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Abstract. In this paper we study formulas for the coordinates of the Weierstrass coeffi-

cients a = (a,A1, A2, . . .) and b = (b,B1, B2, . . .) of the canonical lifting. More precisely

we show that there are formulas for A1 and B1 that are given by modular functions, uni-

versal (meaning, single formulas that work in every possible case), and with no factor of

∆ in their denominators. Two possible constructions are given. Moreover, a sufficient

condition is given for the existence of A2 and B2 with these properties. Finally, we prove

that the Hasse invariant, given as a polynomial on the Weierstrass coefficients of an elliptic

curve of characteristic p ≥ 5, has no repeated factor.

1. Introduction

Let k be a perfect field of characteristic p ≥ 5 and

E/k : y2
0 = x3

0 + a0x0 + b0

be an ordinary elliptic curve. As first proved by Deuring in [Deu41] and later generalized

by Serre and Tate in [LST64], there is then a unique (up to isomorphism) elliptic curve

E/W(k) : y2 = x3 + ax+ b,

over the ring of Witt vectors W(k) that reduces to E modulo p and for which we can lift

the Frobenius of E. Therefore, there are functions Ai(a, b) and Bi(a, b) (where a and b are

variables) such that if the pair (a0, b0) are the Weierstrass coefficients of an ordinary elliptic

curve, then the Weierstrass coefficients of the canonical lifting of this curve can be given by

a = (a0, A1(a0, b0), A2(a0, b0), A3(a0, b0), . . .),

b = (b0, B1(a0, b0), B2(a0, b0), B3(a0, b0), . . .).

Obviously, since the canonical lifting is only unique up isomorphism, these functions are

not uniquely determined. In [Fin20] the first author gave a description of “nice” properties
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(to be made clear below) that these functions can satisfy, and describe methods to compute

them. Before we can precisely state these properties, we need a few definitions.

Definition 1.1. (1) Let

k
2
ord

def
= {(a0, b0) ∈ k2 : y2

0 = x3
0 + a0x0 + b0 is ordinary}.

(2) The functions Ai’s and Bi’s (as above) are called universal if they are defined for

all (a0, b0) ∈ k2
ord.

(3) Let a and b be indeterminates in Fp[a, b], and assign them weights 4 and 6 respec-

tively. Then, let

Sn
def
=

{
f

g
∈ Fp(a, b) : f, g ∈ Fp[a, b] homog., and wgt(f)− wgt(g) = n

}
∪ {0}.

The elements of Sn are then called modular functions of weight n.

Then, [Fin20, Theorem 2.3] states:

Theorem 1.2. There are universal modular functions Ai ∈ S4pi and Bi ∈ S6pi (and, in

particular, these are rational functions with coefficients in Fp), for i ∈ {1, 2, 3, . . .}, such

that if (a0, b0) ∈ k2
ord gives the Weierstrass coefficients of an ordinary elliptic curve, then

((a0, A1(a0, b0), A2(a0, b0), . . .), (b0, B1(a0, b0), B2(a0, b0), . . .))

gives Weierstrass coefficients of its canonical lifting.

This reference also describes a method to compute examples of these formulas and how to

obtain every other possibility (satisfying the conditions of the theorem) from these. These

computations are based on an algorithm for the computation of the canonical lifting first

introduced by Voloch and Walker (partially described in [VW00]) and later extended by

the first author. (We review a few ideas of this method in Section 5.) We shall refer to this

construction as the Greenberg transform construction. (The name will also be made clear

in Section 5.)

Since we will deal with formulas, let’s consider the field K = Fp(a, b), where again a and

b are indeterminates, as the field of definition of our elliptic curve

E/K : y2
0 = x3

0 + ax0 + b. (1.1)

Then, let ∆ = 4a3 +27b2 be the discriminant of this elliptic curve E and h be the coefficient

of xp−1
0 of (x3

0 + ax0 + b)
(p−1)/2

, i.e., h is the Hasse invariant of E. Since an elliptic curve

is ordinary if and only if the Hasse invariant is non-zero, we have that Ai and Bi being
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universal rational functions is the same as to say that Ai, Bi ∈ U def
= Fp[a, b, 1/(∆h)] and

always yield the Weierstrass coefficients of the canonical lifting.

