1) [20 points] Mark true or false. Justify your answers only for the ones which are false. [No need to justify if true.]

(a) For every function $f: X \to Y$ and $A, B \subseteq X$, we have that $f(A \cap B) = f(A) \cap f(B)$.

Solution. False, for instance $f(x) = x^2$, A = [-1,0], B = [0,1], then f(A) = f(B) = [0,1], $f(A \setminus B) = f([-1,0]) = (0,1]$, while, $f(A) \setminus f(B) = \emptyset$.

(b) For every function $f: X \to Y$ and $A, B \subseteq Y$, we have that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Solution. T.

(c) The function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ defined by $f(x) = 1/x^2$ is one-to-one.

Solution. False, as f(-1) = f(1) = 1.

(d) The function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ defined by $f(x) = 1/x^2$ is onto.

Solution. False, as f(x) > 0 for all x, and hence there is no $x_0 \in \mathbb{R} \setminus \{0\}$ such that f(a) = -1.

(e) If $f: X \to Y$ is invertible and $A, B \subseteq X$, then both $f^{-1}(f(A)) = A$ and $f(A \setminus B) = f(A) \setminus f(B)$ are true.

Solution. T.

- 2) [20 points] Functions:
 - (a) Let $f : \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$. Give f([-2,3]) and $f^{-1}((-1,3))$.

Solution. Draw the picture! We have that f([-2,3]) = [0,9], and $f^{-1}((-1,3)) = (-\sqrt{3},\sqrt{3})$.

(b) Is $g : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ given by g(x) = 1/x invertible? [Don't forget to justify!]

Solution. Yes. Suffices to show that there is a function $h : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ such that $g \circ h(x) = x$ and $h \circ g(x) = x$. But g(x) is such function: $g \circ g(x) = g(g(x)) = 1/g(x) = 1/(1/x) = x$.

3) [20 points] Prove by induction that for $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} (2k+1) = n^2 + 2n.$$

Proof. We first prove for n = 1. Indeed, we have

$$\sum_{k=1}^{1} (2k+1) = 2 \cdot 1 + 1 = 3 = 1^{2} + 2 \cdot 1.$$

Now suppose that

$$\sum_{k=1}^{m} (2k+1) = m^2 + 2m,$$

for some $m \ge 1$. [We need to prove that $\sum_{k=1}^{m+1} (2k+1) = (m+1)^2 + 2(m+1) = m^2 + 4m + 3$.] We have:

$$\sum_{k=1}^{m+1} (2k+1) = \left[\sum_{k=1}^{m} (2k+1)\right] + 2(m+1) + 1$$
$$= (m^2 + 2m) + 2m + 3$$
$$= m^2 + 4m + 3$$
$$= (m+1)^2 + 2(m+1).$$

_		

4) [20 points] Prove that $3^{2n} - 1$ is divisible by 8 for all $n \in \mathbb{N}$.

Proof. We prove it by induction on n. For n = 1, we have that $3^2 - 1 = 8$ is divisible by 8. Now suppose that $3^{2m} - 1 = 8q$ for some $q \in \mathbb{Z}$ [i.e., $3^{2m} - 1$ is divisible by 8] for some $m \ge 1$. [We need to show that $3^{2(m+1)} - 1$ is divisible by 8.] Then,

$$3^{2(m+1)} - 1 = 3^{2m+2} - 1$$

= $9 \cdot 3^{2m} - 1$
= $(8+1)3^{2m} - 1$
= $8 \cdot 3^{2m} + (3^{2m} - 1)$
= $8 \cdot 3^{2m} + 8q$
= $8 \cdot (3^{2m} + q)$.

Hence, since $q + 3^{2m} \in \mathbb{Z}$, 8 divides $3^{2(m+1)} - 1$.

г		٦
L		L
L		L
L,		

5) [20 points] Prove that $n + 2 \leq 3^n$ for all integers $n \in \mathbb{N}$.

Proof. We prove it by induction on n again. For n = 1, we have $1 + 2 = 3 \le 3 = 3^1$. Now suppose that $m + 2 \le 3^m$ for some $m \ge 1$. [We need to show that $(m + 1) + 2 \le 3^{m+1}$. We have

$$(m+1) + 2 = (m+2) + 1$$

$$\leq 3^{m} + 1$$
 [by the IH]

$$\leq 3^{m} + 3^{m}$$
 [as $0 < m$ implies $1 = 3^{0} < 3^{m}$]

$$= 2 \cdot 3^{m}$$

$$\leq 3 \cdot 3^{m} = 3^{m+1}$$
 [as $2 < 3$].

Hence, $(m+1) + 2 \le 3^{m+1}$.