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Abstract. We consider the evolution of compact hypersurfaces by fully non-linear, parabolic

curvature flows for which the normal speed is given by a smooth, convex, degree one homoge-
neous function of the principal curvatures. We prove that solution hypersurfaces on which the

speed is initially positive become weakly convex at a singularity of the flow. The result extends

the convexity estimate [HS99b] of Huisken and Sinestrari for the mean curvature flow to a large
class of speeds, and leads to an analogous description of ‘type-II’ singularities. We remark that

many of the speeds considered are positive on larger cones than the positive mean half-space,

so that the result in those cases also applies to non-mean-convex initial data.

1. Introduction

Given a smooth, compact immersion X0 : Mn → Rn+1, n > 1, we consider smooth families
X : M × [0, T )→ Rn+1 of smooth immersions X(·, t) solving the curvature flow

∂X

∂t
(x, t) = − s(x, t)ν(x, t) ,

X(·, 0) = X0 ,
(1.1)

where ν is the outer unit normal field of the solution, and the speed s is determined by a function
of the principal curvatures κi (with respect to ν). That is,

s(x, t) = f(κ1(x, t), . . . , κn(x, t)) . (1.2)

We require that the speed function f satisfies the following conditions:

Conditions.

(i) that f ∈ C∞(Γ) for some connected, open, symmetric cone Γ ⊂ Rn;
(ii) that f is monotone increasing in each argument;

(iii) that f is homogeneous of degree one;
(iv) that f > 0; and
(v) that Γ is preserved by the flow (1.1).

Condition (v) is intended as follows: Let X be a solution of (1.1)–(1.2) such that the initial
hypersurface satisfies (κ1(x, 0), . . . , κn(x, 0)) ∈ Γ for all x ∈ M . Then there is a connected, open,
symmetric subcone Γ0 of Γ satisfying Γ̄0\{0} ⊂ Γ such that the principle curvatures of the solution
satisfy (κ1(x, t), . . . , κn(x, t)) ∈ Γ0 for all (x, t) ∈ M × [0, T ). We refer to Γ0 as a preserved cone
of the flow. This is discussed further below.

Observe that, since the normal points outwards and f is homogeneous, we lose no generality
in assuming further that (1, . . . , 1) ∈ Γ, and that f is normalised such that f(1, . . . , 1) = 1.
Furthermore, since f is symmetric, we may at each point reorder the principal curvatures such
that κn ≥ · · · ≥ κ1.

For most of the paper, we will also require that f satisfies the following two conditions, which
are somewhat distinct from Conditions (i)–(v):

Conditions.
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(vi) that f is locally convex; and

(vii) that
(
∂f
∂zp
− ∂f

∂zq

) ∣∣∣
z
≥ 0 whenever z ∈ Γ is such that zp ≥ zq.

We will say that s is an admissible speed for the flow (1.1) if s is given by (1.2) such that f
satisfies Conditions (i)–(vii).

Some discussion of Conditions (i)–(vii) is in order: The symmetry of f is a geometric condition–
it allows us to write s as a smooth function of the Weingarten map of the solution, which ensures
geometric invariance of the flow. The monotonicity of f then ensures that the flow is parabolic,
which guarantees short time existence of a solution if the principal curvatures of the initial im-
mersion lie in Γ. Condition (v) is then a requirement that the principle curvatures do not ‘move
out of’ Γ during the flow. In general, some such condition is necessary (c.f. [AMZ13, Theorem
3]), although, in particular, it automatically holds in each of the following situations (c.f. Lemma
2.4):

Ancillary Conditions.

(viii) that Conditions (i)–(iv) and (vi) hold, and Γ is convex; or
(ix) that Conditions (i)–(iv) and (vi) hold, and f

∣∣
∂Γ

= 0; or

(x) that Conditions (i)–(iv) hold, and n = 2.

For the purposes of Theorem 1.1, however, we need only assume that the weaker condition
(v) holds. We remark that Ancillary Condition (ix) makes sense because any function satisfying
Conditions (i)–(iv) has a continuous extension to ∂Γ. This is proved for Γ = Γ+ in [AMZ13], but
the proof is easily modified for the present situation.

In the presence of Condition (i), Conditions (vi)–(vii) are equivalent to requiring that that
the speed is a smooth, convex function of the Weingarten map (c.f. Lemma 2.1). We note that
Condition (vii) is automatically true in each of the following situations:

Ancillary Conditions.

(xi) that Conditions (i)–(iii) and (vi) hold, and Γ is convex; or
(xii) that Conditions (i)–(iii), and (vi) hold, and f extends as a convex function to Rn (for

example, if f
∣∣
∂Γ

= 0); or

(xiii) that Conditions (i)–(iv), and (vi) hold, and n = 2.

The above assertions are discussed in greater detail in section 2.
We now list some examples of admissible speeds.

Examples 1.1. The following functions define admissible speeds for the flow (1.1):

(1) The arithmetic mean: f(z1, . . . , zn) = z1 + · · · + zn on the half-space Γ = {z ∈ Rn :
z1 + · · ·+ zn > 0}. The corresponding flow is the (mean convex) mean curvature flow.

(2) The power means: fp(z1, . . . , zn) = (zp1 + · · · + zpn)
1
p , p ≥ 1, on the positive cone Γn+ =

{z ∈ Rn : zi > 0 for all i}. The case p = 2 corresponds to the flow by the norm of the
Weingarten map.

(3) Positive linear combinations: If f1, . . . , fk are admissible on Γ, then, for all (s1, . . . , sk) ∈
Γk+, the function f = s1f1 + · · · + skfk is admissible on Γ. For example, the function

f(z1, . . . , zn) = z1 + · · ·+ zn +
√
z2

1 + · · ·+ z2
n on the cone Γ+ defines an admissible speed.

In fact, the functions fα(z1, . . . , zn) = z1 + · · · + zn + α
√
z2

1 + · · ·+ z2
n for α ∈ [0, 1] on

the larger cones Γα = {z ∈ Rn : z1 + · · · + zn + α
√
z2

1 + · · ·+ z2
n > 0} define admissible

speeds. We remark that the cones Γα contain the half-space {z ∈ Rn : z1 + · · ·+ zn > 0}.
(4) Concave functions: If g ∈ C∞(Γ) is symmetric, homogeneous degree one and concave,

then an admissible speed is defined by the function f = H − εg on the subcone of Γ for
which H > εg and ġi < 1

ε for all i. The class of concave functions discussed in [An07]
then provide an interesting class of admissible speeds.

(5) Convex homogeneous combinations: Let φ satisfy Conditions (i)–(iv) and (vi)–(vii) on

a cone Γ̃ ⊂ Rk, and suppose that the functions f1, . . . , fk define admissible speeds on a
cone Γk ⊂ Rn. Then the function f(z1, . . . , zn) := φ (f1(z1, . . . , zn), . . . , fk(z1, . . . , zn)) on
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the cone {z ∈ Γ : (f1(z), . . . , fk(z)) ∈ Γ̃} defines an admissible speed. For example, the
function fε(z1, . . . , zn) = Hp(z1 +εH, . . . , zn+εH) on the cone Γε := {z ∈ Rn : zi+εH >
0 for all i} defines an admissible speed.

Curvature problems of the form (1.1)–(1.2) have been studied extensively, although mostly
under the assumption that the initial hypersurface is locally convex, that is, having Weingarten
map everywhere positive definite. The most well-known result in this case is Huisken’s Theorem
[Hu84], which states that, when the speed is given by the mean curvature, uniformly locally convex
initial hypersurfaces remain uniformly locally convex and shrink to round points, ‘round’ meaning
that the solution approaches total umbilicity at the final point. Chow showed that this behaviour
is true also for the flows by the n-th root of the Gauss curvature [Ch85], and, if an initial curvature
pinching condition is assumed, the square root of the scalar curvature [Ch87]. Each of these flows
satisfy Conditions (i)–(iv) on the positive cone Γ = Γ+ := {x ∈ Rn : xi > 0, i = 1, . . . , n}. More
general degree one homogeneous speeds were treated by the first author in [An94a, An07, An10],
where it was shown that uniformly convex hypersurfaces will contract to round points under the
flow 1.1–(1.2), so long as the speed satisfies Conditions (i)-(iv) and, in addition, either:

(a) n = 2; or
(b) f is convex; or
(c) f is concave, and inverse concave, that is, the function

f∗ (z1, . . . , zn) = f
(
z−1

1 , . . . , z−1
n

)−1

is concave.

These conditions were weakened in [AMZ13], and their necessity demonstrated by the con-
struction, in dimensions n > 2, of concave speed functions satisfying Conditions (i)-(iv) for which
convex initial hypersurfaces do not remain convex under the corresponding flow [AMZ13, Theorem
3].