On the other hand, the explicit computations in fact gave Ai, Bi ∈ U∆
def
= Fp[a, b, 1/h],

i.e., the discriminant ∆ never appeared in the denominators.

This led to the following conjecture:

Conjecture 1.3. (1) There are universal modular functions Ai ∈ S4pi and Bi ∈ S6pi

giving the Weierstrass coefficients of the canonical lifting with Ai, Bi ∈ U∆.

(2) The Greenberg transform construction (given in [Fin20]) yields such modular func-

tions.

In [FL20], the authors could prove that the first part of the conjecture is true for p ≡ 11

(mod 12). The idea behind it was to use a different construction for the Ai and Bi, using

the j-invariant.

Since the canonical lifting is unique up to isomorphism, there are uniquely determined

functions Ji for i ≥ 1 such that if j0 = 1728 · 4a3
0/(4a

3
0 + 27b20) is the j-invariant of an

ordinary elliptic curve, then

j = (j0, J1(j0), J2(j0), J3(j0), . . .)

is the j-invariant of its canonical lifting.

But then, if j 6= 0, 1728, we have that

y2 = x3 +
27j

4(1728− j)
x+

27j

4(1728− j)
(1.2)

is a Weierstrass equation for the canonical lifting.

We can then apply this to elliptic curve given by Eq. (1.1) (i.e., we use j = 1728 ·4a3/∆),

and obtain an Weierstrass equation for its canonical lifting. Although the equation above

does not reduce to y2
0 = x3

0 + ax0 + b, this can be fixed by setting:

a
def
= λ4 · 27j

4(1728− j)
= (a,A1, A2, · · · ) (1.3)

b
def
= λ6 · 27j

4(1728− j)
= (b, B1, B2, · · · ), (1.4)

where

λ
def
=

((
b

a

)1/2

, 0, 0, . . .

)
. (1.5)

With these a and b, we obtain a Weierstrass equation

E : y2 = x3 + ax+ b,
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for the canonical lifting of E that reduces to the equation of E.

Since the functions Ji were extensively studied by the first author in [Fin10], [Fin11], [Fin12],

and [Fin13], the two authors could establish a good amount of information about the de-

nominator of the Ai’s and Bi’s obtained by this new construction.

We shall refer to this second construction as the j-invariant construction.

In [FL20] we have the following theorem:

Theorem 1.4. Let Ai and Bi be the coordinate functions obtained by the j-invariant

construction and let V∆
def
= Fp[a, b, 1/(hab)]. Then, we have that Ai ∈ S4pi ∩ V∆ and

Bi ∈ S6pi ∩ V∆, and thus no ∆ appears in their denominators.

So, the authors could show that we have no ∆ in the denominator in this construction,

but its draw back is that, in general, they are not universal, as they might not be defined

for elliptic curves with either a0 or b0 equal to 0. But, since a, b | h if p ≡ 11 (mod 12), i.e.,

no ordinary elliptic curve can have either a0 or b0 equal to zero in this case, this proved the

first part of Conjecture 1.3 in this case. (The above reference gives further details on the

possible powers of a and b that can appear in the denominators of Ai and Bi, as we make

explicit in Section 2 below.)

One idea in proving the first part of Conjecture 1.3 in general is to start with the Ai’s

and Bi’s from this j-invariant construction, and then find λ such that

λ4(a,A1, A2, A3, . . .) = (a,A′1, A
′
2, A

′
3, . . .),

λ6(b, B1, B2, B3, . . .) = (b, B′1, B
′
2, B

′
3, . . .)

where A′i ∈ S4pi ∩ U∆ and B′i ∈ S6pi ∩ U∆, since clearly these new Witt vectors still give

Weierstrass coefficients to the canonical lifting.

In Section 3 we find λ1 = (1, λ1) such that if

λ4
1(a,A1) = (a,A′1) and λ6

1(b, B1) = (b, B′1),

then A′1 ∈ S4p ∩ U∆ and B′1 ∈ S6p ∩ U∆, effectively proving the first part of Conjecture 1.3

for i = 1 (and now with no restriction on p).

