K0

u

t

)κ
. (10.13)

Note that this holds for all t > 0.

On the other hand, Fubini’s theorem yields
ˆ
K
|u|σ =

ˆ
K0

ˆ |u(x)|σ

0
dt dx

= σ

ˆ
K0

ˆ |u(x)|

0
tσ−1dt dx

= σ

ˆ
K0

ˆ ∞
0

tσ−1χ(0,|u(x)|)dt dx

= σ

ˆ ∞
0

tσ−1

ˆ
K0

χ(0,|u(x)|)dx dt

= σ

ˆ ∞
0

tσ−1µt dt (10.14)
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for any σ > 0, where χ(0,|u(x)|) is the characteristic function of the interval
(0, |u(x)|). Combining (10.13) and (10.14), we obtain, for any 0 < σ < κ,

ˆ
K0

uσ ≤ σ
ˆ infK0

u

0
tσ−1µt dt+ σC ′

(
inf
K0

u
)κ ˆ ∞

infK0
u
tσ−κ−1dt

≤ |K0|
(

inf
K0

u
)σ

+
σC ′

κ− σ
(

inf
K0

u
)σ
.

Since Bα ⊂ K0, fixing σ = κ/2, say, and taking ε→ 0, we conclude that(ˆ
Bα

uσ
) 1
σ

≤ C
(

inf
Bα

u+ ‖f‖Ln(B1)

)
,

where C = C(n, γ, ν). The estimate can now be obtained with Bα replaced
by B1/2 via a scaling and covering argument. �

10.3. The Harnack inequality. Combining Theorems 10.1 and 10.2 yields
a Harnack inequality for non-negative solutions to −Lu = f .

Corollary 10.4. There is a constant C = C(n, γ, ν) <∞ with the following
property. Suppose that (a, b, c) : BR0(y) → Sn×n × Rn × R satisfy (10.2)
for some λ > 0. Given f ∈ Ln(B2R(y)), any non-negative solution u ∈
W 2,n(B2R(y)) to (10.3) satisfies

sup
BR(y)

u ≤ C
(

inf
BR(y)

u+
R

λ
‖f‖Ln(B2R(y))

)
.

10.4. The Hölder estimate. Just as in the case of divergence form equa-
tions, the Harnack inequality yields an interior Hölder estimate.

Theorem 10.5. There exist α = α(n, γ, ν) ∈ (0, 1) and C = C(n, γ, ν) <∞
with the following property. Suppose that (a, b, c) : BR(y)→ Sn×n ×Rn ×R
satisfy (10.2) for some λ > 0. Given f ∈ Ln(BR(y)), any solution u ∈
W 2,n(BR(y)) to (10.3) in BR(y) satisfies

[u]Cα(BR/2(y)) ≤ C
(
|u|C0(BR(y)) +R ‖f − cu‖Ln(BR(y))

)
.

10.5. Estimates up to the boundary. We will also need suitable esti-
mates up to the boundary.

The boundary version of the mean value inequality is almost identical
to the interior case.

Theorem 10.6. There exists C = C(n, γ, ν) < ∞ with the following prop-
erty. Given an open set Ω ⊂ Rn, suppose that (a, b, c) : Ω→ Sn×n×Rn×R
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satisfy (10.2) for some λ > 0. Given f ∈ Ln(Ω) and p ≤ n, any subsolution
u ∈W 2,n(Ω) ∩ C0(Ω) to (10.3) with u ≤ 0 on ∂Ω ∩B2R(y) satisfies

sup
Ω∩BR(y)

u ≤ C

( 1

Rn

ˆ
Ω∩B2R(y)

up+

) 1
p

+
R

λ
‖f‖Ln(Ω∩B2R(y))

 .
Proof. Assuming (without loss of generality) that R = 1/2, y = 1/2 and
u ∈ C2(Ω), the theorem may be obtained by applying the argument of
Theorem 10.1 to the extension

v(x) +

{
u(x) if x ∈ Ω

0 if x /∈ Ω

of u to B1. (Indeed, despite the fact that v may not be of class C2 in B1,
its upper contact set lies in B1 ∩ Ω.) �

The boundary version of the weak Harnack inequality is as follows.

Theorem 10.7. There are constants σ = σ(n, γ, ν) ∈ (0, n] and C =
C(n, γ, ν) < ∞ with the following property. Given an open set Ω ⊂ Rn,
suppose that (a, b, c) : Ω → Sn×n × Rn × R satisfy (10.2) for some λ > 0.
Given f ∈ Ln(Ω), any non-negative supersolution u ∈ W 2,n(Ω) ∩ C0(Ω) to
(10.3) with infBR(y)∩∂Ω u ≥ m satisfies(

1

Rn

ˆ
BR(y)

uσm

) 1
σ

≤ C
(

inf
Ω∩BR(y)

um +
R

λ
‖f‖Ln(Ω∩B2R(y))

)
.

where

um +

{
min{u(x),m} if x ∈ Ω

m if x /∈ Ω .

Proof. The claim is proved by proceeding more or less as in Theorem 10.2
with u replaced by um. �

As a consequence, we obtain the following global Hölder estimate.

Theorem 10.8. There exist constants α = α(n, γ, ν, α0,K, L, ϑ0) ∈ (0, 1)
and C = C(n, γ, ν, α0,K, L, ϑ0, R) < ∞ with the following property. Let
Ω ⊂ Rn be a connected open set with diam(Ω) ≤ R satisfying the uniform
exterior cone condition minx∈∂Ω ϑ(Cx) ≥ ϑ0 > 0 and let (a, b, c) : Ω →
Sn×n × Rn × R satisfy (10.2) for some λ > 0. Given f ∈ Ln(Ω) and
φ ∈ Cα0(Ω) with |φ|Cα0 (Ω) ≤ L, any solution u ∈W 2,n(Ω) to{

−
(
aijuij + biui + cu

)
= f in Ω

u = φ on ∂Ω
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with |u|C0(Ω) ≤ K satisfies

|u|Cα(Ω) ≤ C .

Proof. See [2, Corollary 9.29]. �
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11. Hölder continuity of second derivatives for concave
Hessian equations

We want to apply the Krylov–Safonov theory to obtain classical solutions of
fully nonlinear elliptic pde (via the method of continuity). By the Schauder
theory, it suffices to obtain an a priori estimate in C2,α. Recall, however,
that the counterexamples of Nadirashvilli et al ensure that such an estimate
cannot hold in general. Thus (at least in dimensions 5 and above) some
additional assumption is necessary. The first breakthrough, due to Evans
and Krylov (which appeared soon after the paper of Krylov and Safonov),
came for concave operators.

Our goal then is to establish a Hölder estimate for second derivatives of
solutions u to the equation

F (·, u,Du,D2u) = 0 in Ω ,

where F is defined on some open subset Γ of Rn×R×Rn×Sn×n containing
(·, u,Du,D2u) at each point of Ω. We begin by differentiating the pde.
Assuming that u ∈ C4(Ω), fix l ∈ {1, . . . , n} and set w + ull. Assuming
further that F ∈ C2(Γ), we find that

−(aijwij + biwi + cw) = d+ e ,

where

aij +
∂F

∂rij
, bi +

∂F

∂pi
, c +

∂F

∂z
,

d +
∂2F

∂pi∂pj
uilujl + 2

∂2F

∂pi∂z
uilul + 2

∂2F

∂pi∂xl
uil +

∂2F

∂z∂z
ulul + 2

∂2F

∂z∂xl
ul +

∂2F

∂xl∂xl

and

e +
∂2F

∂rpq∂rrs
ulpqulrs + 2

(
∂2F

∂rij∂xl
+

∂2F

∂rij∂z
ul +

∂2F

∂rij∂pk
ulk

)
ulij ,

and, of course, each of the derivatives of F are evaluated at (·, u,Du,D2u).
To make things more manageable, we will only consider concave Hessian
equations24,

−F (D2u) = ψ(·, u,Du) ,

with F a concave function of D2u. That is, abusing notation,

F (x, z, p, r) = F (r) + ψ(x, z, p) ,

24It is, however, possible to relax this assumption (see [2, §17.4]); that is, the linear term of
the component e involving the third derivatives of u can be controlled. All of the difficulties in

the theory seem to lie in controlling the quadratic term (which we discard by assuming concavity
of F ).
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where, writing Γ = Γxzp × Γr ⊂ (Rn × R × Rn) × Sn×n, F : Γr → R is
concave and ψ : Γxzp → R. This ensures that the mixed derivatives involving
one derivative with respect to r vanish, so that the term e involving third
derivatives of u reduces to the quadratic term, which is now under control
due to the concavity hypothesis. That is,

e =
∂2F

∂rpq∂rrs
ulpqulrs ≤ 0 .