In the case of non-convex initial hypersurfaces, much less is known about the behaviour of
solutions of (1.1), although in many cases the analogy with the mean curvature flow continues.
For example, a simple calculation shows that spheres shrink to points in finite time under flows
(1.1)–(1.2) satisfying Conditions (i)-(iv). The avoidance principle (c.f.1 [ALM12a, Theorem 5])
then implies that any compact solution of (1.1) must become singular in finite time. If, in addition,
the flow admits second derivative Hölder estimates (for example, if the speed function is a concave
or convex function of the principal curvatures [Ev82, Kr82], or if n = 2 [An04]), one can deduce,
by standard methods, that a singularity is characterised by a curvature blow-up (c.f. [ALM12b]).

For the mean curvature flow, a crucial part of the current understanding of singularities is the
asymptotic convexity estimate of Huisken and Sinestrari, which states that any mean convex initial
hypersurface flowing by mean curvature becomes weakly convex at a singularity [HS99b]. This,
together with the monotonicity formula of Huisken [Hu90] and the Harnack inequality of Hamilton
[Ham95a] allows a rather complete description of singularities in the positive mean curvature case.
We note that asymptotic convexity is necessary for the application of the Harnack inequality to
deduce that “fast-forming” or “type-II” singularities are asymptotic to convex translation solutions
of the flow.

For other flows, the understanding of singularities is far less developed. There are several reasons
for this: First, there is no analogue available for the monotonicity formula, which is used to show
that “slowly forming” or “type-I” singularities of the mean curvature flow are asymptotically self-
similar. Second, there is in general no Harnack inequality available sufficient to classify type-II
singularities, although the latter is known for quite a wide sub-class of flows [An94b]. And finally,
there is so far no analogue of the Huisken-Sinestrari asymptotic convexity estimate for most other
flows, with the notable exception of the recent result of Alessandroni and Sinestrari, which applies
to a class of flows by functions of the mean curvature having a certain asymptotic behaviour [AS10].
In a companion paper [ALM12b], we wera able to exploit the simplified structure of the evolution

1We remark that the avoidance principle proved in [ALM12a, Theorem 5] is not in general true when the cone

of definition of the speed is non-convex. However, a slight modification reveals that it is still possible to compare
compact solutions with spheres.
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equation for the second fundamental form in two dimensions (see also [Sc06, An07, Mc11]) to prove
that an asymptotic convexity estimate holds in surprising generality for flows of surfaces, namely
for any surface flow (1.1)–(1.2) satisfying Conditions (i)–(iv). On the other hand, one would expect
this result should fail in higher dimensions in such generality, due to the aforementioned examples
of ‘nice’ speeds which fail to preserve local convexity of initial data. In this paper, we show that
an asymptotic convexity estimate is possible in higher dimensions in the presence of the additional
convexity Conditions (vi)-(vii).

Theorem 1.1. Let X : M × [0, T ) → Rn+1 be a solution of (1.1) with s an admissible speed.
Then for all ε > 0 there is a constant Cε > 0 such that

−κ1(x, t) ≤ εs(x, t) + Cε .

for all (x, t) ∈M × [0, T ).

The proof of Theorem 1.1 utilises a Stampacchia-De Giorgi iteration procedure analogous to
those of [Hu84, HS99a, HS99b, Ch85, Ch87] (see also [ALM12b]), in contrast to the result of
[AS10] (see also [Sc06]), which is proved using the maximum principle. We remark that, by
carefully constructing our curvature pinching function, we are able to avoid the rather technical
induction on the elementary symmetric functions of curvature that is necessary in [HS99b].

Combining Theorem 1.1 with the Harnack estimate of [An94b] (c.f. [Ham95a]) as in [HS99a,
HS99b], we are led to the following classification of type-II blow-up limits about type-II singular-
ities.

Corollary 1.2. If s is an admissible speed, then any type-II blow-up limit of a solution of the
corresponding flow (1.1) about a type-II singularity decomposes as a product X : (Σk×Rn−k)×R→
Rn+1, such that X

∣∣
Σk

: Σk × R → Rk+1 ⊂ Rn+1 is a strictly convex (k-dimensional) translation

solution of the flow (1.1).

Corollary 1.2 is proved in section 6.

2. Notation and Preliminary Results

We now describe some important background results necessary for the subsequent sections.
We begin with flow independent results to do with symmetric functions, and prove, in Lemma
2.2, that each of the Ancillary Conditions (xi)–(xiii) implies Condition (vii). We then discuss
flow dependent results, and prove, in Lemma 2.4, that each of the Ancillary Conditions (viii)–(x)
implies Condition (v). We follow the conventions of [AMZ13, An07, An10, Mc05], where proofs
or references for much of this section may be found. Many of the results can also be found in the
book [Ge06] by Gerhardt.

The curvature function f is a smooth, symmetric function defined on an open, convex, sym-
metric cone Γ. Denote by SΓ the cone of symmetric n × n matrices with n-tuple of eigenvalues,
λ := (λ1, . . . , λn), lying in Γ. A result of Glaeser [Gl63] implies that there is a smooth, GL(n)
invariant function F : SΓ → R such that f(λ(A)) = F (A). The invariance of F under similarity
transformations implies that the speed s(x, t) = f(κ1(x, t), . . . , κn(x, t)) is a well-defined, smooth
function of the Weingarten map W, that is, s(x, t) = F (W(x, t)) := F (W (x, t)), where W (x, t)
is the component matrix of W(x, t) with respect to some basis for T ∗xM ⊗ TxM . If we restrict
attention to orthonormal bases, then Wi

j = hij , where hij are the components of the second
fundamental form.

We shall use dots to indicate derivatives of f and F as follows:

ḟ i(λ)vi :=
d

ds

∣∣∣∣
s=0

f(λ+ sv) , f̈ ij(λ)vivj :=
d2

ds2

∣∣∣∣
s=0

f(λ+ sv) ,

Ḟ ij(A)Bij :=
d

ds

∣∣∣∣
s=0

F (A+ sB) , F̈ pq,rs(A)BpqBrs :=
d2

ds2

∣∣∣∣
s=0

F (A+ sB) .

(2.1)

The derivatives of f and F are related in the following way (c.f. [Ge90, An94a, An07]):
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Lemma 2.1. Suppose that the function f satisfies Condition (i). Define the function F : SΓ :→ R
by F (A) := f(λ(A)) as above. Then for any diagonal A ∈ SΓ we have

Ḟ kl(A) = ḟk(λ(A))δkl , (2.2)

and for any diagonal A ∈ SΓ and symmetric B ∈ GL(n) we have

F̈ pq,rs(A)BpqBrs = f̈pq(λ(A))BppBqq + 2
∑
p>q

ḟp(λ(A))− ḟq(λ(A))

λp(A)− λq(A)

(
Bpq

)2
. (2.3)

Note that (2.3) holds (as a limit) even if A has eigenvalues of multiplicity greater than one.

In particular, in an orthonormal frame of eigenvectors of W, we have

Ḟ kl(W) =ḟk(κ)δkl

F̈ pq,rs(W)BpqBrs = f̈pq(κ)BppBqq + 2
∑
p>q

ḟp(κ)− ḟq(κ)

κp − κq
(
Bpq

)2
.

Observe that, by (2.2), Conditions (i)–(ii) imply that (1.1)–(1.2) is parabolic. The methods of
[Ge06, Section 2.5] (see also [GG92] and [Ba10]) then imply short time existence of solutions, so
long as the principal curvatures of the initial immersion lie in Γ.

It follows from (2.3) that the function F is convex if and only if the function f is convex and

satisfies (ḟp − ḟq)(zp − zq) ≥ 0. We now show that in most cases of interest the second condition
is automatic.

Lemma 2.2. Suppose that f satisfies one of the Ancillary Conditions (xi), (xii) or (xiii). Then
f satisfies Condition (vii).

Proof. Suppose first that Condition (xi) is satisfied, so that Γ is convex. If Γ = Γ+ then the claim
is proved in [An94a, Lemma 2.2] (see also [EH89]). However, the proof applies to any convex cone:
Consider an arbitrary point z ∈ Γ. Since f is smooth and convex, for any v ∈ Rn and any s ∈ R
such that z + sv ∈ Γ we have

0 ≤ d2

ds2
f(z + sv) =

d

ds
ḟ i(z + sv)vi .

Therefore, if s > 0,

ḟ i(z + sv)vi ≥ ḟ i(z)vi .

Setting v = −(ep − eq), where ei is the basis vector in the direction of zi, we obtain(
ḟp − ḟq

)∣∣∣
z
≥
(
ḟp − ḟq

)∣∣∣
z−s(ep−eq)

.