In Section 4 we are not quite able to extend the previous result to the third coordinate,

but we find a condition to the existence of λ2 such that if λ2 = (1, 0, λ2), then letting

λ4
2(a,A′1, A

′
2) = (a,A′1, A

′′
2), and λ6

2(b, B′1, B
′
2) = (b, B′1, B

′′
2 ),

we have that A′′2 ∈ S4p2 ∩ U∆ and B′′2 ∈ S6p2 ∩ U∆.

In Section 5 we turn back to the Greenberg transform construction and prove that A1 and

B1 (from this Greenberg transform construction now) indeed are in S4p ∩U∆ and S6p ∩U∆,
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thus proving the second part (and giving a second proof for the first part) of Conjecture 1.3

for i = 1.

Finally, in Section 6, we prove that the Hasse invariant h has no repeated factors. (The

authors are unsure if this was a known result. In any event, a new proof is given.) Although

this is of independent interest, it also has an application to the formulas for the Ai and Bi

coming from the j-invariant construction: let

h̄
def
=

h

aνa(h) bνb(h)

i.e., h̄ is obtained from h by removing any factor of a and b. Then, the maximum power of

h̄ that can appear in the denominator (after reduction) of Ai and Bi is ipi−1 + (i− 1)pi−2.

Moreover, this bound is sharp. In fact, in all cases computed, we have that h̄ip
i−1+(i−1)pi−2

always appear in the denominators.

We observe that throughout this paper we are always assuming that the characteristic is

p ≥ 5.

2. Previous Results

Before we prove the main results of this paper, we need to introduce some previous

results from [FL20]. In this reference the denominators of Ai and Bi from the j-invariant

construction are studied in detail. We know from the construction that denominator has

to be made up of powers of a, b, ∆, and h. Of those only h is not necessarily irreducible,

and in fact a and b might be factors of h. Thus, to study what powers of h can appear

in the denominator independently of other factors of a and b, the authors introduce a new

variable H.

The construction via the j-invariant allows us to track exactly where the factors of h are

introduced in the denominators, so one can simply replace those occurrences of h (before any

simplification) by the associated variable H. This way we obtain Âi, B̂i ∈ Fp[a, b, 1/(abH)]

such that Âi(a, b, h) = Ai(a, b), and B̂i(a, b, h) = Bi(a, b).

With this notation, we can state [FL20, Theorem 10.1], which deals with possible powers

of H in the denominators:

Theorem 2.1. Let νH denote the valuation at H. We have that νH(Âi), νH(B̂i) = −(ipi−1 +

(i− 1)pi−2).

Also, as a corollary, we have [FL20, Corollary 10.2]:

Corollary 2.2. Let h ∈ Fp[a, b] be an irreducible factor of h with h 6= a, b and νh be the

valuation at h. Then, for i ≥ 1, we have νh(Ai), νh(Bi) ≥ −νh(h)
(
ipi−1 + (i− 1)pi−2

)
.
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Also, [FL20, Theorem 11.2] gives bounds for the powers of a and b in the denominators

of Âi and B̂i:

Theorem 2.3. We have:

(1) If p ≡ 1 (mod 6), then:

(a) νa(Âi) ≥ −2pi for i ≥ 1;

(b) νa(B̂i) ≥ −3pi for i ≥ 1.

(2) If p ≡ 5 (mod 6), then:

(a) νa(Âi) ≥ −2pi, for i = 1, 2, 3, and νa(Âi) ≥ −((i− 1)pi− (i− 1)pi−2) for i ≥ 4;

(b) νa(B̂i) ≥ −3pi for i = 1, 2, 3, and νa(B̂i) ≥ −(ipi − (i− 1)pi−2) for i ≥ 4.

(3) For every p ≥ 5 we have:

(a) νb(Âi) ≥ −2ipi, for all i ≥ 1;

(b) νb(B̂i) ≥ −(2i− 1)pi, for all i ≥ 1.

Finally, [FL20, Corollary 12.2] and [FL20, Corollary 12.3] give better results about powers

of a and b in the denominators of A1 and B1 (and not Â1 and B̂1):

Corollary 2.4. Let νa and νb denote the valuations at a and b respectively. Then, we have

νa(A1) =

1, if p ≡ 1 (mod 6),

−1, if p ≡ 5 (mod 6),
and νa(B1) =

−(p− 1), if p ≡ 1 (mod 6),

−(p+ 1), if p ≡ 5 (mod 6),

and

νb(A1) ≥

−p+ 1, if p ≡ 1 (mod 4),

−(p+ 1), if p ≡ 3 (mod 4),
and νb(B1) ≥

1, if p ≡ 1 (mod 4),

−1, if p ≡ 3 (mod 4).