Note also that the inhomogeneous terms, encompassed by d, are bounded by
a constant depending only on ‖u‖C2(Ω) and supJ 1u(Ω) |D2f | and c is bounded

by supJ 1u(Ω)

∣∣∣∂f∂z ∣∣∣.
We want to apply the weak Harnack inequality. So consider a family of

concentric balls Br = Br(x0) such that B2R ⊂ Ω. Setting Mr + supBr w, we
find that the function v +M2R −w is a positive supersolution to the linear
equation

−(aijvij + bivi + cv) = d in B2R ,

where

aij(x) +
∂F

∂rij

∣∣∣∣
D2u(x)

, bi(x) +
∂ψ

∂pi

∣∣∣∣
J 1u(x)

, c(x) +
∂ψ

∂z

∣∣∣∣
J 1u(x)

and

d(x) +

(
∂2ψ

∂pi∂pj
uilujl + 2

∂2ψ

∂pi∂z
uilul + 2

∂2ψ

∂pi∂xl
uil +

∂2ψ

∂z∂z
ulul

+2
∂2ψ

∂z∂xl
ul +

∂2ψ

∂xl∂xl

)∣∣∣∣
J 1u(x)

.

If we can find λ > 0 and γ < ∞ (depending only on DF |D2u(Ω)) such
that

λδij ≤ aij ≤ γλδij

and ν > 0 (depending only on diam(Ω), λ, ‖u‖C2(B2R), supJ 1u(Ω) |
∂ψ
∂z | and

supJ 1u(Ω) |D2ψ|) such that (
|b|
λ

)2

+
|c|
λ
≤ ν

R2
,

then the weak Harnack inequality (Theorem 10.2) yields(
R−n

ˆ
BR

(M2R − w)σ
) 1
σ

≤ C
(
M2R −MR +R2

)
, (11.1)

where C and σ depend only on n, γ and ν.
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To obtain a complementary inequality, we use the concavity of F to
obtain a functional relation between the second derivatives of u. Namely, if
we set

g(x) + −ψ(x, u(x), Du(x)) ,

then concavity of F implies that, for any x, y ∈ Ω,

DF |D2u(y) · (D2u(y)−D2u(x)) ≤ F (D2u(y))− F (D2u(x))

= g(y)− g(x) . (11.2)

We would like to “diagonalize” this inequality to obtain a relation be-
tween pure second derivatives. Unfortunately, it is not in general possible
to mutually diagonalize a family of symmetric matrices (although in this
case we can mutually diagonalize two of the three matrices involved in the
inequality; namely, DF |D2u(y) and D2u(y)). However, the following lemma
shows that we can indeed obtain a diagonal expression if we are willing to
pay the cost of adding a finite number of additional “diagonal components”.

Lemma 11.1. Given 0 < λ ≤ Λ < ∞, denote by Sn×nλ,Λ the space of sym-

metric matrices with eigenvalues all lying in the interval [λ,Λ]. There exist
N ∈ N and 0 < λ∗ ≤ Λ∗ < ∞ (depending only on n, λ and Λ) and unit
vectors {γi}Ni=1 such that any A ∈ Sn×nλ,Λ can be written in the form

N∑
i=1

βiγi ⊗ γi

such that βi ∈ [λ∗,Λ∗] for each i = 1, . . . , N . The set of directions {γi}Ni=1

can be arranged to include the basis directions {ei}ni=1 as well as the direc-

tions {(ei ± ej)/
√

2}ni<j=1.

Proof. See [2, Lemma 17.13]. �

Combining Lemma 11.1 with the inequality (11.2), we obtain constants
N ∈ N, λ∗ > 0 and γ∗ > 0 (depending only on n, λ and γ) and, for each
l = 1, . . . , N , vector fields γl : Ω → Sn and functions ϕl :∈ Ω → [λ∗, γ∗λ∗]
such that

N∑
l=1

ϕly(wl(y)− wl(x)) ≤ g(y)− g(x) , (11.3)

where wl + DγlDγlu.

Set, for each r < 2R and l = 1, . . . , N ,

Mr,l + sup
Br

wl and mr,l + inf
Br
wl .
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By (11.1),

(
R−n

ˆ
BR

[
N∑
l=1

(M2R,l − wl)

]σ) 1
σ

≤ N
1
σ

N∑
l=1

(
R−n

ˆ
BR

(M2R,l − wl)σ
) 1
σ

≤ C

(
N∑
l=1

(M2R,l −MR,l) +R2

)
≤ C

(
ω(2R)− ω(R) +R2

)
, (11.4)

where, for r ≤ 2R,

ω(r) +
N∑
l=1

oscBr wl =

N∑
l=1

(Mr,l −mr,l)

and C depends only on the data n, λ, γ, diam(Ω), ‖u‖C2(B2R), supJ 1u(Ω) |
∂ψ
∂z |

and supJ 1u(Ω) |D2ψ|.
On the other hand, by (11.3), for any x ∈ B2R and y ∈ BR, and any

fixed l ∈ {1, . . . , N},

ϕly(wl(y)− wl(x)) ≤ g(x)− g(y) +
∑
k 6=l

ϕky(wk(x)− wk(y))

so that

wl(y)−m2R,l ≤
1

λ∗

R ‖Dg‖C0(B2R) + γ∗λ∗
∑
k 6=l

(M2R,k − wk)

 .

Estimating ‖Dg‖C0(B2R) by a constant depending only on ‖u‖C2(B2R)

and supJ 1u(B2R) |Dψ|, and recalling (11.4), we now obtain

(
R−n

ˆ
BR

(wl −m2R,l)
σ

) 1
σ

≤ C
(
ω(2R)− ω(R)) +R+R2

)
, (11.5)

where C depends only on n, λ, γ, diam(Ω), ‖u‖C2(B2R), supJ 1u(Ω) |
∂ψ
∂z | and

supJ 1u(Ω) |D2ψ|.
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Finally, combining (11.5) with (11.1), we obtain

ω(2R) =

n∑
l=1

(M2R,l −m2R,l)

=

( [
n∑
l=1

(M2R,l − wl + wl −m2R,l)

]σ) 1
σ

≤
n∑
l=1

[( 
(M2R,l − wl)σ

) 1
σ

+

( 
(wl −m2R,l)

σ

) 1
σ

]
≤ C(ω(2R)− ω(R) +R+R2) .

Writing δ + 1− C−1, we conclude that

ω(R) ≤ δω(2R) +R+R2 .

Oscillation estimates for the functions wl now follow from Lemma 6.4.
By polarization, the final claim of Lemma 11.1 yields an oscillation estimate
for D2u; namely,

oscBR D
2u ≤ C

(
R

R0

)α (
oscBR0

D2u+R0 +R2
0

)
,

where C and α depend only on the data n, λ, γ, diam(Ω), ‖u‖C2(B2R),

supJ 1u(Ω) |
∂ψ
∂z | and supJ 1u(Ω) |D2ψ|. Dividing by Rα and taking the supre-

mum over R < R0 then yields the desired Hölder estimate.