If zp ≥ zq then there is some s0 > 0 such that (z − s0(ep − eq))p = (z − s0(ep − eq))q. By the

symmetry and convexity of Γ, this point is in Γ. Since f is symmetric, ḟp = ḟq at this point and
the claim follows.

Now suppose that (xii) is satisfied, so that f extends to a convex, symmetric function on Rn. If
the extension is smooth, then the claim follows as above. If not, then we need to be more careful;
we make use of the fact that the difference quotient (f(γ(s))− f(γ(t))) /(s− t) is non-decreasing
in both s and t along all lines γ(s) = z + sv.

Consider a point z ∈ Γ and a direction v ∈ Rn. Then, for any s ∈ R and any s0 > 0, we have

f(z + sv)− f(z + s0v)

s− s0
≥ f(z + sv)− f(z)

s
≥ lim
s↘0

f(z + sv)− f(z)

s
= ḟ i

∣∣
z
vi .

Setting v = −(ep − eq), it follows that

−
(
ḟp − ḟq

)∣∣∣
z

= ḟ i
∣∣∣
z
vi ≤

f(z + sv)− f(z + s0v)

s− s0
≤ lim
s↗s0

f(z + sv)− f(z + s0v)

s− s0
= ψ′−(0) ,

where we have defined ψ(σ) := f(z+(σ+s0)v). We note that the left derivative ψ′−(0) exists, and
is no greater than the right derivative ψ′+, by convexity of ψ. Supposing without loss of generality
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that zp ≥ zq, we may choose s0 such that zp − s0 = zq + s0. With this choice, it is easily checked
that ψ is an even function. Since ψ is convex, we have

ψ′−(0) ≤ ψ′+(0) = lim
s↘0

ψ(s)− ψ(0)

s

= − lim
s↗0

ψ(−s)− ψ(0)

s
= − lim

s↗0

ψ(s)− ψ(0)

s
= −ψ′−(0) .

It follows that ψ′−(0) ≤ 0 and we obtain
(
ḟp − ḟq

)∣∣∣
z
≥ 0 as required.

Finally, suppose that (xiii) is satisfied, so that Γ ⊂ R2. Consider some point z ∈ Γ and suppose

p 6= q are such that zp ≥ zq. Since f is homogeneous of degree one, we have f = ḟ1z1 + ḟ2z2.

Then, since f , ḟ1 and ḟ2 are positive on Γ, we must have zp > 0. Now,

2f = 2
(
ḟpzp + ḟqzq

)
=
(
ḟp − ḟq

)
(zp − zq) +

(
ḟp + ḟq

)
(zp + zq) ,

so that (
ḟp − ḟq

)
(zp − zq) = 2f −

(
ḟp + ḟq

)
(zp + zq) .

If zp + zq ≤ 0, then we are done (since f , ḟ1 and ḟ2 are positive). Otherwise, z lies in the open,
symmetric, convex cone {z ∈ R2 : z1 + z2 > 0}. But we have just proved that the claim already
holds in this case. This completes the proof. �

In the following, we are interested in the behaviour of solutions of the flow equation (1.1)–(1.2).
We consider speeds s = f(κ) such that f satisfies Condition (i), and denote the corresponding
function of W by F . We will use the following convention in order to simplify notation: If g
satisfies Condition (i), and G(A) = g(λ(A)) is the corresponding function on SΓ, then we write

g(x, t) ≡ g(κ(x, t)) and G(x, t) ≡ G(W(x, t)). Similarly, Ġ(x, t) ≡ Ġ(W(x, t)) and G̈(x, t) ≡
G̈(W(x, t)) . This convention makes the notation s for the speed unnecessary, and from here on
the speed will be denoted by F .

We recall the following evolution equations (see [An94a, An07, AMZ13, Ge06, Mc05]):

Lemma 2.3. Let X : M × [0, T )→ Rn+1 be a solution of the flow (1.1)–(1.2) such that f satisfies
Conditions (i)–(iii). Then the following evolution equations hold along X:

(1) (∂t − L)hi
j = (∇idF )j + Fhi

khk
j = F̈ pq,rs∇ihpq∇jhrs + Ḟ klh2

klhi
j;

(2) (∂t − L)F = FḞ klh2
kl;

(3) ∂t dµ = −HF dµ; and

(4) (∂t − L)G =
(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs + ĠpqhpqḞ

klh2
kl,

where L is the elliptic operator Ḟ ij∇i∇j, h2
ij = hi

khkj, µ(t) is the measure induced on M by
the immersion X(·, t), and G is any function given by G(x, t) := g(κ1(x, t), . . . , κn(x, t)) for some
smooth, symmetric g : Γ→ R.

Applying the maximum principle to Lemma 2.3 (2), we see that F remains positive for all t ∈
[0, T ) whenever it is initially positive. It then follows from Euler’s theorem and the monotonicity
of f that the largest principal curvature also remains positive.

In the case that g is homogeneous of degree one, Euler’s theorem simplifies Lemma 2.3 (4) to

(∂t − L)G = (ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs + Ḟ klh2
klG . (2.4)

It follows that

(∂t − L)

(
G

F

)
=

1

F

(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs −

2

F
Ḟ kl∇kF ∇l

(
G

F

)
. (2.5)

Therefore maxM×{t}(G/F ) will be non-increasing in t whenever G satisfies the condition(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs ≤ 0 . (2.6)
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These observations help us to find preserved cones for the flow: Suppose that f satisfies Con-
ditions (i)–(iii). If there is a smooth, non-negative, symmetric, homogeneous degree one function
g : Γ→ R such that

(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)TkpqTlrs ≤ 0

for any totally symmetric T ∈ Rn ⊗ Rn ⊗ Rn, where G is the corresponding function on SΓ, then
any solution of the corresponding flow admits a preserved cone. Namely, the cone Γ0 := {z ∈ Rn :
g(z) < maxM×{0}

(
G
F

)
f(z)} is preserved.

In general, finding such a function g will be highly specific to the choice of flow speed f , however,
in many cases we can be sure preserved cones exists:

Lemma 2.4. Suppose f satisfies one of the Ancillary Conditions (viii), (ix), or (x). Then f
satisfies Condition (v).

Proof. Suppose that Condition (viii) holds, so that the cone Γ is convex. It follows from Lemma

2.2 that Condition (vii) holds, so that F̈ ≥ 0 by Lemma 2.1. Let X be a solution of (1.1)–(1.2).
Then the Weingarten map of X satisfies

(∂t − L)hi
j ≥ Ḟ klh2

klhi
j . (2.7)

Let Γ0 be the interior of the symmetrised convex conic hull in Rn of the principal curvatures of X0.
Then Γ̄0 \ {0} ⊂ Γ. The preservation of Γ0 by the flow follows by applying a slight modification of
Hamilton’s tensor maximum principle [Ham84, Section 3] to (2.7) (c.f. [An07, Theorem 3.2] and
[AnHo, Chapter 6]).

Now suppose that (ix) is satisfied, so that f vanishes on ∂Γ. If X : M × [0, T ) → Rn+1 is a
solution of the corresponding flow, then F is initially positive, and the maximum principle implies
that it remains so. Then we may consider the function G1(x, t) := g1(κ1(x, t), . . . , κn(x, t)), where
g1 is the function defined by equation (3.1) of the following section. Observe that f extends to a
convex function on Rn by setting f = 0 outside Γ, so that, by Lemma 2.2, Condition (vii) holds.
Then we may proceed as in Lemma 3.2 to obtain

Z :=
(
Ġkl1 F̈

pq,rs − Ḟ klG̈pq,rs1

)
∇khpq∇lhrs ≤ 0 , (2.8)

and it follows that G1/F ≤ c0 := maxM×{0}G1/F . So consider Γ0 := {z ∈ Rn : g1(z) < c0f(z)}.
Since g1(z) = 0 iff z ∈ Γ̄+ ∩ Γ and, by convexity of the extension of f , {z ∈ Rn : z1 + · · · + zn >
0} ⊂ Γ, we have (∂Γ ∩ ∂Γ0) \ {0} = ∅. It follows that Γ0 is a preserved cone.

