
1) What’s the coefficient of x20 in (2 + 3x4)100? [You do not need to evaluate powers and
binomials.]

Solution. We have

(2 + 3x4)100 =
100∑
i=0

(
100

i

)
(3x4)i2100−i.

Hence, the coefficient is

(
100

5

)
35295 [i.e., we take i = 5].

1



2) [Remember: if a, b ∈ Z, then a divides b if there exists q ∈ Z such that b = a · q.] Let
a, b, d ∈ Z. Prove that d divides a and b if, and only if, d divides a and a + b.

Proof. [⇒] Suppose that d divides a and b. [We need to show that d divides a and a + b.]
Then, by definition there q1, q2 ∈ Z such that a = q1 · d and b = q2 · d. Then, a + b =
q1 · d + q2 · d = (q1 + q2) · d, and hence [since Z is closed under addition] d divides a + b by
definition [of division]. Since d also divides a [by assumption], we have that d divides a and
a + b.

[⇐] Suppose now that d divides a and a + b. [We need to show that d divides a and
b.] Then, by definition, there are q1, q3 ∈ Z such that a = q1 · d and a + b = q3 · d. Hence,
b = (a + b)− b = q3 · d− q1 · d = (q3 − q1) · d, and thus [since Z is closed under subtraction]
we have that d divides b by definition [of division]. Since d also divides a [by assumption],
we have that d divides a and b.
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3) Prove or disprove: A \ (B ∩ C) = (A \ C) ∪ (C \B).

Solution. The statement is false! [Again, it suffices to give a counterexample.] Let A =
B = ∅ and C = {1}. Then, A \ (B ∩ C) = ∅. Also, A \ C = ∅ and C \ B = {1}. Hence
(A \ C) ∪ (C \B) = {1} 6= ∅ = A \ (B ∩ C).
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4) Let R be the relation on R given by aRb iff a− b ∈ Z.

(a) Prove that R is an equivalence relation.

Proof. [Reflexive:] [We need to prove that xRx for all x ∈ R.] Given x ∈ R, we have
that x− x = 0 ∈ Z. Thus, xRx [by definition].

[Symmetric:] Suppose that xRy. [We need to prove that yRx.] Then, [by definition]
we have that x− y ∈ Z. Thus, −(x− y) = y − x ∈ Z [as 0 ∈ Z and Z is closed under
subtraction]. Hence, yRx [by definition].

[Transitive:] Suppose that xRy and yRz. [We need to prove that xRz.] By definition,
we have that x− y, y − z ∈ Z. Hence, [since Z is closed under addition] we have that
(x− y) + (y − z) = x− z ∈ Z, and thus xRz [by definition].

(b) Give three elements in the equivalence class 0.312, at least one of which is negative,
and three elements not in 0.312, at least one of which is negative. [No need to justify
this part.]

Solution. We have that 0.312, 1.312, 0.312− 1︸ ︷︷ ︸
=−0.688

∈ 0.312, and −1, 0, 1 6∈ 0.312.
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5) Find a closed formula for the recursion a0 = 0, an = 2 ·an−1−3 for n ≥ 1. [You don’t have
to show me how you came up with the formula, but you have to prove that it is correct.]

Solution. We have

a0 = 0

a1 = −3

a2 = 2 · (−3) + (−3)

a3 = 4 · (−3) + 2 · (−3) + (−3)

a4 = 8 · (−3) + 4 · (−3) + 2 · (−3) + (−3)

...

an = 2n−1 · (−3) + 2n−2 · (−3) + · · ·+ 21 · (−3) + 20 · (−3)

= (−3) · (2n−1 + 2n−2 + · · ·+ 21 + 20)

= −3 · 2n − 1

2− 1
= −3 · (2n − 1).

So, we claim that an = −3 · (2n − 1), and prove it by induction.

For n = 0, we have that a0 = 0 = −3 · (20 − 1).

Now, suppose that an = −3 · (2n − 1). [We need to prove that an+1 = −3 · (2n+1 − 1).]
We then have:

an+1 = 2 · an − 3 [recurrence]

= 2 · (−3 · (2n − 1))− 3 [ind. hyp.]