Theorem 11.2. There are constants α = α(n, λ,Λ,K,M,D, d) ∈ (0, 1) and
C = C(n, λ,Λ,K,M,D, d) < ∞ with the following property. Let Ω ⊂ Rn
be a bounded open set such that diam(Ω) ≤ D, let Γzp ⊂ R × Rn and
Γr ⊂ Sn×n be open sets, and let F ∈ C2(Γr) and ψ ∈ C2 (Ω× Γzp) be
smooth functions. If F is concave, then, given any open subset Ω′ b Ω
satisfying dist(Ω′, ∂Ω) > d, any solution u ∈ C4(Ω) to

−F (D2u) = ψ(·, u,Du) in Ω

satisfying

|u|C2(Ω) ≤ K∣∣ψz|J 1u

∣∣ , ∣∣D2ψ|J 1u

∣∣ ≤M
and λδij ≤ ∂F

∂rij

∣∣∣∣
D2u

≤ Λδij

satisfies

[D2u]Cα(Ω′) ≤ C .
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In order to apply the method of continuity to obtain existence of solu-
tions, we need to reduce the regularity hypothesis in Theorem 11.2.

Proposition 11.3. Suppose that u ∈ C2,β(Ω), β ∈ (0, 1), satisfies

F (·, u,Du,D2u) = 0 in Ω ,

where F : Γ ⊂ Ω × R × Rn × Sn×n → R is strictly elliptic. If F ∈ Ck,α(Γ)
for some k ≥ 1 and 0 < α < 1, then u ∈ Ck+2,α(Ω).

Proof. Given e ∈ Sn and h ∈ R, denote by δheu the difference quotioent

δheu(x) +
1

h

(
u(x+ he)− u(x)

)
.

Given any Ω′ b Ω there exists some h0 > 0 such that δheu is defined in Ω′

for all h < h0, and satisfies in Ω′ the linear elliptic equation

−(aijDiDj + bjDi + c)(δheu) = f ,

where

aij(x) +
ˆ 1

0
Frij

(
sJ 2u(x+ he) + (1− s)J 2u(x)

)
ds ,

bi(x) +
ˆ 1

0
Fpi
(
sJ 2u(x+ he) + (1− s)J 2u(x)

)
ds ,

c(x) +
ˆ 1

0
Fz
(
sJ 2u(x+ he) + (1− s)J 2u(x)

)
ds ,

and

f(x) +
ˆ 1

0
eiFxi

(
sJ 2u(x+ he) + (1− s)J 2u(x)

)
ds .

The claim now follows from Schauder’s theorem (Theorem 3.1) and a boot-
strapping argument. �

We also need an estimate up to the boundary.

Theorem 11.4. There are constants α = α(n, λ,Λ,K, L,M,Ω) ∈ (0, 1) and
C = C(n, λ,Λ,K, L,M,Ω) <∞ with the following property. Let Ω ⊂ Rn be
a bounded open set of class C3, let Γzp ⊂ R × Rn and Γr ⊂ Sn×n be open

sets, and let F ∈ C2(Γr) and ψ ∈ C2
(
Ω× Γzp

)
be smooth functions. If

F is concave, then, given any ϕ ∈ C3(Ω) with ‖ϕ‖C3(Ω) ≤ L, any solution

u ∈ C3(Ω) ∩ C4(Ω) to{
−F (D2u) = ψ(·, u,Du) in Ω

u = ϕ on ∂Ω
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satisfying

|u|C2(Ω) ≤ K∣∣ψz|J 1u

∣∣ , ∣∣D2ψ|J 1u

∣∣ ≤M
and λδij ≤ ∂F

∂rij

∣∣∣∣
D2u

≤ Λδij

satisfies

[D2u]Cα(Ω) ≤ C .

Proof. See [2, Theorem 17.26’]. �

The regularity hypothesis can be relaxed by a difference quotient argu-
ment using the boundary Schauder theory, similarly as in Proposition 11.3.

Note that, in particular, Theorem 11.2 applies immediately to quasi-
linear equations. Further examples include equations of Bellman-type, equa-
tions of Monge–Ampère type, and, more generally, equations of k-Hessian
type, which include the equation of prescribed Gauss curvature and, more
generally, the equations of prescribed k-th mean curvature. Furthermore,
by making the transformation

F∗(x, z, p, r) + −F (z, z, p,−r) ,
the theorem also applies to convex operators. To mention just one interest-
ing family, these include equations of the form

−F (D2u) = ψ(·, u,Du) ,

where F : Sn×n+ → R is given by

F (r) + ‖r‖p + tr(rp)
1
p

for any p ≥ 1.
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12. Equations of Monge–Ampère/Gauss curvature type

We will apply the Krylov–Safanov theory to obtain solutions to equations of
Monge–Ampère type, under suitable conditions. So consider the Dirichlet
problem {

−det(D2u) = f(·, u,Du) in Ω

u = φ on ∂Ω
(12.1)

for suitable domains Ω ⊂ Rn and data f and φ.

This class of equations includes the Monge–Ampère equation

det(D2u) = 1 .

It also includes equations of prescribed Gauss curvature, as well as translator
equations for flows by powers of the Gauss curvature. Indeed, let Mn ⊂
Rn+1 be a smooth hypersurface. Suppose that Mn∩B1 = graph(u)∩B1 for
some smooth function u : Rn → R. Recall that, at any point X = (x, u(x)) ∈
Mn ∩ B1, we have the following formulae for the downward pointing unit
normal ν, the metric g and the second fundamental form h of Mn:

ν =
(Du,−1)√
1 + |Du|2

gij = δij + uiuj and hij =
uij√

1 + |Du|2
.

If we denote by gu and hu the corresponding component matrices, then the
Gauss curvature of Mn at the point (x, u(x)) is

K = det(g−1
u · hu) =

dethu
det gu

=
det(D2u)

(1 + |Du|2)
n+2

2

.

Thus, the problem of constructing (locally) hypersurfaces with prescribed
Gauss curvature f : B1 → R gives rise to the equation

det(D2u)

(1 + |Du|2)
n+2

2

= f(·, u) .

Surfaces satisfying K = 〈ν , en+1〉 translate with constant velocity en+1

under the Gauss curvature flow. This gives rise to the (graphical) Gauss
curvature flow translator equation

det(D2u)

(1 + |Du|2)
n+2

2

=
1√

1 + |Du|2
.

A similar equation is obtained for graphical translators of flows by powers
of the Gauss curvature.

We first note that ellipticity of (12.1) is not guaranteed in general, but
does hold in the class of locally uniformly convex functions since, for positive
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definite symmetric matrices,

∂

∂rij
det r = det r rij > 0 ,

where rij are the components of r−1. We shall seek solutions within the class
of locally uniformly convex functions, and hence consider only negative right
hand sides f . We say that a solution (or subsolution) u ∈ C2(Ω) to

−det(D2u) = f(·, u,Du)

is admissible if D2u(x) > 0 for each x ∈ Ω.

We will establish a priori estimates for |u|, |Du| and |D2u| assuming
the existence of suitable barriers. Ellipticity estimates then follow from the
structure of the equation, so a Hölder estimate for |D2u| follows from the
Krylov–Safanov theory of §11. We will then be able to obtain solutions by
the method of continuity.

