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1. Let p be a prime and G be a non-abelian group of order p3. Prove that G/Z(G)
Z, x Z, [where Z(G) is the center of G and Z, is a multiplicative cyclic group of order

p-

Proof. Since G is a p-group, the center is non-trivial. Since G is not abelian, the center
is not the whole group. So, |Z(G)]| is either p or p>. If |G| = p?, then G/Z(QG) is of
order p, and thus cyclic. But this implies that G is abelian, and hence a contradiction.
Therefore, |Z(G)| = p and |G/Z(G)| = p*.

Thus, we have G/Z(G) is isomorphic to either Z,2 or to Z, x Z,. If the former, then
it is cyclic, which would imply, again, that G is abelian, and hence a contradiction.
Thus, G/Z(G) = Z, x Z,. O

2. Let G be a finite simple group. Show that if p is the largest prime dividing |G|, then
there is no subgroup H < G such that 1 < |G : H| < p.

Proof. Let n o |G : H|, and assume that 1 < n < p. Also, let o {1 H,...,g.H} be

the set of cosets of H in G. Then, G acts on 2 by left multiplication. The representation
¢:G— Sq =5, is faithful, as G is simple.

Since p | |G|, by Cauchy’s Theorem, there exists an element g € G of order p. Thus
¢(g) € S, has order p. But, since n < p this is impossible, as the order of an element
of S, is the least common multiple of the lengths of the cycles in its decomposition
into disjoint cycles. Since p is prime, this means that its decomposition into disjoint
cycles has at least one cycle of length p. But a cycle of S,, cannot have length greater
than n. O



3. Let R be a PID. Show that every ideal I of R, with I # 0, R, is a product of finitely
many maximal ideals, and that this decomposition is unique up to reordering.

Proof. Since R is a PID, we have that I = (a). Since I # 0, we have that a # 0. Since
I # R, we have that a ¢ R*.

Since R is a UFD [as PID implies UFD], we have that a = py - - pg, with p;’s irre-
ducibles. Since R is a UFD, this implies that the p;’s are primes, and hence (p;) is a
prime ideal. Since R is a PID, we have that (p;) is maximal. Thus,

I'={(a)=(p1)- - (pr)

Now, suppose that I = M; --- M;, with M;’s maximal. Then, since R is a PID, there
exists m; € R such that M; = (m;). Since M; is prime, so is m;, and hence irreducible.
Therefore, since I = (a), there exists a unit u such that a = uw - my---m;, and this
is another factorization of a. By uniqueness of factorization, we have that k = [, and
after a possible reordering, we can assume that p; and m; are associates. But then
(pi) = (M) = M.

m

4. Let R be a noetherian commutative ring with 1 [and 1 # 0] and D be a multiplicative

closed subset of R with 1 € R and 0 ¢ R. Let Rp % D=1R be the localization of R at

D. Show that Rp is also noetherian.
Proof. Let J; C J, C J3 C --- be an infinite chain of ideal from Rp. Let I; et °J; be

the contraction of the ideal J;, ie., if 7 : R — Rp is the homomorphism defined by

7(r) =r/1, then I, o 7 1(J;). Then, we have I; C I, C ---. Since R is a noetherian

land I;’s are ideals of R], we have that there exists N such that I, = Iy for alln > N.
Then, we must have J,, = °I,, = °Iy = Jy. [Note: We've seen in class that if J is
an ideal of Rp, then °(°J) = J, but if I and ideal of R that is not prime, then maybe
°(°I) # I.] Thus, Rp satisfies the ACC of ideals, and hence it is noetherian.

Here is an alternative proof: Let m : R — Rp be the homomorphism defined by

mw(r) =r/1, I be an ideal of Rp and I’ oof 7~ 1(I) be the contraction of I to R [which

we know is an ideal]. Then, since R is noetherian, we have that I’ = (a4, ..., a,) for
some a; € R.

We claim that I = (a;/1,...,a,/1). Since a; € I', we have that 7(a;) = a;/1 € I [by
definition of I]. So, clearly (ay/1,...,a,/1) C I.



Now, let r/d € I. Then, d/1-r/d =r/1 € I. Therefore, r € I'. Thus, r = rja; +---+
Tnan, for some r; € R. Thus r/1 = (ra1+---+rpa,) /1 =ri/1-a; /1+---+7r,/1-a,/1,
and so r/d = ri/d - a1 /1 + ---+r,/d-a,/1. Therefore, r/d € (a;/1,...,a,/1) and
IC(a/1,...,a,/1).
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