= −3 · (2 · (2n − 1) + 1) [factor −3]

= −3 · (2n+1 − 2 + 1) = −3 · (2n+1 − 1).
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6) Let f : X → Y and A ⊆ Y .

(a) Prove that if f is onto, then f(f−1(A)) = A.

Proof. [⊆] Let y ∈ f(f−1(A)). [We need to show that y ∈ A.] Then, by definition
of direct image, there exists x ∈ f−1(A) such that y = f(x). But, by definition of
preimage, we have that x ∈ f−1(A) means that f(x) ∈ A. Since y = f(x), we have
that y ∈ A. [Note that we did not use the fact that f is onto here.]

[⊇] Let y ∈ A. [We need to show that y ∈ f(f−1(A)).] Since f is onto, there
exists x ∈ X such that y = f(x). Since y ∈ A, by definition of preimage, we have
that x ∈ f−1(A). Since y = f(x) and x ∈ f−1(A), by definition of direct image,
y ∈ f(f−1(A)). [Note that the fact f is onto is used in this part.]

(b) Give an example of f and A such that f(f−1(A)) 6= A.

Solution. Let f : R → R be the function f(x) = x2, and take A = {−1, 1}. Then,
f−1(A) = {−1, 1}, and thus f(f−1(A)) = {1} 6= {−1, 1}.
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7) Prove by induction that
n

n + 1
≥ 1

2
for all n ∈ N. You can use any property of inequalities

we’ve seen before, as long as you state it clearly !

[Hint: Prove first that (n + 1)2 > n(n + 2). [You do not need induction for that!] Then,

note that
n + 1

n + 2
=

n

n + 1
· (n + 1)2

n(n + 2)
.]

Proof. First, observe that (n+1)2 = n2+2n+1 > n2+2n = n(n+2). Then, for n 6= −1,−2,

we have that
(n + 1)2

n(n + 2)
> 1.

Now, we prove the statement by induction. For n = 1, we have 1/(1 + 1) ≥ 1/2.

Suppose then that
n

n + 1
≥ 1

2
for some n ≥ 1. [We need to prove that

n + 1

n + 2
≥ 1

2
.] As

observed above, since n 6= −1,−2, we have that
(n + 1)2

n(n + 2)
> 1, and then

n + 1

n + 2
=

n

n + 1
· (n + 1)2

n(n + 2)
≥ 1

2
· 1 =

1

2
.

[Here, we’ve used the fact that if 0 < a ≤ b and 0 < c ≤ d, then ac ≤ bd.]
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8) Suppose that a and b are elements of an ordered field [you can think of R if you want]
that have n-th roots, and 0 < a < b. Prove that for all n ∈ N we have that a1/n < b1/n.
[This is straight from your HW! You can use anything we’ve proved in class or HW about
inequalities with integer exponents, as long as you state it clearly !]

Proof. We prove the result by contradiction. Suppose that a1/n ≥ b1/n. [We must derive a
contradiction.]

If a1/n = b1/n, then a = (a1/n)n = (b1/n)n = b, which is a contradiction [as a < b].
If a1/n > b1/n, since we know b1/n > 0 [by definition of n-th root], we have that a =

(a1/n)n > (b1/n)n = b [as if 0 < x < y, then xn < yn for all n ∈ N], which again contradicts
a < b.
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9) Let F be a field. [Remember that if a ∈ F , then n(a) = n(1) · n(a), n(n(a)) = a, and if
a, b ∈ F \ {0}, then q(a · b) = q(a) · q(b). You can use those, without proving them, in both
parts below.]

(a) Prove that q(n(1)) = n(1). [Hint: Use that if x · a = 1, then x = q(a).]

Proof. We have that n(1) · n(1) = n(n(1)) = 1. As stated in the hint, this means that
n(1) = q(n(1)).

(b) Prove that if a ∈ F \ {0}, then q(n(a)) = n(q(a)). [Hint: It might help to use (a).]

Proof. We have

q(n(a)) = q(n(1) · a) = q(n(1)) · q(a) = n(1) · q(a) = n(q(a)).
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