We note that, while the presence of barriers is a subtle issue, some such
condition is necessary. Indeed, consider the prescribed Gauss curvature
equation

Kgraphu = f(·, u) in Ω ⊂ Rn ,

where f is a positive function on Rn+1. We claim that no solution exists if

the inradius of Ω exceeds (infΩ×R f)−
1
n . Indeed, if the inradius of Ω exceeds

(infΩ×R f)−
1
n , then we can fit a sphere of radius R > (infΩ×R f)−

1
n inside

the cylinder Ω × R. Moving such a sphere downwards from infinity, we
eventually make contact with graphu, at an interior point p. But then,
since the Gauss curvature of a sphere of radius R is R−n,

Kgraphu(p) ≤ R−n < inf
Ω×R

f ≤ Kgraphu(p) ,

which is absurd.

12.1. C0-estimate. Assuming the existence of a lower barrier, a C0 esti-
mate will follow from the comparison principle.

Proposition 12.1 (Comparison Principle). Let u, v ∈ C2(Ω) ∩ C0(Ω) be
locally uniformly convex in Ω with at least one of them uniformly convex.
Suppose that f ∈ C1(Ω× R× Rn) satisfies ∂f

∂z ≤ 0. If{
−det(D2u)− f(·, u,Du) ≤ −det(D2v)− f(·, v,Dv) in Ω

u ≤ v on ∂Ω ,

then u ≤ v in Ω .
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Proof. Set uϑ + ϑu+ (1− ϑ)v. Observe that

0 ≤ det(D2u)− det(D2v) + f(·, u,Du)− f(·, v,Dv)

=

ˆ 1

0

d

dϑ

(
det(D2uϑ) + f(·, uϑ, Duϑ)

)
dϑ

= aijwij + bkwk + cw ,

where

w = u− v

and, denoting by uij the components of the inverse matrix of D2u,

aij(x) +
ˆ 1

0
det(D2uϑ(x))uijϑ (x)dϑ ,

bk(x) +
ˆ 1

0

∂f

∂pk
(x, uϑ(x), Duϑ(x))dϑ and

c(x) +
ˆ 1

0

∂f

∂z
(x, uϑ(x), Duϑ(x))dϑ .

Since at least one of u or v is locally uniformly convex, aij is uniformly
elliptic. The claim now follows from the maximum principle since c is non-
positive due to the monotonicity of f . �

Since locally uniformly convex functions attain their maxima at the
boundary, a C0 estimate follows, assuming the presence of a lower barrier.

Proposition 12.2 (C0 estimate). Suppose that f ∈ C1(Ω×R×Rn) satisfies
∂f
∂z ≤ 0. If there exists an admissible subsolution u ∈ C2(Ω)∩C0(Ω) to (12.1)

with u ≤ φ on ∂Ω, then any admissible solution u ∈ C2(Ω)∩C0(Ω) to (12.1)
satisfies

max
Ω
|u| ≤ C(max

Ω
|u|,max

∂Ω
φ) .

Proof. Since D2u > 0, u cannot attain an interior maximum, and hence
u ≤ sup∂Ω u. On the other hand, by the comparison principle, u ≥ u. �

12.2. C1-estimate. If v + 1
2 |Du|

2 attains a local interior maximum at the
point x, then

0 = Dwv = 2 〈DwDu , Du〉

at x for all w ∈ Rn. So Du is a null eigenvector of D2u at x. But this
contradicts local strict convexity of u. We conclude that |Du| attains its
maximum on the boundary.

We may estimate the gradient of u at the boundary under the assumption
that (12.1) admits a subsolution u which attains the boundary data φ.
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12.2.1. Tangential derivatives. Since (u − u) ◦ γ ≡ 0 for any curve γ :
(−s0, s0) → ∂Ω, we obtain Dv(u − u)(x) = 0 for any vector v tangent
to ∂Ω at x ∈ ∂Ω.

12.2.2. Normal derivatives. Denote by ν the outward pointing unit normal
field to ∂Ω. Since u ≤ u in Ω and u ≡ u on ∂Ω, we immediately obtain

Dν(u− u) ≤ 0 =⇒ Dνu ≤ Dνu .

To bound Dνu from below, fix x ∈ ∂Ω and consider the line `(s) +
x − sν(x) through x in the direction −ν(x). Since Ω is bounded, the line
must reach a point y = x− s0ν(x) ∈ ∂Ω at some time s0 > 0. We take s0 to
be the first such time. Since u is (by assumption) locally convex in Ω, we
obtain, from Taylor’s theorem,

u(y) ≥ u(x) + 〈Du(x) , y − x〉 .

That is,

−Dνu(x) ≤ u(y)− u(x)

|y − x|
=
u(y)− u(x)

|y − x|
=
d∂Ω(x, y)

|y − x|
· u(y)− u(x)

d∂Ω(x, y)

≤ C(‖u‖C1(∂Ω), ∂Ω) ,

where d∂Ω denotes the intrinsic distance on ∂Ω.

Putting this together, we obtain the following.

Proposition 12.3 (C1-estimate). Suppose that f ∈ C1(Ω×R×Rn) satisfies
∂f
∂z ≤ 0, ∂Ω and φ are of class C1, and that there exists an admissible

subsolution u ∈ C2(Ω) ∩ C1(Ω) to (12.1) with u∂Ω ≡ φ|∂Ω. Any smooth
admissible solution u ∈ C2(Ω) ∩ C0(Ω) to (12.1) satisfies

sup
Ω
|Du| ≤ C(|u|C1(∂Ω), ∂Ω) .

12.3. C2-estimate. If we write F (D2u) + log det(D2u) and f̂ + − log(−f),
then (12.1) becomes{

−F (D2u) = f̂(·, u,Du) in Ω ⊂ Rn

u = φ on ∂Ω .
(12.2)

Note that F : Sn×n+ → R is elliptic, since

∂F

∂rkl
= rkl .

Moreover, F is a concave function since both log and det are concave. In-
deed,

∂2F

∂rpq∂rrs
= −rprrqs .
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Thus, differentiating (12.2) in some direction w ∈ Sn (without loss of gen-
erality, and abusing notation, we may take w = ew) yields

−uijuwij = Dw

(
f̂(·, u,Du)

)
=

∂f̂

∂pk
uwk +

∂f̂

∂z
uw +

∂f̂

∂xw
(12.3)

and

−uijuwwij = − upruqsuwpquwrs +DwDw

(
f̂(·, u,Du)

)
= − upruqsuwpquwrs +

∂2f̂

∂pk∂pl
ukwulw + 2

∂2f̂

∂pk∂z
ukwuw

+
∂2f̂

∂pk∂xw
ukw +

∂f̂

∂pk
ukww +

∂2f̂

∂z2
(uw)2 + 2

∂2f̂

∂z∂xw
uw

+
∂f̂

∂z
uww +

∂2f̂

∂xw∂xw
.

For the Monge–Ampère equation (where f ≡ −1), we have f̂ ≡ 0, so
this becomes

−uijuwwij ≤ 0

and the maximum principle implies that uww can have no interior maximum.
Since w ∈ Sn was arbitrary, we conclude that max(x,w)∈Ω×Sn D

2u|x(w,w)

occurs at a pair (x,w) with x in the boundary of Ω. This reduces the C2

estimate to the boundary case, since we automatically have the lower bound
D2u(w,w) ≥ 0 by local convexity of u.

For non-trivial f , we need to work a bit harder. Note that, if a vector w
maximizes a quadratic form r(w,w) with respect to all unit vectors, then it
is an eigenvector with eigenvalue r(w,w). Thus, if w maximizes D2u(w,w),
then uij ≥ 1

uww
δij . After rotating so that w = ew, this implies that

upruqsuwpquwrs ≥ uij
uiwwujww
uww

.

Assuming further that uww ≥ 1, we can estimate

− uij

uww
uwwij ≤ − ukl

ukwwulww
u2
ww

+ C (uww + 1) +
∂f̂

∂pk

ukww
uww

, (12.4)

where C depends on bounds for f and Du.

