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1. Let p be a prime and G be a non-abelian group of order p3. Prove that G/Z(G) ∼=
Zp×Zp [where Z(G) is the center of G and Zp is a multiplicative cyclic group of order
p].

Proof. Since G is a p-group, the center is non-trivial. Since G is not abelian, the center
is not the whole group. So, |Z(G)| is either p or p2. If |G| = p2, then G/Z(G) is of
order p, and thus cyclic. But this implies that G is abelian, and hence a contradiction.
Therefore, |Z(G)| = p and |G/Z(G)| = p2.

Thus, we have G/Z(G) is isomorphic to either Zp2 or to Zp × Zp. If the former, then
it is cyclic, which would imply, again, that G is abelian, and hence a contradiction.
Thus, G/Z(G) ∼= Zp × Zp.

2. Let G be a finite simple group. Show that if p is the largest prime dividing |G|, then
there is no subgroup H ≤ G such that 1 < |G : H| < p.

Proof. Let n
def
= |G : H|, and assume that 1 < n < p. Also, let Ω

def
= {g1H, . . . , gnH} be

the set of cosets ofH inG. Then, G acts on Ω by left multiplication. The representation
φ : G→ SΩ

∼= Sn is faithful, as G is simple.

Since p | |G|, by Cauchy’s Theorem, there exists an element g ∈ G of order p. Thus
φ(g) ∈ Sn has order p. But, since n < p this is impossible, as the order of an element
of Sn is the least common multiple of the lengths of the cycles in its decomposition
into disjoint cycles. Since p is prime, this means that its decomposition into disjoint
cycles has at least one cycle of length p. But a cycle of Sn cannot have length greater
than n.
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3. Let R be a PID. Show that every ideal I of R, with I 6= 0, R, is a product of finitely
many maximal ideals, and that this decomposition is unique up to reordering.

Proof. Since R is a PID, we have that I = (a). Since I 6= 0, we have that a 6= 0. Since
I 6= R, we have that a 6∈ R×.

Since R is a UFD [as PID implies UFD], we have that a = p1 · · · pk, with pi’s irre-
ducibles. Since R is a UFD, this implies that the pi’s are primes, and hence (pi) is a
prime ideal. Since R is a PID, we have that (pi) is maximal. Thus,

I = (a) = (p1) · · · (pk).

Now, suppose that I = M1 · · ·Ml, with Mi’s maximal. Then, since R is a PID, there
exists mi ∈ R such that Mi = (mi). Since Mi is prime, so is mi, and hence irreducible.
Therefore, since I = (a), there exists a unit u such that a = u · m1 · · ·ml, and this
is another factorization of a. By uniqueness of factorization, we have that k = l, and
after a possible reordering, we can assume that pi and mi are associates. But then
(pi) = (mi) = Mi.

4. Let R be a noetherian commutative ring with 1 [and 1 6= 0] and D be a multiplicative

closed subset of R with 1 ∈ R and 0 6∈ R. Let RD
def
= D−1R be the localization of R at

D. Show that RD is also noetherian.

Proof. Let J1 ⊆ J2 ⊆ J3 ⊆ · · · be an infinite chain of ideal from RD. Let Ii
def
= cJi be

the contraction of the ideal Ji, i.e., if π : R → RD is the homomorphism defined by

π(r) = r/1, then Ii
def
= π−1(Ji). Then, we have I1 ⊆ I2 ⊆ · · · . Since R is a noetherian

[and Ii’s are ideals of R], we have that there exists N such that In = IN for all n ≥ N .
Then, we must have Jn = eIn = eIN = JN . [Note: We’ve seen in class that if J is
an ideal of RD, then e(cJ) = J , but if I and ideal of R that is not prime, then maybe
c(eI) 6= I.] Thus, RD satisfies the ACC of ideals, and hence it is noetherian.

Here is an alternative proof: Let π : R → RD be the homomorphism defined by

π(r) = r/1, I be an ideal of RD and I ′
def
= π−1(I) be the contraction of I to R [which

we know is an ideal]. Then, since R is noetherian, we have that I ′ = (a1, . . . , an) for
some ai ∈ R.

We claim that I = (a1/1, . . . , an/1). Since ai ∈ I ′, we have that π(ai) = ai/1 ∈ I [by
definition of I]. So, clearly (a1/1, . . . , an/1) ⊆ I.
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Now, let r/d ∈ I. Then, d/1 · r/d = r/1 ∈ I. Therefore, r ∈ I ′. Thus, r = r1a1 + · · ·+
rnan, for some ri ∈ R. Thus r/1 = (r1a1 + · · ·+rnan)/1 = r1/1 ·a1/1+ · · ·+rn/1 ·an/1,
and so r/d = r1/d · a1/1 + · · · + rn/d · an/1. Therefore, r/d ∈ (a1/1, . . . , an/1) and
I ⊆ (a1/1, . . . , an/1).
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