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Abstract. In this note, we prove that at a singularity of an (m+1)-convex mean curvature
flow, Andrews’ non-collapsing ratio [An12] improves as much as is allowed by the example
of the shrinking cylinder Rm × Sn−m. More precisely, we show that for any ε > 0 we have
k ≤ (1+ε) 1

n−m
H wherever the mean curvature H is sufficiently large, where k is the interior

ball curvature. When (m + 1) < n, this estimate improves the inscribed radius estimate
of Brendle [Br], which was subsequently proved much more directly by Haslhofer-Kleiner in
[HKb] using the powerful new local blow-up method they developed in [HKa]. Our estimate
is also based on their local blow-up method, but we do not require the structure theorem
for ancient flows, instead making use of the gradient term which appears in the evolution
equation of the two-point function which defines the interior and exterior ball curvatures.
We also obtain an optimal exterior ball estimate for flows of convex hypersurfaces.

1. Introduction

Recently, Haslhofer-Kleiner have developed a powerful new approach to the study of mean
convex mean curvature flow [HKa]. In particular, making use of Andrews’ non-collapsing
estimate [An12], they have obtained local curvature estimates which allow them to extract
a blow-up limit from a sequence whose curvature is normalised only at a single point. This
observation is invaluable for many applications of the strong maximum principle which were
previously impossible. The power of their technique is vividly illustrated by their short proofs
of the crucial curvature estimates for mean convex mean curvature flow, and, more recently,
their short proof of Brendle’s inscribed radius estimate [HKa, Br].

Let X : M × [0, T ) → Rn+1 be an embedded solution of the mean curvature flow, and
consider the function which at each point gives the boundary curvature of the largest ball
which is enclosed by the solution, and touches it at that point. We call this quantity the
interior ball curvature, and denote it by k. Similarly, we refer to the function which at each
point gives the boundary curvature of the smallest ball, halfspace or ball compliment which
encloses the hypersurface and touches it at that point as the exterior ball curvature1, and
denote it by k. We recall [ALM13, Proposition 4] that

k(x, t) = sup
y∈M\{x}

k(x, y, t)
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1With the convention that the boundary curvature of an enclosing ball is positive, and the boundary

curvature of an enclosing ball-compliment is negative. Although we have stated the definitions for closed
hypersurfaces, they may be easily modified to include non-closed hypersurfaces equipped with a choice of
‘outer’ unit normal field.
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and

k(x, t) = inf
y∈M\{x}

k(x, y, t) ,

where

k(x, y, t) :=
2 〈X(x, t)−X(y, t), ν(x, t)〉
||X(x, t)−X(y, t)||2

.

We note that κmax ≤ k and κmin ≥ k, where κmax and κmin are, respectively, the largest and
smallest principal curvatures of the solution.

The main assertion of [An12] is that there are constants k0 ∈ R and K0 > 0 such that

k ≤ K0H

and

k ≥ k0H .

That is, the collapsing ratios k/H and k/H do not deteriorate under the flow. Brendle
was able to prove, using a weak version of Huisken’s Stampacchia iteration scheme and the
Huisken-Sinestrari convexity estimates [HS99], that in fact these ratios improve under the
flow. In terms of the interior ball curvatures, Brendle proved the following two statements:

Theorem 1.1 (Interior ball estimate for mean convex flows [Br, HKb]). Let X : Mn×[0, T )→
Rn+1 be a smooth, embedded, closed mean convex solution of the mean curvature flow. Then
for every ε > 0 there exists Hε <∞ such that

k ≤ (1 + ε)H

wherever H ≥ Hε.

Theorem 1.2 (Exterior ball estimate for mean convex flows [Br, HKb]). Let X : Mn ×
[0, T ) → Rn+1 be a smooth, embedded, closed, mean convex solution of the mean curvature
flow. Then for every ε > 0 there exists Hε <∞ such that

k ≥ −εH
wherever H ≥ Hε.

Haslhofer-Kleiner subsequently produced a very simple proof of these estimates [HKb] based
on the new methods they develpoed in [HKa]. Importantly, their proof does not require the
convexity estimates, which then immediately follow from Theorem 1.2.

Our goal in this note is to improve these estimates for (m+ 1)-convex flows. The interior
ball estimate is as follows:

Theorem 1.3 (Interior ball estimate for (m+ 1)-convex flows). Let X : Mn× [0, T )→ Rn+1

be a smooth, embedded, (m+ 1)-convex solution of the mean curvature flow. Then for every
ε > 0 there exists Hε <∞ such that

k ≤ (1 + ε)
H

n−m
wherever H ≥ Hε.