Define a function v : Ω× Sn−1 → R by

v(x,w) + log(DwDwu) +
β

2
|Du|2 .
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Suppose that v takes its maximum at a pair (x,w) with x in the interior of
Ω. After a coordinate rotation, we can arrange that w = e1. Differentiating
v with respect to x yields

0 = vi =
u11i

u11
+ βuikuk (12.5)

at (x, e1) and

vij =
u11ij

u11
− ui11uj11

u2
11

+ β (uijkuk + uikujk)

at (x, e1). Thus, applying (12.4) and the maximality of (x, e1), and assum-
ing, without loss of generality, that u11 ≥ 1, we find

0 ≤ −uijvij ≤ C (u11 + 1) +
∂f̂

∂pk

uk11

u11
− βuij

(
ukijuk + uikujk

)
at (x, e1), where C = C(‖u‖C1(Ω), f). Observe that

uijuikujk = ∆u .

Thus, Replacing uijukij using (12.3) and uk11 using (12.5), we obtain

0 ≤ −uijvij ≤ C (u11 + 1)− β ∂f̂
∂pk

uklul

+ β

(
∂f̂

∂pl
ulk +

∂f̂

∂z
uk +

∂f̂

∂xk

)
uk − β∆u

= C (u11 + 1) + β

(
∂f̂

∂z
uk +

∂f̂

∂xk

)
uk − β∆u

≤ (C − β)u11 + C(1 + β) ,

for a constant C depending only on f̂ and ‖Du‖C0 . If we choose β + 2C,
we obtain

u11 ≤ 1 + 2C .

We have shown that 0 ≤ DwDwu ≤ 1 + 2C = C(‖Du‖C0 , f) for all (x, v) ∈
Ω × Sn if the function v takes its maximum in the interior of Ω × Sn. If,
on the other hand, v takes its maximum at a point (x,w) with x on the
boundary of Ω, then we obtain

max
‖w‖=1

DwDwu ≤ max
∂Ω

max
‖w‖=1

DwDwu+ C(‖Du‖C0) .

By the polarization identity, this reduces the C2 estimate to the boundary
case.
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12.3.1. Tangential derivatives. Suppose that Ω is of class C2. Then Σ + ∂Ω
is a compact, embedded C2-hypersurface of Rn. Fix a point x ∈ Σ and a
vector v tangent to Σ at x and let γ : (−s0, s0) → Σ be the geodesic in Σ
with (γ(0), γ′(0)) = (x, v). That is,{

γ′′ + h(γ′, γ′)ν ◦ γ = 0 s ∈ (s0, s0) ,

(γ, γ′) = (x, v) s = 0 ,

where h : TΣ⊗ TΣ→ R is the second fundamental form of Σ,

h(v, w) + −〈Dvw , ν〉 .

Observe that

0 =
d2

ds2

∣∣∣
s=0

(u− u) ◦ γ = DvDvu−DvDvu− h(v, v)Dν(u− u)

and hence

|DvDvu| ≤ |DvDvu|+ |h(v, v)| (|Dνu|+ |Dνu|) ≤ C(|u|C2(∂Ω), ∂Ω)‖v‖2

at x. Since D2u is symmetric, the polarization identity gives similar bounds
for mixed tangential derivatives.

12.3.2. Mixed derivatives. Next, we want to bound the mixed derivatives
D2u|x0(τ, ν) at each point x0 ∈ ∂Ω, where τ is a non-zero vector tangent to
∂Ω at x0 and ν is its outward pointing normal at x0. To do this, we will
extend τ to a vector field T defined on some neighbourhood of Σ in Ω and
use a barrier argument to bound Tu by (an appropriate function of) the
distance to ∂Ω.

So assume that Σ + ∂Ω is compact and of class C2. Then, by the tubular
neighbourhood theorem, there exists δ0 > 0 such that, for each δ ∈ (−δ0, δ0),
the normal map Nδ : Σ→ Rn, defined by

Nδ(x) + x− δν(x) ,

is a diffeomorphism. Set Σδ + Nδ(Σ). By choosing δ0 possibly smaller, we
can arrange that Σδ ⊂ Ω for δ ∈ (0, δ0). Fix a point x0 ∈ Σ and let T be a
C2 vector field on Σ which is equal to τ at x0. Then we can extend T to a
C2 vector field on the tubular neighbourhood Ωδ0 + ∪0<δ<δ0Σδ via

T (Nδ(x)) +
d

dt

∣∣∣∣
t=0

Nδ(φ(x, t)) ,

where φ is the flow of T ,

T (φ(x, t)) =
d

dt
φ(x, t) .

Note that T depends only on Σ = ∂Ω.

135



NONLINEAR ELLIPTIC PDE AND THEIR APPLICATIONS

Define the linear operator

Lv + uijvij +
∂f̂

∂pk
vk .

Note that, differentiating (12.2),

Lui = −∂f̂
∂z
ui −

∂f̂

∂xi
, (12.6)

which we can bound using the gradient estimate.

Set

v + DT (u− u) = T k(u− u)k .

Note that, by construction,

v ≡ 0 on ∂Ω .

We claim that

|Lv| ≤ C(1 + uijδij) , (12.7)

where the constant C depends on u, f and ∂Ω. Indeed,

Lv = uij(T k(u− u)k)ij +
∂f̂

∂pi
(T k(u− u)k)i

= uij
(
T k(u− u)kij + T kij(u− u)k + T ki (u− u)kj + T kj (u− u)ki

)
+
∂f̂

∂pi

(
T k(u− u)ki + T ki (u− u)k

)
= T kLuk + uij

(
−T kukij + T kij(u− u)k + T kj (u− u)ki + T ki (u− u)kj

)
+
∂f̂

∂pi

(
−T kuki + T ki (u− u)k

)
.

The first term and the terms of the second line can be bounded, via the
gradient estimate (recall (12.6)), by a constant depending on ∂Ω, u and f .
We cannot bound the term uij , but we can bound the matrix on which it is
contracted by a multiple (depending on ∂Ω and u) of the identity matrix.
This yields the claim.

Now consider the function

ϑ + (u− u) + αd− µd2

for some yet to be chosen constants 0 < α � 1 and µ � 1, where d is the
distance function to ∂Ω. After possibly choosing δ0 smaller, we can assume
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that d is smooth and bounded in C2 on Ωδ0 (recall Proposition 7.5). So we
may compute

Lϑ = uij ((u− u)ij + αdij − 2µ(ddij + didj))

+
∂f̂

∂pk
((u− u)k + αdk − µddk) .

Since u is locally uniformly convex on Ω and Ω is bounded, there is a constant
ε > 0 such that uij ≥ 4εδij . We can use this term to control αdij since,
choosing α small enough, we can assume that αdij ≤ εδij . Estimating also
d ≤ δ0, we obtain

Lϑ ≤ C(1 + µδ0) + uij ((Cµδ0 − 3ε)δij − 2µdidj) ,

where the constant C depends on n, ∂Ω, u and f . We claim that µ can be
chosen large enough that

2C − uij (εδij + 2µdidj) ≤ 0 .

This would imply

Lϑ ≤ C(µδ0 − 1) + (Cµδ0 − 2ε)uijδij .

We can assume without loss of generality that 2ε < C. Then, choosing δ0

small enough that Cµδ0 < ε, we would obtain

Lϑ ≤ − ε
(
1 + uijδij

)
. (12.8)

To prove the claim, write A + [D2u]−1 and B + εI + 2µDd ⊗ Dd. Note
that, by the arithmetic-geometric mean inequality,

detAdetB ≤
(

tr(AB)

n

)n
.