Finally, consider the case that Condition (x) holds, so that Γ ⊂ R2. Observe that, in this case,
it is sufficient to obtain an estimate on the pinching ratio of the solution (which in this case follows
from an estimate on G1/F ), since any open, connected, symmetric cone Γ in R2 that contains the
positive ray is of the form {z ∈ R2 : zmin > εzmax}. However, we can no longer use any convexity
properties of f to control G1/F , and the above proof that Z ≤ 0 no longer applies. On the other
hand, by carefully analysing each of the terms in the expression for Z, it is possible to write the
terms involving second derivatives of the speed as gradient terms, and the remaining terms turn
out to be automatically favourable for obtaining the desired estimate on Z. We refer the reader
to the papers [An07, ALM12b] for the proof of this assertion. �

The existence of a preserved cone ensures that the flow is uniformly parabolic:

Lemma 2.5. Let X : M× [0, T )→ Rn+1 be a solution of (1.1), with an admissible speed F . Then
there is a constant c1 > 0 such that for all (x, t) ∈M × [0, T ) it holds that

1

c1
|v|2 ≤ Ḟ kl(x, t)vkvl ≤ c1|v|2

for all v ∈ TxM , where | · | is the norm induced on TM by the immersion X(·, t).
Proof. In an orthonormal frame of eigenvectors of the Weingarten map, we have, by (2.2), that

Ḟ kl = ḟkδkl. Let Γ0 be a preserved cone for the flow. Since Γ̄0 \ {0} ⊂ Γ, and ḟk > 0 on Γ

for all k, we see that the derivatives ḟk are bounded by positive constants on the compact set
K := {z ∈ Γ̄c0 : |z| = 1}. Since the derivatives ḟk are homogeneous of degree zero, these bounds
extend to the cone Γ̄c0\{0}, which completes the proof. �
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The following long time existence result then follows using standard methods (c.f. [ALM12b]).

Proposition 2.6. Let X : M × [0, T )→ Rn+1 be a maximally extended solution of (1.1), with an
admissible speed. Then T <∞, and maxM×{t} |W| → ∞ as t→ T .

We now focus on the proof of Theorem 1.1 and Corollary 1.2, so for the rest of the paper we will
assume that f defines an admissible speed, and X : M × [0, T )→ Rn+1 is a maximally extended
solution of the corresponding flow (1.1).

3. The Pinching Function

In this section, we carefully construct an appropriate curvature pinching function to be used in
the proof of Theorem 1.1. That is, a smooth, symmetric, homogeneous (degree one, say) function
G(x, t) = g(κ1(x, t), . . . , κn(x, t)) of the principal curvatures that vanishes only if the hypersurface
is weakly convex. Our goal is to show that the ratio G/F vanishes asymptotically along the flow.
In particular, this ratio should be non-increasing. In view of (2.5) we would therefore like G to
satisfy

(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs ≤ 0 .

In fact, as we shall see, the following two estimates will be essential

Properties 1.

(1) for all ε > 0, there is a constant cε > 0 such that

(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs ≤ −cε
|∇W|2

F

whenever G > εF ; and,
(2) for all ε > 0, there is a constant γε > 0 such that

(FĠkl −GḞ kl)h2
kl ≤ −γεF |W|2

whenever G > εF .

These estimates are needed to show that the positive part of the function Gε,σ := (G/F − ε)Fσ
is bounded in Lp(M×[0, T )) for any ε > 0, so long as σ is sufficiently small. This is done in Section
4. The proof of Theorem 1.1 then follows from standard arguments, which we recall in Section 5.
But first, we construct our pinching function. We first try a smoothed out version of the natural
choice, max {−κ1, 0}. The function we obtain possesses the second of the above properties, but
the first property only weakly (that is, with cε = 0). By making this function slightly more convex
(namely, strictly convex in non-radial directions) we are able to obtain a function satisfying both
estimates uniformly (without harming the other properties).

We begin with a smooth function φ : R → R which is strictly convex and positive, except on
R+, where it vanishes identically. Such a function is easily constructed; for example, we could use

φ(r) =

{
r4e−

1
r2 if r < 0 ;

0 if r ≥ 0 .

Now consider the following function, defined on Γ:

g1(z) := f(z)

n∑
i=1

φ

(
zi
f(z)

)
. (3.1)

Observe that g1 is non-negative and vanishes on (and only on) Γ̄+ ∩ Γ. Furthermore, g1 is clearly
smooth, symmetric, and homogeneous of degree one. We now calculate:

ġk1 = ḟk
n∑
i=1

φ

(
zi
f

)
+

n∑
i=1

φ̇

(
zi
f

)(
δki −

zi
f
ḟk
)

= φ̇

(
zk
f

)
+ ḟk

n∑
i=1

[
φ

(
zi
f

)
− zi
f
φ̇

(
zi
f

)]
.
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It follows easily from the convexity of φ that φ(r) − rφ̇(r) ≤ φ(0) = 0. Since φ is positive and φ̇

vanishes on R+, we must also have φ̇(r) ≤ 0 for all r ∈ R. Moreover, equality holds in the above
inequalities only if r ≥ 0. Therefore ġk1 (z) ≤ 0 for each k, with equality if and only if z ∈ Γ̄+ ∩ Γ.

Now compute

g̈pq1 = f̈pq
n∑
i=1

[
φ

(
zi
f

)
− zi
f
φ̇

(
zi
f

)]
+

1

f

n∑
i=1

φ̈

(
zi
f

)(
δi
p − zi

f
ḟp
)(

δi
q − zi

f
ḟq
)
.

and

ġk1 f̈
pq − ḟkg̈pq1 = φ̇

(
zk
f

)
f̈pq − ḟk

f

n∑
i=1

φ̈

(
zi
f

)(
δi
p − zi

f
ḟp
)(

δi
q − zi

f
ḟq
)
. (3.2)

This forms a non-positive definite matrix for each k. Finally, consider

ġk1
ḟp − ḟq

zp − zq
− ḟk ġ

p
1 − ġ

q
1

zp − zq
= φ̇

(
zk
f

)
ḟp − ḟq

zp − zq
− ḟk

φ̇
(
zp
f

)
− φ̇

(
zq
f

)
zp − zq

. (3.3)

This is also non-positive for each k, since convexity of φ implies φ̇(r)−φ̇(s)
r−s ≥ 0. Putting (3.2) and

(3.3) together using Lemma 2.1, we see that(
Ġkl1 F̈

pq,rs − Ḟ klG̈pq,rs1

)
∇khpq∇lhrs ≤ 0 .

To obtain the uniform estimate, we modify the function g1 to introduce a slightly stronger
convexity property. We utilise the good convexity properties of the Euclidean norm: Consider the
function g defined by

g := K(g1, g2) :=
g2

1

g2
, (3.4)

where g2 is a positive, monotone, degree one homogeneous function of the principle curvatures
which is strictly convex in non-radial directions. The function defined by

g2(z) := Rf(z) +

n∑
i=1

zi − |z|

has the properties we require, so long as the constant R > 0 may be chosen such that g2 > 0 (at
least along the flow). Let’s first show that such a choice is possible.

Lemma 3.1. There exists a constant R > 0 such that

RF (x, t) +H(x, t)− |W(x, t)| > 0

for all (x, t) ∈M × [0, T ).

Proof. Define G2(x, t) := g2(κ1(x, t), . . . , κn(x, t)). Since F (·, 0) > 0 and M is compact, we may
choose R > 0 such that G2(·, 0) > 0. By (2.4), it suffices to show that(

Ġkl2 F̈
pq,rs − Ḟ klG̈pq,rs2

)
∇khpq∇lhrs ≥ 0 .

First calculate

ġk2 = Rḟk + 1− zk
|z|

and

g̈pq2 = Rf̈pq − 1

|z|3
(
|z|2δpq − zpzq

)
.

It follows that

ġk2 f̈
pq − ḟkg̈pq2 =

(
1− zk
|z|

)
f̈pq +

ḟk

|z|3
(
|z|2δpq − zpzq

)
, (3.5)

which, by the Cauchy-Schwarz inequality, is non-negative definite for each k.
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Finally,

ġk2
ḟp − ḟq

zp − zq
− ḟk ġ

p
2 − ġ

q
2

zp − zq
=

(
1− zk
|z|

)
ḟp − ḟq

zp − zq
+

1

|z|
ḟk ,

which is also non-negative definite for each k. It now follows from (2.2) and (2.3) that(
Ġkl2 F̈

pq,rs − Ḟ klG̈pq,rs2

)
∇khpq∇lhrs ≥ 0

as required. �

So the function G is well defined. Let us first observe that it also satisfies Properties 1 (i)
weakly:

Lemma 3.2. There is a constant c0 > 0 such that

G(x, t) ≤ c0F (x, t) .

for all (x, t) ∈M × [0, T ).

Proof. By a straightforward calculation, we find(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
= K̇1

(
Ġkl1 F̈

pq,rs − Ḟ klG̈pq,rs2

)
+ K̇2

(
Ġkl2 F̈

pq,rs − Ḟ klG̈pq,rs2

)
− Ḟ klK̈αβ ġpαġ

q
β

at any diagonal matrix. Noting that K̇1(x, y) > 0, K̇2(x, y) < 0 and K̈(x, y) ≥ 0 whenever x and
y are positive, we see that(

ĠklF̈ pq,rs − Ḟ klG̈pq,rs
)
∇kWpq∇lWrs ≤ 0 . (3.6)

In view of (2.5), the claim now follows from the maximum principle. �

We now show that G satisfies both of our required estimates (Properties 1) uniformly:

Lemma 3.3. For all ε > 0 there exist constants c2 > 0 and γ > 0 such that

−c2
|∇W|2

F
≤ (ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs ≤ −

1

c2

|∇W|2

F
(3.7)

and

(FĠkl −GḞ kl)h2
kl ≤ −γF |W|2 (3.8)

whenever G > εF .