The exterior ball estimate is already optimal unless the flow becomes convex (i.e. m = 0).
In that case we obtain the following stronger estimate:
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Theorem 1.4 (Exterior ball estimate for convex flows). Let X : Mn × [0, T ) → Rn+1 be a
smooth, embedded, convex solution of the mean curvature flow. Then for every ε > 0 there
exists Hε <∞ such that

k ≥ (1− ε)H
n

wherever H ≥ Hε.

We note that our proof does not require any a priori estimates for the principal curvatures.
We therefore immediately obtain the corresponding cylindrical and pinching estmates for the
second fundamental form. For flows of convex hypersurfaces, the interior and exterior ball
estimates yield a very direct proof of Huisken’s Theorem [Hu84] (cf. [ALb]).

2. Proof of the Theorems

Proof of Theorem 1.3. Suppose the claim were false and let ε0 > 0 be the infimum over all
ε > 0 such that the estimate of the theorem holds. By the interior non-collapsing estimate,
ε0 <∞. As in [HKa, Theorem 1.10] and [HKb], we may blow the solution up at the singular
time such that the maximum value of k/H occurs at the origin, where H = 1. More explicitly,
let (xi, ti) ∈M× [0, T ) be a sequence satisfying k/H(xi, ti)→ 1+ε0

n−m and set λi = k(xi, ti)
n−m
1+ε0

.
Then the blow-up sequence given by

Xi(x, t) := λi
(
X(x, λ−2i t+ ti)−X(xi, ti)

)
satisfies Xi(xi, 0) = 0, ki(xi, 0) = 1+ε0

n−m and Hi(xi, 0) → 1. By the Haslhofer-Kleiner global

convergence theorem [HKa, Theorem 1.12], after passing to a subsequence, Xi converges
smoothly to a convex mean curvature flow X∞ : M∞ × (−∞, 0] → Rn+1. This limit attains
the maximum value of k/H at the origin at time 0. But k/H is a viscosity subsolution of the
equation [ALM13]

∂tu = ∆u+
2

H
〈∇H,∇u〉 .

Therefore, by the strong maximum principle, k/H must be constant on the limit flow. Thus
k ≡ K0H with K0 = 1+ε0

n−m .

Now consider the set U := {x ∈ M∞ : k(x, 0) > κmax(x, 0)}. Then for any x0 ∈ U there
is a point y0 ∈ M∞ \ {x0} such that k(x0, 0) = k(x0, y0, 0). Since k ≤ k ≡ K0H, we have
k(x, y, t)−K0H(x, t) ≤ 0, with equality at (x0, y0, 0). Thus, computing as in [ALb] we have
at (x0, y0, 0)

0 ≥ (∂t −∆M×M )(K0H − k) ≥
n∑

i=1

(∂xik)2

k − κxi
≥ 0

in local orthonormal coordinates on M ×M about (x0, y0) which diagonalise the Weingarten
map at x0. It follows that 0 = ∇k = K0∇H at (x0, 0). Since K0 is positive and x0 ∈ U
was arbitrary, we find ∇H ≡ 0 on U . Since U is open and has constant mean curvature,
it must be a part of a cylinder Rk × Sn−k (with k ≤ m since the limit is (m + 1)-convex).
Since a complete cylinder Rk × Sn−k satisfies k ≡ 1

n−kH < 1+ε0
n−mH, we must have U ( M∞.

Thus either U is empty or has a non-empty boundary in M∞. Suppose that U is non-
empty, so that there is a point x0 ∈ ∂U . By continuity, x0 is also a cylindrical point, so
that κmax(x0, 0) = k(x0, 0) = 1+ε0

n−mH(x0, 0) = 1+ε0
n−m(n − k)κmax(x0, 0) > κmax(x0, 0). This
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is a contradiction. Thus U is empty, in which case κmax ≡ k. But in this case, Brendle’s
trick [Br13, Proposition 8] implies ∇κmax ≡ 0, so that again ∇H ≡ 0, which leads to a
contradiction just as above. We have now exhausted all possibilities and are therefore forced
to conclude that ε0 = 0. �

For the exterior ball estimate we perform a similar blow-up and use the exterior non-
collapsing estimate to deduce that the limit is compact (and therefore cannot be a cylinder).
The rest of the proof is similar.
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