On the other hand, the C1 estimate yields

detA =
1

det(D2u)
= − 1

f
≥ 1

C

and, since |Dd| = 1,

detB = εn
(

1 + 2
µ

ε

)
.

We conclude

tr(AB) ≥ n(detAdetB)
1
n ≥ nC

1
n ε
(

1 + 2
µ

ε

) 1
n
.

The claim follows.

We can now compare T (u−u) to ϑ: First, observe that (possibly choosing
δ0 even smaller, so that α ≥ 2µδ0) we can arrange that

ϑ ≥ αδ0

2
on ∂Ωδ0 \ ∂Ω .
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Since ϑ ≥ 0 on Ωδ0 and T (u− u) = 0 on ∂Ω, we can find a constant R > 0
(depending on ∂Ω and u) such that

±T (u− u) ≤ Rϑ on ∂Ωδ0 .

On the other hand, by (12.7) and (12.8), choosing R possibly larger, we can
arrange that

−L(±v −Rθ) ≤ 0 .

It follows that

±T (u− u) ≤ R(u− u+ αd− µd2) in Ωδ0 .

Dividing by d and taking the limit x → x0 along a curve tangent to ν(x0)
at x0 yields the desired estimate for the mixed derivatives.

12.3.3. Normal derivatives. Since f is a negative function, the global gra-
dient estimate allows us to bound f(x, u,Du) from below and above by
negative constants. We thereby obtain

C−1 ≤ detD2u ≤ C in Ω .

At a boundary point x0 ∈ ∂Ω, we can decompose D2u into tangential and
normal components. Up to a change of basis, we can arrange that ν(x0) = e1

and D2u|Tx∂Ω×Tx∂Ω is diagonal, so that

detD2u =
n∏
i=1

uii −
∑
j=2

u2
1j

n∏
i 6=j
i 6=1

uii . (12.9)

From this, we see that a lower bound for pure tangential derivatives com-
bined with the upper bounds for the mixed and pure tangential derivatives
will provide an upper bound for the pure normal derivatives. On the other
hand, if D2u|x(τ, τ) becomes too small for some τ ∈ Sx∂Ω, then we shall be
able to construct suitable barriers in order to bound D2(ν, ν).

Consider the function v : SΣ→ R defined by

v(x, τ) + D2u|x0(τ, τ) ,

where SΣ = tx∈ΣSxΣ denotes the unit tangent bundle of Σ. Since SΣ is
compact, the infimum of v is attained by some pair (x0, τ0) ∈ SΣ. Let T be
a tangent vector field on Σ such that Tx0 = τ0. Extend T into the tubular
neighbourhood as above but keeping also its norm constant. By choosing δ0

smaller, this can be done in Ωδ0 + Ω ∩Bδ0(x0). Then

D2u(T, T ) ≥ D2u|x0(τ0, τ0) on ∂Ωδ0 ∩ ∂Ω

with equality at x0.

Recall that

D2(u− u)(τ, τ) = h(τ, τ)Dν(u− u)
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for any tangent vector τ ∈ TΣ. We may suppose that

h(τ0, τ0)Dν(u− u)|x0 = D2(u− u)|x0(τ0, τ0) ≤ −1

2
D2u|x0(τ0, τ0) ,

since, otherwise, we have a global lower bound for pure tangential deriva-
tives, and the desired upper bound for the normal derivatives would follow
from (12.9).

With this assumption, h(τ0, τ0) 6= 0. Choosing δ0 smaller, we can arrange
that h(T, T ) > 0 on Ωδ0 , so that the function Ψ : Ωδ0 → R given by

Ψ(x) +
1

h(T, T )

(
D2u|x(T, T )−D2u|x0(τ0, τ0)

)
is well-defined. Note that

−Ψ ≤ Dν(u− u) on ∂Ωδ0 ∩ ∂Ω

with equality at x0. We can define a vector field N on Ωδ0 by parallel
translating ν; that is, N(x− δν(x)) + ν(x) for any x ∈ ∂Ω ∩ Ωδ0 . Then for
δ0 sufficiently small, there is a constant B such that

Ψ +N(u− u) +B‖x− x0‖2 ≥ 0 on ∂Ωδ0

We claim (as an exercise) that A, α, µ and δ can be chosen so that{
−L

(
Ψ +N(u− u) +B‖x− x0‖2 +Aϑ

)
≥ 0 in Ωδ0

Ψ +N(u− u) +B‖x− x0‖2 +Aϑ ≥ 0 on ∂Ωδ0

(12.10)

By the maximum principle, we then obtain

Ψ +N(u− u) +B‖x− x0‖2 +Aϑ ≥ 0 in Ωδ0

with equality at x0. This yields

DνDν(u− u) ≤ −DνΨ−ADνϑ

at x0 and rearranging leads to the desired estimate.

Proposition 12.4 (C2-estimate). Suppose that f ∈ C1(Ω×R×Rn) satisfies
∂f
∂z ≤ 0, that ∂Ω and φ are of class C2, and that there exists an admissible

subsolution u ∈ C2(Ω) to (12.1) with u = φ on ∂Ω. Any smooth admissible
solution u ∈ C1(Ω) ∩ C0(Ω) to (12.1) with u∂Ω ≡ φ satisfies

|u|C2(Ω) ≤ C(n, u, f, ∂Ω) .
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12.4. Uniform ellipticity and a Hölder estimate for the Hessian.
Recall that F (r) + log det r, so that ∂F

∂rij
= rij . So, for any solution u ∈

C2(Ω) to (12.2) and any ξ ∈ Sn,

∂F

∂rij
(D2u)ξiξj = uijξiξj ≥ |D2u|−1

C0 + λ .

On the other hand, since

det(D2u) = −f(·, u,Du) ,

we may estimate, for any ξ ∈ Sn,

D2u(ξ, ξ) ≥ detD2u

(maxξ∈Sn D2u(ξ, ξ))n−1
≥ λn−1 min

J 1u(Ω)
|f | + Λ−1

and hence
∂F

∂rij
(D2u)ξiξj ≤ Λ .

A Hölder estimate for D2u now follows from Theorem 11.2.

12.5. Solving the Dirichlet problem. We may now solve the Dirichlet
problem for equations of Monge–Ampère type, assuming the existence of a
subsolution taking the boundary values.

Theorem 12.5. Let Ω ⊂ Rn be a bounded open convex set with boundary
of class C3. Suppose that f ∈ C2(Ω × R × Rn) satisfies f < 0 and fz ≤ 0.
If φ ∈ C2,α(Ω) is locally uniformly convex and satisfies

−det(D2φ) ≤ f(·, φ,Dφ) in Ω ,

then the Dirichlet problem{
−det(D2u) = f(·, u,Du) in Ω

u = φ on ∂Ω
(12.11)

admits a unique solution u ∈ C2,α(Ω).

Proof. Consider, for each t ∈ [0, 1], the Dirichlet problem{
−F (D2u)− ψ(·, u,Du) = − t

(
F (D2φ) + ψ(·, φ,Dφ)

)
in Ω

u = φ on ∂Ω ,
(12.12)

where
F (r) + log det r and ψ(x, z, p) + − log(−f(x, z, p)) .

Observe that the problem corresponding to t = 1 admits the solution
u = φ, while the problem corresponding to t = 0 is equivalent to (12.11).
So it suffices to show that the set S of parameters t ∈ [0, 1] corresponding
to problems which are soluble in C2,α(Ω) is both open and closed in [0, 1]
(uniqueness of solutions to (12.12) is a consequence of Proposition 12.1).

140



12. EQUATIONS OF MONGE–AMPÈRE/GAUSS CURVATURE TYPE

Since φ is a subsolution to (12.12), Propositions 12.2, 12.3 and 12.4 and
Theorem 11.4 yield an estimate of the form

|u|C2,β(Ω) ≤ C (12.13)

for any solution to (12.12) (independent of t) for some β = β(n, f,Ω, φ) and
C = C(n, f,Ω, φ).