Proof. Let A ∈ GL(n) be a diagonal matrix and T ∈ Rn⊗Rn⊗Rn be a totally symmetric tensor.
Define

Q(A, T ) := −
(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)∣∣∣
A
TkpqTlrs ≥ 0 . (3.9)

Recalling the application of the Cauchy-Schwarz inequality to (3.5) reveals that equality occurs
in (3.9) only if T is radial, that is, if for each k we have Tkpq = µkApq for some constant µk.

Define the set Γε := {x ∈ Γ : εf(z) ≤ g(z) ≤ c0f(z)}. Then, to prove (3.7), we need to
demonstrate uniform positive bounds for FQ(A, T ) whenever A has eigenvalues in Γε and |T | 6= 0.
Since Q is homogeneous of degree two with respect to T , we may assume without loss of generality
that |T | = 1. Moreover, since Q is homogeneous of degree −1 with respect to A, it suffices to obtain
the required bounds on the compact slice K := {A ∈ SΓ : εF (A) ≤ G(A) ≤ c0F (A), |A| = 1}.
The upper bound now follows immediately from the continuity of Q.

To prove the lower bound, it suffices to show that Q(A, T ) = 0 for A ∈ K only if |T | = 0. We
have seen that Q(A, T ) can only vanish if T is radial. Then, since A is diagonal, it follows that T
is also diagonal: Tklm 6= 0 only if k = l = m. Since A 6= 0, there is some p for which λp(A) 6= 0.
But, since Tklm = µkAlm = µkλl(A)δlm, we have for any k

Tkkk =
λk(A)

λp(A)
Tkpp .
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But Tkpp vanishes unless k = p. Thus T has at most one non-zero component: Tppp. It follows
that A has at most one non-zero eigenvalue: If instead we had λq > 0 for some q 6= p, then we

could obtain the contradiction Tppp =
λp
λq
Tqpp = 0. Since A ∈ SΓε ⊂ SΓ, we must have λp(A) > 0.

But this implies that that G(A) = 0, so that A /∈ K, a contradiction. Therefore Q can only vanish
if T vanishes. This completes the proof of (3.7).

For the second estimate, we observe that, in an orthonormal basis of eigenvectors of W,

(FĠkl −GḞ kl) ≤ FĠkl = F ġkδkl ≤ 2F
g1

g2
ġkl1 δ

kl .

Now g1/g2 is positive on Γε and therefore has a strictly positive lower bound on the compact slice
Γε ∩ {|z| = 1}. Similarly, ġk1 < 0 on Γε, and therefore has a strictly negative upper bound on
Γε ∩ {|z| = 1}. Since both terms are homogeneous of degree zero, these bounds extend unharmed
to Γε, and the claim follows. �

Now consider, for some positive constants ε and σ, the function

Gε,σ :=

(
G

F
− ε
)
Fσ .

Observe that the upper bound G/F < c0 implies

Gε,σ < c0F
σ . (3.10)

We have the following evolution equation for Gε,σ:

Lemma 3.4. The function Gε,σ satisfies the following evolution equation:

(∂t − L)Gε,σ = Fσ−1(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs +
2(1− σ)

F
〈∇Gε,σ,∇F 〉F

− σ(1− σ)

F 2
|∇F |2F + σGε,σ|W|2F , (3.11)

where we have introduced the notation 〈u, v〉F := Ḟ klukul and |W|2F := Ḟ klh2
kl.

Proof. We first compute

∇Gε,σ = Fσ−1

(
∇G− G

F
∇F

)
+
σ

F
Gε,σ∇F .

It follows that

LGε,σ = Fσ−1

(
LG− G

F
LF
)

+
σ

F
Gε,σLF − 2

σ − 1

F
〈∇Gε,σ,∇F 〉F

+
σ(1− σ)

F 2
Gε,σ|∇F |2F . (3.12)

Therefore,

(∂t − L)Gε,σ = Fσ−1

(
(∂t − L)G− G

F
(∂t − L)F

)
+
σ

F
Gε,σ(∂t − L)F

+ 2
1− σ
F
〈∇Gε,σ,∇F 〉F −

σ(1− σ)

F 2
Gε,σ|∇F |2F

= Fσ−1(ĠklF̈ pq,rs − Ḟ klG̈pq,rs)∇khpq∇lhrs + σGε,σ|h|2F

+ 2
1− σ
F
〈∇Gε,σ,∇F 〉F −

σ(1− σ)

F 2
Gε,σ|∇F |2F

as required.
�

Just as in for the the mean curvature flow, it is the final two terms of the evolution equa-
tion (3.11) which obstruct the application of the maximum principle. We will proceed by the
Stampacchia-De Giorgi iteration method as applied in [Hu84, HS99a]. The first step is to show
that the spatial Lp norms of the positive part, (Gε,σ)+ := max{Gε,σ, 0}, of Gε,σ are non-increasing
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in t, so long as σ is sufficiently small. As in [Hu84, HS99a, HS99b], this leads to a uniform upper
bound on Gε,σ for small, non-zero σ.

4. The Integral Estimates

Proposition 4.1. For all ε > 0 there exist constants `, L > 0 such that for all p > L and
0 < σ < `p−

1
2 , the Lp(M,µ(t)) norm of (Gε,σ)+ is non-increasing in t.

To simplify notation somewhat, we fix ε > 0 and denote E := (Gε,σ)+. Then Ep is C1 in t for
p > 1, with ∂tE

p = pEp−1∂tGε,σ. The evolution equation (3.11) for Gε,σ then implies

d

dt

∫
Ep dµ = p

∫
Ep−1LGε,σ dµ− p

∫
Ep−1Fσ−1Q(∇W) dµ

+ 2(1− σ)p

∫
Ep−1 〈∇Gε,σ,∇F 〉F

F
dµ− σ(1− σ)p

∫
Ep
|∇F |2F
F 2

dµ

+ σp

∫
Ep|W|2F dµ−

∫
EpHF dµ , (4.1)

where Q(∇W) = −
(
ĠklF̈ pq,rs − Ḟ klG̈pq,rs

)
∇khpq∇lhrs. It will be useful to estimate |∇F |F in

terms of |∇W| as follows

Lemma 4.2. There is a constant, c3 > 0 for which |∇F |2F ≤ c3|∇W|2.

Proof. Since ∇kF = ḟp∇khpp in an orthonormal basis of eigenvectors of W, the claim follows

from the uniform positive bounds on ḟ i along the flow. �

For p > 2, we can integrate the first term of (4.1) by parts:∫
Ep−1LGε,σ dµ = − (p− 1)

∫
Ep−2|∇Gε,σ|2F dµ−

∫
Ep−1F̈ kl,rs∇khrs∇lGε,σ dµ .

The first term on the right will be useful. We estimate the second term (when Gε,σ > 0) using
Young’s inequality as follows:

−F̈ kl,rs∇khrs∇lGε,σ ≤
2c4
F

∑
k,l,r,s

∣∣∇khrs∇lGε,σ∣∣
≤ c4E

∑
k,l,r,s

(
(∇khrs)2

p
1
2F 2

+
p

1
2 (∇lGε,σ)2

E2

)

= c4E

(
p−

1
2
|∇W|2

F 2
+ p

1
2
|∇Gε,σ|2

E2

)
, (4.2)

where we have estimated each of the homogeneous terms F̈ kl,rs above by 2c4/F .
A useful term is obtained from the second term of (4.1) using the first estimate of Lemma 3.3.

We estimate the third term using Young’s inequality as follows:∫
Ep
〈
∇Gε,σ
E

,
∇F
F

〉
F

dµ ≤ p
1
2

2

∫
Ep−2|∇Gε,σ|2F dµ+

p−
1
2

2

∫
Ep
|∇F |2F
F

dµ . (4.3)

Putting this back together, we obtain the following Lemma:

Lemma 4.3. For all σ ∈ (0, 1) it holds that

d

dt

∫
Epdµ ≤

(
(c1 + c4)p

3
2 − 1

c1
p(p− 1)

)∫
Ep−2|∇Gε,σ|2 dµ

+

(
(c3 + c4)p

1
2 − 1

c0c2
p

)∫
Ep
|∇W|2

F 2
dµ+ c5 (σp+ 1)

∫
Ep|W|2dµ . (4.4)

Proof. Since −HF/|W|2 is homogeneous of degree zero in the principal curvatures, it may be
estimated above by some constant, which allows us to estimate the final term in (4.1). Now apply
the estimates of Lemmata 2.5, 4.2 and 3.3, and the inequalities (3.10), (4.2) and (4.3) to the
remaining terms. �
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Notice that for sufficiently large p the first two terms of (4.4) become negative. We now show
that the final term may similarly be controlled by the good negative terms, so long as σ is also
sufficiently small.

