1) [12 points] Let F and G be families of sets. Prove that

UA)\(U9) cUFva).

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points| for the
definitions of x € X \ Y, z € | F and —(z € |JG).

Proof. Let z € (UF)\ (UG). Then, x € |JF and = € |JG. The former means that there
is A € F such that x € A. The latter means that for all B € G, we have that © ¢ B. So, we
have that A € G [as © € A]. Hence, A € F\ G. Thus, z € |J(F\ G). O

2) [12 points] Suppose R is a partial order on A, By C A, By C A, z; the least upper bound
of By, and x5 the least upper bound of Bs. Prove that if By C By, then z1Rxs [or 77 % o,
as I usually write for ordering relations].

[Hint: Prove that x5 is an upper bound of B .|

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points] for the
definitions of upper bound and least upper bound.

[This was a homework problem.]

Proof. Let y € B;. Since By C By, we have that y € B,. Also, as x5 is an upper bound of
By, we have that y < x5. Since y € By was arbitrary, x5 is an upper bound of Bj.

Now, x is the least upper bound of By and x5, is an upper bound of By, so x1 < @».



3) [12 points] Let R be an equivalence relation on a set A. Prove that [z] C [y] iff xRy.
[Remember that [a] denotes the equivalence class of a.]

[This was done in class.]

Partial credit: If you can’t do this or are stuck, I will give half credit [10 points| for the

definitions of equivalence relation and equivalence class.

Proof. [—] Suppose [z] C [y]. Since R is reflexive [as R is an equivalence relation|, we have
that xRz and hence x € [z]. So, since [z] C [y]|, we get = € [y]. By definition of equivalence
class, this means that xRy.

[<—] Suppose that xRy and let a € [z]. Then, aRx. Since R is transitive [as it is an equivalence
relation] and we have aRzx and xRy, we have that aRy. By definition of equivalence class

again, we have a € [y]|. So, [z] C [y]. O

4) [12 points] Let f : A — C and g : B — C. Prove that if A and B are disjoint, then
(fug): AUB —C.

[This was a homework problem.]

Partial credit: If you can’t do this or are stuck, I will give some credit [10 points| for the

definition of a function.

Proof. Let x € AUB. [We need to show that there is a unique y € C such that (z,y) € fUg.]
Then, x € Aor x € B.

Case 1: [Existence] Assume x € A, since f: A — C, there is y € C such that (z,y) € f, so
(z,y) € fUg.

[Uniqueness| If also (z,y') € fUg, then (x,y') € f or (z,y) € g. If (z,9) € g, then x € B
las ¢ : B — C], which is impossible as + € A and AN B = @. So, (x,y’) € f. Since
f:A—C, and (z,y),(z,y") € f, we have that y = ¢/.

Case 2: [Existence] Assume x € B, since g : B — O, there is y € C such that (z,y) € g, so
(z,y) € fUg.

[Uniqueness| If also (z,y') € fUg, then (x,y') € f or (z,y') € g. If (z,¢y') € f, thenx € A
las f : A — (], which is impossible as © € B and AN B = @. So, (z,y') € g. Since
g:B— C,and (z,y), (z,y') € g, we have that y = y/. ]



5) [13 points] Let f: A — B and g : B — C. Prove that if g o f is onto, then g is onto.
[This was done in class.]
Partial credit: If you can’t do this or are stuck, I will give some credit [10 points| for the

definition of an onto function.

Proof. Let ¢ € C. [Need b € B such that g(b) = ¢.] Since go f : A — C' is onto, there is
a € A such that go f(a) = ¢, i.e., g(f(a)) = c. Since f(a) € B we have that g(b) = ¢ for

b= f(a). O

6) [13 points] Prove that for any n € Z>; we have
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Proof. We prove it by induction on n.

For n = 1 we have that: ,
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for some n > 1. Then,
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7) [13 points] Prove that for any n € Zs we have (n + 4)! > 4".

Proof. We prove it by induction on n.
For n = 0 we have that (0+4)! =24 > 1 =4°.
Now assume that (n + 4)! > 4™ for some n > 0. Then,

(n+5)!=(n+5) (n+4)!
> (n+5)-4" [by the IH]

> 54" las n > 0]

> 44" =4 [as 5 > 4].



8) [13 points] Consider the sequence a,, defined as follows:

a():]_,

1
Gpy1 =1+ —, forn > 0.
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Prove that for all n > 0 we have
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where F;, is the n-th Fibonacci number.
[Remember: Fy =0, Fy =1and F,, = F,,_1 + F,,_5 for n > 2]

[This was done in a video.]

Proof. We prove it by induction on n.

For n = 0 we have
] 1 B
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for some n > 0. Then,
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