To see that S is closed, consider a sequence of parameters tk in S con-
verging to some t ∈ [0, 1]. Let uk ∈ C2,α(Ω) be the solution to (7.22)
corresponding to the parameter tk. Due to the uniform estimate (12.13),
the Arzelà–Ascoli theorem provides a subsequence of the solutions uk which
converges in C2(Ω) to a solution u ∈ C2,β(Ω) to the problem (7.22) corre-
sponding to the parameter t. By Proposition 11.3, u ∈ C3,α(Ω) ⊂ C2,α(Ω).
So S is indeed closed.

To see that S is open, we apply the implicit function theorem and the
solvability of the linearized problems. Consider the map T : C2,α(Ω) ×
[0, 1]→ Cα(Ω)× C2,α(∂Ω) defined by

T (u, t) +
(
−F (D2u)− ψ(·, u,D2u) + t(F (D2φ) + ψ(·, φ,Dφ)), u|∂Ω − φ

)
.

If t0 ∈ S, then we can find u0 ∈ C2,α(Ω) such that T (u0, t0) = (0, 0). In order
to apply the implicit function theorem, we need to show that the Fréchet
derivative of T in the first variable at the point (u0, t0) is an isomorphism.
It suffices to compute the Gateaux derivative v 7→ DvT , where DvT is the
directional derivative in the direction v, so long as this is a continuous linear
operator. So consider, for some v ∈ C2,α(Ω), the directional derivative

DvT |(u0,t0) +
d

ds

∣∣∣∣
s=0

T (u0 + sv, t0)

=
(
− Lv, v|∂Ω

)
, (12.14)

where the linear operator L + aijDiDj + biDi + c is defined by

aij + uij0 > 0 , bi + ψpi(·, u0, Du0) , and c + ψz(·, u0, Du0) ≤ 0 .

Since u0 ∈ C2,α(Ω), L is a continuous linear operator, and hence the map

v 7→ (−Lv, v|∂Ω) coincides with the Fréchet derivative. Since uij0 > 0, Theo-
rem 4.1 implies that the map is an isomorphism, and hence the implicit
function theorem guarantees that there exist δ > 0 and a function h :
(t0−δ, t0+δ)→ C2,α(Ω) such that T (h(t), t) = (0, 0) for all t ∈ (t0−δ, t0+δ).
That is, (t0−δ, t0 +δ) ⊂ S. So S is indeed open. The theorem is proved. �

12.6. Exercises.

Exercise 12.1. Derive (12.10).
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Exercise 12.2. Let Ω ⊂ Rn be a bounded open set and u ∈ C2(Ω) be a
solution to the Monge–Ampère type equation

−det(D2u) = f(·, u,Du) in Ω

with f ∈ C1(Ω × R × Rn) negative. Suppose that Ω is locally uniformly
convex; that is, ∂Ω is of class C2 and its second fundamental form A is
positive definite at all points. Under the assumption

|u|C1(Ω) + max
(x,τ)∈S∂Ω

|D2ux(τ, τ)|+ max
(x,τ)∈S∂Ω

|D2ux(τ, ν)| ≤ K ,

where ν is the outward unit normal field to ∂Ω and S∂Ω + tx∈∂ΩSx∂Ω is
the unit tangent bundle to ∂Ω, show that

D2ux(ν, ν) ≤ C(n,K, f, ∂Ω)

for all x ∈ ∂Ω and all unit tangent vectors τ ∈ Sx∂Ω.
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13. Level set flows: an invitation to degenerate nonlinear
equations

13.1. (Inverse) mean curvature flows. Roughly speaking, a smooth
family of smooth hypersurfaces {Mt}t∈I evolves by the α-mean curvature
flow, α ∈ R \ {0}, if at each “time” t each point of Mt moves in its normal
direction ν with speed − sign(α)Hα, where H is the mean curvature with
respect to ν. More precisely, this means that for each t0 ∈ I and p0 ∈ Mt0 ,
we can find open neighbourhoods J ⊂ I about t0, U ⊂ Rn about 0, and V ⊂
Rn+1 about p0, and a smooth (local parametrization) map X : U×J → Rn+1

such that X(U, t) ∩ V = Mt ∩ V (this is just what it means for {Mt}t∈I to
be a smooth family of smooth hypersurfaces) and

∂X

∂t
= − sign(α)Hαν . (13.1)

When α = 1, equation (13.1) is called the mean curvature flow. When
α = −1, it is called the inverse mean curvature flow.

Example 13.1. The family of spheres {Snrα(t)}t∈Iα , where

Iα +


(−∞, 0) if α /∈ [−1, 0)

(−∞,∞) if α = −1

(0,∞) if α ∈ (−1, 0)

and rα(t) +

{
e−nt if α = −1

(−(α+ 1)nt)
1

α+1 if α 6= −1

evolves by α-mean curvature flow. Observe that, for α /∈ [−1, 0), the flow
“breaks down” as t → 0: when α > 0, the “spheres disappear in a point”,
while when α < 0, they “disappear at infinity”. In each case, the speed
“blows up” as t→ 0. This behaviour, finite time “blow-up” turns out to be
a general feature of the flows.

Example 13.2. Consider a dumbell shaped surface (approximately two
large spheres of radius ∼ R joined by a thin neck-like bridge of radius ∼
r). The mean curvature of the spherical regions is ∼ 2

R while that of the

neck region is ∼ 1
r . Thus, for r � R, the mean curvature in the neck is

much larger than in the spherical regions. Thus, under mean curvature flow
(α = 1), we expect the neck to shrink quickly, eventually pinching off with
infinite curvature, while the spheres remain relatively stationary. One can
prove this picture rigorously using a barrier argument.

Example 13.3. Consider a torus of revolution with circular profile. If
the radius of revolution is sufficiently large compared to the radius of the
profile circle, the torus will have positive mean curvature. Under inverse
mean curvature flow (α = −1), it will tend to expand outwards, closing the
“hole”, until the mean curvature tends to zero, at which point the inverse
mean curvature tends to infinity. Again, one can demonstrate this picture
rigorously using barriers.
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13.2. The level sets of a smooth function. We have typically been (lo-
cally) representing smoothly embedded hypersurfaces M in Rn+1 as graphs
over their tangent planes. It is also possible to represent M locally by the
zero set of a smooth function. Indeed, each p ∈M admits a neighbourhood
U ⊂

open
Rn+1 on which the distance function

d(x) + min q ∈M |x− q|

is smooth. If we choose V ⊂
open

Rn+1 such that p ∈ V and V ⊂ U , and choose

a smooth function η which is equal to one on V and zero on Rn+1 \U , then
the function u = ηd is smoothly defined on Rn+1 and we have

M ∩ V = {x ∈ Rn+1 : u(x) = 0} ∩ V .

Conversely, by the implicit function theorem (surjective version), the
zero set M + {x ∈ Rn+1 : u(x) = 0} of a smooth function u : Rn+1 → R
is a smoothly embedded hypersurface in the neighbourhood of any regular
point p ∈M ∩ {x ∈ Rn+1 : |Du(x)| 6= 0}.

13.3. Level set flows. Observe that the family of spheres defined above
may be described by the t ∈ Iα level sets of the function uα : Rn+1 → R
defined by

uα(X) +


− log |x|

n
if α = −1

− |x|
α+1

(α+ 1)n
if α 6= −1 .

Note that uα is continuously differentiable at x = 0 when α /∈ [−1, 0), even
though its zero set is “singular” (since Duα(0) = 0). In fact, when α ≥ 1,
uα is smooth at the origin.