Proposition 4.4. There are positive constants A1, A2, A3, B1, B2 which are independent of p and
σ such that:∫

Ep|W|2 ≤
(
A1p

3
2 +A2p

1
2 +A3

) ∫
Ep−2|∇Gε,σ|2 dµ+

(
B1p

1
2 +B2

) ∫
Ep
|∇W|2

F 2
dµ . (4.5)

Proof. We begin with the commutation formula (c.f. [AnBa, Proposition 5])

∇k∇lhpq = ∇p∇qhkl + hklh
2
pq − hpqh2

kl + hkqh
2
pl − hplh2

kq ,

which holds on a general hypersurface of Rn+1. This contracts to the following Simons type
identity:

Lhpq = Ḟ kl∇p∇qhkl + Fh2
pq − Ḟ klhpqh2

kl + Ḟ klhkqh
2
pl − Ḟ klhplh2

kq .

Contracting further with Ġ yields

ĠpqLhpq = ĠpqḞ kl∇p∇qhkl + (FĠkl −GḞ kl)h2
kl .

On the other hand, we have that

Ḟ kl∇p∇qhkl = ∇p∇qF − F̈ kl,rs∇phrs∇qhkl ,

so that

ĠpqLhpq = Ġpq∇p∇qF − ĠpqF̈ kl,rs∇phrs∇qhkl + (FĠkl −GḞ kl)h2
kl . (4.6)

We now recall (3.12):

LGε,σ = Fσ−1

(
LG− G

F
LF
)

+
σ

F
Gε,σLF − 2

1− σ
F
〈∇Gε,σ,∇F 〉F −

σ(1− σ)

F 2
Gε,σ|∇F |2F

= Fσ−1

(
Ḟ klĠpq∇k∇lhpq + Ḟ klG̈pq,rs∇khpq∇lhrs −

G

F
LF
)

+
σ

F
Gε,σLF

− 2
1− σ
F
〈∇Gε,σ,∇F 〉F +

σ(1− σ)

F 2
Gε,σ|∇F |2F . (4.7)

Putting (4.6) and (4.7) together, we obtain

LGε,σ = Fσ−1
(
Ḟ klG̈pq,rs − ĠklF̈ pq,rs

)
∇khpq∇lhrs + Fσ−2(FĠkl −GḞ kl)∇k∇lF

+ Fσ−1
(
FĠkl −GḞ kl

)
h2
kl +

σ

F
Gε,σLF − 2

(1− σ)

F
〈∇F,∇Gε,σ〉F

+
σ(1− σ)

F 2
Gε,σ|∇F |2F . (4.8)

The first and third terms on the right may be estimated from below using Lemma 3.3.
Applying Young’s inequality to the term involving the inner product, we obtain

−2
(1− σ)

F
〈∇F,∇Gε,σ〉F ≤ (1− σ)E

(
|∇F |2F
F 2

+
|∇Gε,σ|2F

E2

)
wherever Gε,σ > 0. Recalling the estimates of Lemmata 2.5, 3.3 and 4.2, and equation (3.10), we
arrive at

LGε,σ ≤ (c2 + c0c3 + c0c1)Fσ
|∇W|2

F 2
+ Fσ−2(FĠkl −GḞ kl)∇k∇lF − γFσ|W|2

+
σ

F
Gε,σLF + c0c1F

σ |∇Gε,σ|2

E2
.
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Now put the γFσ|W|2 term on the left, multiply the equation by EpF−σ, and integrate over M
to obtain

γ

∫
Ep|W|2 dµ ≤ −

∫
EpF−σLGε,σ dµ+ (c2 + c0c3 + c0c1)

∫
Ep
|∇W|2

F 2
dµ

+

∫
EpF−2(FĠkl −GḞ kl)∇k∇lF dµ+ σ

∫
Ep+1F−1−σLF dµ

+ c0c1

∫
Ep−2|∇Gε,σ|2 dµ . (4.9)

Integrating the first term on the right by parts, we obtain the following estimate:

Lemma 4.5. If σ ∈ (0, 1) and p > 2, there are constants C1, C2, D1 > 0, independent of σ and p,
such that

−
∫
EpF−σLGε,σ dµ ≤

(
C1p+ C2

) ∫
Ep−2|∇Gε,σ|2 dµ+D1

∫
Ep
|∇W|2

F 2
dµ .

Proof. Integrating by parts, we find

−
∫
EpF−σLGε,σ dµ = p

∫
Ep−1F−σ|∇Gε,σ|2F dµ− σ

∫
EpF−σ−1〈∇Gε,σ,∇F 〉F dµ

+

∫
EpF−σF̈ kl,rs∇khrs∇lGε,σ dµ .

Estimating each of the coefficients of F̈ above by 2c4
F and applying Young’s inequality to the second

and third terms, we obtain

−
∫
EpF−σLGε,σ dµ ≤ c0p

∫
Ep−2|∇Gε,σ|2F dµ+

c0σ

2

∫
Ep
(
|∇Gε,σ|2F

E2
+
|∇F |2F
F 2

)
dµ

+
c0c4

2

∫
Ep
(
|∇W|2

F 2
+
|∇Gε,σ|2

E2

)
dµ .

Therefore,

−
∫
EpF−σLGε,σ dµ ≤

(
c0c1p+

c0c1σ

2
+
c0c4

2

)∫
Ep−2|∇Gε,σ|2 dµ

+
(c0c1c2σ

2
+
c0c4

2

)∫
Ep
|∇W|2

F 2
dµ .

�

In the same way, we obtain the following estimate on the third term of (4.9):

Lemma 4.6. There are constants C3, C4, D3, D4 > 0, independent of p > 2 and σ ∈ (0, 1), such
that ∫

EpF−2(FĠkl −GḞ kl)∇k∇lF dµ ≤
(
C3p

3
2 + C4

) ∫
Ep−2|∇Gε,σ|2 dµ

+
(
D3p

1
2 +D4

) ∫
Ep
|∇W|2

F 2
dµ .

And the fourth term:

Lemma 4.7. There are constants C5, C6, D5, D6 > 0, independent of p and σ, such that∫
Ep+1F−1−σLF dµ ≤

(
C5p

3
2 + C6

) ∫
Ep−2|∇Gε,σ|2 dµ+

(
D5p

1
2 +D6

) ∫
Ep
|∇W|2

F 2
dµ .

This completes the proof of Proposition 4.4.
�
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Combining Proposition 4.4 with Lemma 4.3, we obtain

d

dt

∫
Ep dµ ≤ −

(
c1p

2 − α1σp
5
2 − α2σp

2 − α3p
3
2 − α4p

)∫
Ep−2|Gε,σ|2 dµ

−
(
β1p− β2σp

1
2 − β3σp− β4p

1
2 − β5

)∫
Ep
|∇W|2

F 2
dµ .

for some constants αi, βi > 0, which are independent of σ and p. Proposition 4.1 follows easily.

5. Proof of Theorem 1.1

We are now able to proceed just as in [Hu84, Section 5] and [HS99a, Section 3], using Proposition
4.1 and the following lemma to derive the desired bound on Gε,σ.

Lemma 5.1 (Stampacchia [St66]). Let ϕ : [k0,∞)→ R be a non-negative, non-increasing function
satisfying

ϕ(h) ≤ C

(h− k)α
ϕ(k)β , h > k > k0 , (5.1)

for some constants C > 0, α > 0 and β > 1. Then

ϕ(k0 + d) = 0 ,

where dα = Cϕ(k0)β−12
αβ
β−1 .

Now, given any k ≥ k0, where k0 := supσ∈(0,1) supM Gε,σ(·, 0), set

vk(x, t) :=
(
Gε,σ(x, t)− k

) p
2

+
and Ak(t) := {x ∈M : vk(x, t) > 0} .

We will show that ϕ(k) = |Ak| :=
∫ T

0

∫
Ak(t)

dµ(·, t) dt satisfies the conditions of Stampacchia’s

Lemma for some k1 ≥ k0 . This provides us with a constant d for which |Ak1+d| vanishes. Theorem
1.1 then follows. Observe that |Ak| is non-negative and non-increasing with respect to k. Then
we only need to demonstrate that an inequality of the form (5.1) holds.