Consider a general α-mean curvature flow {Mt}t∈I . If H(p0) > 0, p0 ∈
Mt0 , then we may choose a local level set representation u : Rn+1 → R for
{Mt}t∈I about p0. Observe that Du(p0) ⊥ Tp0Mt0 . Indeed, if X : U × J →
Rn+1 is a local parametrization for {Mt}t∈I about p0 ∈Mt0 , then

0 =
∂

∂xi

∣∣∣∣
x=0

u(X(x, t0)) = Du(p0) ·Xi(0, t0) ,

where Xi + ∂X
∂xi

. So we may define a local (outward pointing) unit normal
field ν by

ν = − signα
Du

|Du|
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for points p ∈ Mt near p0 with t near t0. Observe that, as a map from
Rn+1 → Rn+1,

DV ν = − signα
1

|Du|

(
DVDu−

(DVDu ·Du)Du

|Du|2

)
= − signα

(DVDu)>

|Du|
,

where ·> denotes projection onto the tangent space to Mt. In other words,
with respect to an orthonormal basis with ν(p) = en+1, Dν|p takes the form

Dν =

(
Ap Wp

0 0

)
for some vector Wp ∈ TpMt, where Ap : TpMt → TpMt is the shape operator
for Mt at p. In particular, the mean curvature is given by

H = − signα div

(
Du

|Du|

)
.

On the other hand, differentiating the equation u(X(x, t)) = t, we obtain

1 =
∂

∂t
(u ◦X) = Du · ∂X

∂t
= |Du|Hα

for p ∈Mt near p0 with t near t0. We conclude that u satisfies

− |Du|
1
α div

(
Du

|Du|

)
= signα (13.2)

in a neighbourhood of any p ∈Mt at which H(p) > 0.

Equation (13.2) is called the level set α-mean curvature flow (or simply
the level set mean curvature flow when α = 1 and the level set inverse mean
curvature flow when α = −1). Observe that (13.2) is a nonlinear elliptic
equation (since the tangential projection is non-negative definite) but is not
strictly elliptic (since Du is a null eigenvector of the tangential projection).

Now, if a function u : Ω→ R satisfies (13.2) at all regular points

p ∈ reg u + {q ∈ Ω : |Du(q)| 6= 0} ,

then, by the above arguments, the level sets Mt + {p ∈ Rn+1 : u(p) = t}
satisfy (13.1) at all regular values

t ∈ {s ∈ R : Ms ⊂ reg u} .

Since the level sets Mt are defined even for critical values of u, the level
set formulation (13.2) provides a generalization (or “weak formulation”) of
(13.1).
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Figure 1. The level sets of a smooth function passing continuously
through a “singularity”. (Source: Wikipedia. User: Nicoguaro.)

The punchline is that, if M0 bounds a domain Ω ⊂ Rn+1 and we are able
to find a solution u : Ω→ R to (13.2) with u|∂Ω ≡ 0, then the level sets of u
define an extension of the classical (smooth) flow through any singularities.
Unfortunately, since (13.2) is degenerate, the theory that we have thus far
established does not apply (at least not directly).

13.4. Solving the Dirichlet problem for the level set flow. We wish
to solve the Dirichlet problem−|Du|

1
α div

(
Du

|Du|

)
= signα in Ω

u = 0 on ∂Ω

(13.3)

over an open domain Ω with prescribed boundary ∂Ω = M0. By the above
discussion, we only seek solutions whose level sets are strictly mean convex
(i.e. have positive mean curvature), so we must assume that ∂Ω is of class
C2 and mean convex. Moreover, since M0 will move inward when α > 0 and
outward when α < 0, we require Ω to be a bounded set when α > 0 and the
compliment of a bounded set when α < 0.

In fact, even under these conditions, we cannot expect to be able to
obtain classical solutions, since any u ∈ C1(Ω) with u|∂Ω ≡ 0 will attain an
interior local maximum or minimum (at least when Ω is bounded), at which
Du = 0, and hence the equation breaks down.
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Another issue is the phenomenon of “fattening”, whereby the level sets
of u develop an interior in Rn+1 (e.g. when u is constant on an open set of
Rn+1) and hence do not have any useful interpretation as “hypersurfaces”.
To deal with this phenomenon, it is convenient to work with the boundaries
∂{p ∈ Ω : u(p) > t} of the sublevel sets of u, instead of the level sets
themselves.

Our strategy for solving the problem (13.3) (in a suitable generalized
sense) is to instead seek solutions to the “desingularized” problems−

(
ε2 + |Du|2

) 1
2α div

(
Du√

ε2 + |Du|2

)
= signα in Ω

u = 0 on ∂Ω

(13.4)

and take ε → 0. Observe that, dividing both sides by ε
1
α and making the

substitution u 7→ εu, the problem (13.4) becomes−
(
1 + |Du|2

) 1
2α div

(
Du√

1 + |Du|2

)
= signαε−

1
α in Ω

u = 0 on ∂Ω ,

(13.5)

which is just the equation for an α-mean curvature flow translator in Rn+2

(with velocity − signαε−1en+1)! Indeed, if uε satisfies (13.5), then the func-
tion U ε defined by U ε(X, t) + uε(X) − ε−1t satisfies the graphical α-mean
curvature flow.

When Ω is bounded, the results of §7 yield a solution uε ∈ C∞(Ω)∩C0(Ω)
to (13.5) for each ε > 0. It turns out that the same methods still yield a
solution in case α < 0, even though Ω is unbounded in this case. (The idea
is to impose the Dirichlet boundary condition u|∂KL = L on the boundary
of a large compact set KL, solve this “compactified” problem, and then take
L → ∞ with KL → Rn+1. Of course, one requires uniform-in-L estimates
for solutions to the compactified problems.) Moreover, we actually end up
with a gradient estimate for εuε which is independent of ε! (The higher order
estimates depend on ε, however.) By applying the Arzelà–Ascoli theorem,

we can now obtain a limit εjuεj → u ∈ C0,1(Ω) in the C0,1
loc (Ω) topology

along some sequence εj → 0. This convergence ensures that u|∂Ω ≡ 0,
but is not strong enough to conclude that u satisfies (13.2) except in the
tautological sense that it is a limit as εj → 0 of solutions to (13.4). It turns
out that this notion of weak solution actually inherits a number of further
properties (such as coincidence with the smooth flow whenever the latter
exists), at least for certain values of α. Let us only make a couple of further
observations.
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Recall that the family of hypersrufaces M ε
t + graphU ε(·, t) evolves by

α-mean curvature flow in Rn+2. Observe that, for t > 0, the Hausdorff limit
limε→0M

ε
t is the vertical cylinder over the t-level set of u! Since the mean

curvature of a the cylinder M ×R in Rn+2 over the hypersurface M of Rn+1

is just the lift of the mean curvature of M (i.e. HM×R(x, t) = HM (x)), we
would be able to conclude that the level sets of the limit u satisfy the α-mean
curvature flow if we could establish this for the hypersurfaces limε→0M

ε
t .

Alternatively, we can exploit the fact that (13.2) admits a variational
structure: consider the functional

J(v) +
ˆ

(|Dv| − signαv|Du|
1
α ) ,

where u ∈ C0,1
loc (Ω) is the limit of the solutions εuε to the approximating

problems (13.4) obtained above. Observe that, for v ∈ C∞(Ω) and any
compactly supported w ∈ C∞(Ω),

d

ds

∣∣∣∣
s=0

J(v + sw) =

ˆ (
Dv ·Dw
|Dv|

− signαw|Du|
1
α

)
= −

ˆ
w

(
div

(
Dv

|Dv|

)
+ signα|Du|

1
α

)
.

In particular, if it can be established that u is a critical point of J , then we
conclude that it must satisfy the α-mean curvature level set flow in a weak
sense.
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