We begin by noting that

Lemma 5.2. There are constants L1 ≥ L and c6 > 0 such that for all p > L1 we have

d

dt

∫
v2
k dµ+

1

c1

∫
|∇vk|2 dµ ≤ c6(σp+ 1)

∫
Ak

F 2Gpε,σ dµ . (5.2)

Proof. Observe that

d

dt

∫
v2
k dµ =

∫
Ak

p(Gε,σ − k)p−1
+ ∂tGε,σ dµ−

∫
v2
kHF dµ .

The result is then obtained by proceeding as in Lemma (4.3), applying

|∇vk|2 =
p2

4
(Gε,σ − k)p−2

+ |∇Gε,σ|2 ,

and estimating |W|2 ≤ CF 2 using the degree zero homogeneity of |W|2/F 2. �

Now set σ′ = σ + n
p . Then∫

Ak

Fn dµ ≤
∫
Ak

Fn
(Gε,σ)

p
+

kp
dµ = k−p

∫
Ak

(Gε,σ′)
p
+ dµ ≤ k−p

∫
(Gε,σ′)

p
+ dµ . (5.3)

If p ≥ max
{
L1,

4n2

`2

}
and σ ≤ `

2p
− 1

2 , then p ≥ L1 and σ′ ≤ `p− 1
2 , so that, by Proposition 4.1,∫

Ak

Fn dµ ≤ k−p
∫

(Gε,σ′(·, 0))
p
+ dµ0 ≤ µ0(M)

(
k0

k

)p
. (5.4)

Choosing k sufficiently large, the right hand side of this inequality can be made arbitrarily small.
We will use this fact in conjunction with the following Sobolev inequality to exploit the good
gradient term in (5.2).
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Lemma 5.3 (Huisken [Hu84]). There is a constant cS (independent of σ, p, and ε) such that(∫
v2q
k dµ

) 1
q

≤ cS

(∫
|∇vk|2 dµ+

(∫
Ak

Fn dµ

) 2
n
(∫

v2q
k dµ

) 1
q

)
, (5.5)

where q is equal to n
n−2 if n > 2, or any positive number if n = 2.

Proof. Since we have the estimate H2 < CF 2 (by degree zero homogeneity of the quantity H2/F 2)
this follows from the Michael-Simon Sobolev inequality [MS73] and the Hölder inequality just as
in [Hu84]. �

It follows from (5.4) and (5.5) that there is some k1 > k0 such that for all k > k1 we have(∫
v2q
k dµ

) 1
q

≤ 2cS

∫
|∇vk|2 dµ .

Therefore, from (5.2), we have for all k > k1

d

dt

∫
v2
k dµ+

1

2c1cS

(∫
v2q dµ

) 1
q

≤ c6(σp+ 1)

∫
Ak

F 2Gpε,σ dµ .

Integrating this over time, and noting that Ak(0) = ∅, we find

sup
[0,T )

(∫
Ak

v2
k dµ

)
+

1

2c1cS

∫ T

0

(∫
v2q dµ

) 1
q

dt ≤ 2c6(σp+ 1)

∫ T

0

∫
Ak

F 2Gpε,σ dµ dt . (5.6)

We now exploit the interpolation inequality for Lp spaces:

|f |q0 ≤ |f |1−θr |f |θq , (5.7)

where θ ∈ (0, 1) and 1
q0

= θ
q + 1−θ

r . Setting r = 1 and θ = 1
q0

, we may assume 1 < q0 < q. Then

applying (5.7) we find ∫
Ak

v2q0
k dµ ≤

(∫
Ak

v2
k dµ

)q0−1(∫
Ak

v2q dµ

) 1
q

.

Now, applying the Hölder inequality, we find,(∫ T

0

∫
Ak

v2q0
k dµ dt

) 1
q0

≤

(
sup
[0,T )

∫
Ak

v2
k dµ

) q0−1
q0
(∫ T

0

(∫
Ak

v2q dµ

) 1
q

dt

) 1
q0

.

Using Young’s inequality, ab ≤
(

1− 1
q0

)
a

q0
q0−1 + 1

q0
bq0 , on the right hand side, we obtain(∫ T

0

∫
Ak

v2q0
k dµdt

) 1
q0

≤
(

1− 1

q0

)
sup
[0,T )

∫
Ak

v2
k dµ+

1

q0

∫ T

0

(∫
Ak

v2q dµ

) 1
q

dt

≤ sup
[0,T )

∫
Ak

v2
k dµ+

∫ T

0

(∫
Ak

v2q dµ

) 1
q

dt .

Recalling (5.6), we arrive at(∫ T

0

∫
Ak

v2q0
k dµ dt

) 1
q0

≤ 2c6(σp+ 1)

∫ T

0

∫
Ak

F 2Gpε,σ dµ dt . (5.8)

Application of the Hölder inequality yields the inequalities∫ T

0

∫
Ak

F 2Gpε,σ dµ dt ≤ |Ak|1−
1
r

(∫ T

0

∫
Ak

F 2rGprε,σ dµ , dt

) 1
r

≤ c7|Ak|1−
1
r (5.9)

and

∫ T

0

∫
Ak

v2
k dµ dt ≤ |Ak|

1− 1
q0

(∫ T

0

∫
Ak

v2q0
k dµ dt

) 1
q0

, (5.10)
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where the integral on the right hand side of (5.9) was estimated in a similar manner to (5.4), with

c7 := k2
0 (Tµ0(M))

1
r (so long as σ ≤ l

4p
− 1

2 , and 2r > L2 := max{L1,
4n2

l2 ,
64
l2 }, say). Finally, for

h > k ≥ k1 we may estimate

|Ah| :=
∫ T

0

∫
Ah

dµ dt =

∫ T

0

∫
Ah

(Gε,σ − k)p+
(Gε,σ − k)p+

dµ dt ≤
∫ T

0

∫
Ah

(Gε,σ − k)p+
(h− k)p

dµ dt .

Since Ah(t) ⊂ Ak(t) for all t ∈ [0.T ), and v2
k := (Gε,σ − k)p+, we obtain

(h− k)p|Ah| ≤
∫ T

0

∫
Ak

v2
k dµ dt . (5.11)

Putting together estimates (5.8), (5.9), (5.10) and (5.11), we arrive at

|Ah| ≤
2c6c7(σp+ 1)

(h− k)p
|Ak|γ

for all h > k ≥ k1, where γ := 2− 1
q0
− 1
r . Now fix p := 2L2 and choose σ < `

4p
− 1

2 sufficiently small

that σp < 1. Then, choosing r > max{ q0
q0−1 , L2}, so that γ > 1, we may apply Stampacchia’s

Lemma. We conclude that |Ak| = 0 for all k > k1 + d, where dp = c6c72
γp
γ−1 +2|Ak1 |γ−1. We note

that d is finite, since T is finite and∫
Ak1

dµ ≤
∫
Ak1

(Gε,σ)p+
kp1

dµ ≤ k−p1

∫
(Gε,σ)p+ dµ ≤ k

−p
1

∫
(Gε,σ(·, 0))p+ dµ0 ,

where the final estimate follows from Proposition 4.1.
It follows that

G ≤ εF + (k1 + d)F 1−σ ≤ 2εF + Cε

for some suitably large constant Cε > 0. Theorem 1.1 follows.

6. Rescaling about type-II singularities

We now analyse the structure of fast forming singularities. Let X : M × [0, T ) → Rn+1 be a
smooth, compact solution of (1.1) satisfying the following ansatz: For all C > 0 there is a time
tC ∈ [0, T ) such that

max
x∈M

|W(x, t)|2 ≥ C

T − t
(6.1)

for all t ∈ [tC , T ). We say that the flow undergoes a type-II singularity. To analyse the shape of
type-II singularities, we consider, following Hamilton [Ham95b] and Huisken-Sinestrari [HS99a],
the following sequence of parabolic rescalings: For each k ∈ N, choose a sequence (tk) of times
tk ∈ [0, T − 1/k], and a sequence (xk) of points xk ∈M such that

|W(xk, tk)|2
(
T − 1

k
− tk

)
= max

(x,t)∈M×[0,T−1/k]
|W(x, t)|2

(
T − 1

k
− t
)
.

Now set

Lk := |W(xk, tk)|2 , αk := −Lktk , and σk := Lk

(
T − 1

k
− tk

)
.

Lemma 6.1. As k →∞, we have

tk → T , Lk →∞ , αk → −∞ , and σk →∞.

Proof. By the ansatz (6.1), for all R > 0 there exists tR ∈ [0, T ) and xR ∈M such that

|W(xR, tR)|2(T − tR) > 2R .

On the other hand, there is some sufficiently large kR ∈ N such that

tR < T − 1

k
, |W(xR, tR)|2

(
T − 1

k
− tR

)
> R
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for all k > kR. Therefore, by definition,

σk ≥ |W(xR, tR)|2
(
T − 1

k
− tR

)
> R

for all k > kR. Since R was arbitrary, we find σk →∞ as k →∞.
Since

(
T − 1

k − tk
)

is bounded, it follows from the definition of σk that Lk → ∞ as k → ∞.
Therefore, since |W| remains bounded whilst t < T , we must have tk → T . It follows that
αk → −∞. �

Now consider the rescalings

Xk(x, t) =
√
Lk

(
X

(
x,

t

Lk
+ tk

)
−X(xk, tk)

)
; for t ∈ [αk, σk] .

It is straightforward to compute

∂Xk

∂t
(x, t) = − L−

1
2

k F

(
x,

t

Lk
+ tk

)
ν

(
x,

t

Lk
+ tk

)
;

∂Xk

∂xi
(x, t) =

√
Lk
∂X

∂xi

(
x,

t

Lk
+ tk

)
⇒ (gk)ij(x, t) = Lkgij

(
x,

t

Lk
+ tk

)
⇒ (gk)ij(x, t) =

1

Lk
gij
(
x,

t

Lk
+ tk

)
;

and

νk(x, t) = ν

(
x,

t

Lk
+ tk

)
⇒ kDiνk(x, t) = kDiν

(
x,

t

Lk
+ tk

)
⇒ Wk(x, t) = L

− 1
2

k W
(
x,

t

Lk
+ tk

)
⇒ Fk(x, t) = L

− 1
2

k F

(
x,

t

Lk
+ tk

)
,

where we used the script k to distinguish quantities related to the rescaling Xk (in particular, kD
is the pullback of the Euclidean connection along Xk). We refer to the sequence (Xk) as a blow-up
sequence. Observe that the rescalings satisfy the flow equation (1.1). We also note the following
properties (c.f. [HS99a, Lemma 4.4]):

Lemma 6.2.

(i) For each k ∈ N, Xk(xk, 0) = 0 and |W(xk, 0)| = 1
(ii) For any ε > 0 and Σ > 0 there exists k0 ∈ N such that σk > Σ and

max
M×[αk0 ,Σ]

|Wk|2 ≤ 1 + ε (6.2)

for all k ≥ k0.
(iii) For any ε > 0 there exists Cε such that

−κ(k)
1 (x, t) ≤ εFk(x, t) +

Cε√
Lk

(6.3)

for all (x, t) ∈M × [αk, σk], where κ
(k)
1 is the smallest principal curvature of Xk.

Proof. Part (i) is immediate from the definitions and our calculation of Wk.
To prove part (ii), first note that

|Wk(x, t)|2 = L−1
k |W(x, L−1

k t+ tk)|2 .

By the definition of Lk and the choice of (xk, tk) we also have

|W(x, L−1
k t+ tk)|2

(
T − 1

k
− (L−1

k t+ tk)

)
≤ Lk

(
T − 1

k
− tk

)
.
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Therefore:

|Wk(x, t)|2 ≤
T − 1

k − tk
T − 1

k − tk − L
−1
k t

=
σk

σk − t
= 1 +

t

σk − t
.

Since σk →∞, the claim follows.
For part (iii), we have

κk1(x, t) =
1√
Lk
κ1(x, L−1

k t+ tk) .

Therefore, by Theorem 1.1, for all ε > 0 there exists Cε such that

−κk1(x, t) ≤ 1√
Lk

(
εF (x, L−1

k t+ tk) + Cε
)

= εFk(x, t) +
Cε√
Lk

for all (x, t) ∈M × [−αk, σk]. �

We now prove Corollary 1.2.

Proof of Corollary 1.2. Since the flow speed is a convex function of the Weingarten map, the flow
admits second derivative Hölder estimates, and we may proceed as in [Ba11, Section 3], using
Lemma 6.2, to obtain a sublimit X∞ : M∞× I∞ → Rn+1 of the blow-up sequence. Since for each
k the rescaled immersion Xk is a solution of the flow on the time interval [αk, σk], we deduce from
Lemma 6.1 that X∞ is an eternal solution of the flow (1.1) (that is, I∞ = R). Part (iii) of Lemma
6.2 implies that X∞ is weakly convex. Applying the strong tensor maximum principle [Ham82]
(c.f. [An07, Theorem 3.1]) to the evolution equation for the Weingarten map

∂thi
j = Lhij + F̈ pq,rs∇ihpq∇jhrs + Ḟ klh2

klhi
j ,

we deduce, just as in [HS99b, Theorem 4.1], that the rank of W is constant and its null-space is
invariant under parallel transport. The same use of Frobenius’ Theorem as in [Hu93, Theorem
5.1] (c.f. [Ham84]) then implies that M∞ splits isometrically as a product Rn−k × Σk∞ for some
1 ≤ k ≤ n, where Σk∞ is strictly convex. Moreover, X∞

∣∣
Σk∞

solves the flow (1.1) in Rk+1.

Now observe that, by Lemma 6.2 (i) and (ii), the maximum value of |W∞| is 1, and occurs
at (x∞, 0); it follows that the maximum value of F is also attained here. We complete the proof
by applying the differential Harnack inequality of [An94b] to deduce that X∞

∣∣
Σk∞

(Σk∞) moves by

translation (c.f. [Ham95a]).

Proposition 6.3. Let X : Σk × R → Rk+1 be a strictly convex, eternal solution of (1.1) with
admissible speed F such that supΣ×R F is attained. Then X moves by translation.

Proof. Consider the function Φ(A) = −F (A−1), where F : S+ → R gives the flow speed as a
function of the Weingarten map (here, S+ is the cone of symmetric, positive definite matrices).
For any A ∈ S+, B ∈ GL(n), we have

Φ̇
∣∣
A

(B) =
d

ds

∣∣∣∣
s=0

Φ(A+ sB) = − d

ds

∣∣∣∣
s=0

F
(
[A+ sB]−1

)
= Ḟ

∣∣
A

(
A−1BA−1

)
,

and

Φ̈
∣∣
A

(B,B) =
d2

ds2

∣∣∣∣
s=0

Φ(A+ sB) = − F̈
∣∣
A

(
A−1BA−1, A−1BA−1

)
− 2Ḟ

∣∣
A

(
A−1BA−1BA−1

)
.

Since F̈ ≥ 0, Ḟ > 0, and F > 0, it follows that

Φ̈ +
1− α
α

Φ̇⊗ Φ̇

Φ
≤ 0

for all α ∈ (0, 1). That is, Φ is α-concave for all α ∈ (0, 1). Thus Corollary 5.11 of [An94b] may
be applied. We deduce that any strictly convex solution of (1.1) satisfies

∂tF − g
(
W−1(gradF ), gradF

)
+

(α− 1)F

α(t− t0)
≥ 0 (6.4)
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for all t > t0, where t0 is the initial time, grad is the gradient operator on M , and F gives the
speed along the flow in the Gauss map parametrisation. It follows that any strictly convex, eternal
solution of (1.1) satisfies

P := ∂tF − g
(
W−1(gradF ), gradF

)
≥ 0 .

Moreover, (6.4) is deduced from the maximum principle applied to the time evolution of P , such
that equality is attained at a space-time point only if equality holds identically. Since by assump-
tion supΣ×R F is attained, P vanishes identically.

We now recall the evolution equation [An94b, Equation 5.2] for the Harnack quantity P :(
∂t − L̄

)
P = Φ̇(Id)P + Φ̈(Q,Q) ,

where Q is the time derivative of the inverse of the Weingarten map in the Gauss map parametri-
sation, and L̄ is the elliptic operator corresponding to L in the Gauss map parametrisation. Since
P is identically zero, this simply says Φ̈(Q,Q) = 0. Recalling the equation for Φ̈, positive def-

initeness of Ḟ and strict convexity of Σ imply that Q must vanish. Returning to the standard
parametrisation (e.g. using [An94b, Lemma 3.10]), we find 0 = Q =W−1 ◦ (∂tW −∇VW) ◦W−1,
where we have defined the vector field V := −W−1(gradF ). Substituting ∂tW = ∇gradF+FW2,
we have, for all u ∈ TΣ,

0 = ∇ugradF + FW2(u)−∇uW(V )

= ∇u(gradF +W(V )) +W(FW(u)−∇uV ) .

It follows that ∇V − FW = 0.
Now define the Euclidean vector T := V i ∂X∂xi − Fν. Then, for all u ∈ TΣ,

XDuT = (∇uV − FW(u))− g (W(V ) + gradF, u) ν = 0 .

Thus T is parallel. Now set X̃(x, t) := X(φ(x, t), t), where φ is the solution of dφi

dt = V i with
initial condition φ(x, 0) = x. Then

∂X̃

∂t
=
∂X

∂xi
dφi

dt
+
∂X

∂t
= T .

�

This completes the proof of Corollary 1.2. �
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