3. Universality of the Second Coordinate

Let A1 and B1 be the coordinate functions obtained from the j-invariant construction.

As stated in the introduction, the goal here is to find λ1 such that if

(1, λ1)4(a,A1) = (a,A′1) and (1, λ1)6(b, B1) = (b, B′1),

then A′1 ∈ S4p∩U∆ and B′1 ∈ S6p∩U∆, where U∆
def
= Fp[a, b, 1/h] and Sk as in Definition 1.1.

In particular, we want λ1 ∈ S0, so that A′1 ∈ S4p and B′1 ∈ S6p. In other words, we want to

prove the following theorem:

Theorem 3.1. There are A′1 ∈ S4p∩U∆ and B′1 ∈ S6p∩U∆, such that if (a0, b0) ∈ k2
ord gives

the Weierstrass coefficients of an elliptic curve, then ((a0, A
′
1(a0, b0)), (b0, B

′
1(a0, b0))) gives

the first two coordinates of its canonical lifting. Therefore, A′1 and B′1 are then universal
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modular functions with no ∆ in the denominator. In particular, the first part of Conjec-

ture 1.3 is true for i = 1.

A quick note on terminology: we shall use the term monomial for a product of unknowns,

and hence we disregard its coefficient. We then use the term monomial term for the mono-

mial with its coefficient. For instance, 2a2 + 3ab has monomials a2 and ab and monomial

terms 2a2 and 3ab.

Proof of Theorem 3.1. Let A1 and B1 be the modular functions given by the j-invariant

construction, i.e., by Eqs. (1.3) and (1.4). (By Theorem 1.4, note that they are in S4p and

S6p, respectively.) Note that Eqs. (1.3) and (1.4) give us that B1 = (bp/ap)A1. Observing

that

νa(h) =

0, if p ≡ 1 (mod 6),

1, if p ≡ 5 (mod 6),
and νb(h) =

0, if p ≡ 1 (mod 4),

1, if p ≡ 3 (mod 4),

by Corollaries 2.2 and 2.4, we can write

A1 =
C1 +D1

bph

with C1, D1 ∈ Fp[a, b], where we can take C1 to have all monomial terms of the numerator

with valuation at b less than p. Now, since bph is homogeneous of weight 7p−1 and A1 ∈ S4p,

we have that C1 and D1 are homogeneous of weight 11p− 1.

Then, let

λ1
def
=
−6C1 − 4D1

24apbph
(3.1)

(note that λ1 ∈ S0) and λ
def
= (1, λ1). Then, λk = (1, kλ1), and so λ4(a,A1) = (a,A′1),

λ6(b, B1) = (b, B′1) are such thatA′1 andB′1 are in S4p and S6p and ((a0, A
′
1(a0, b0)), (b0, B

′
1(a0, b0)))

give the canonical lifting of the curve given by (a0, b0), if A′1 and B′1 are regular at (a0, b0).

So, it suffices to show that A′1, B
′
1 ∈ U∆.

But, we have

A′1 = A1 + 4apλ1 =
D1

3bph
.

As seen above, the monomials of D1 have valuation at b greater than or equal to p, so

A′1 ∈ U∆.

Now

B1 =
bp

ap
A1 =

C1 +D1

aph
.

Since the monomials in C1 have valuation at b less than p, for its monomials to have weight

11p− 1, we must have that their valuation at a has to be greater than or equal to p. Then,
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as

B′1 = B1 + 6bpλ1 = − C1

2aph
,

we have that B′1 ∈ U∆. �

4. Universality of the Third Coordinate

We now turn our attention to the third coordinate. The situation is considerably more

complicated in this case.

As in the previous section, we have that if λ1 is as in Eq. (3.1), and

(1, λ1, 0, 0, . . .)
4(a,A1, A2, A3, . . .) = (a,A′1, A

′
2, A

′
3, . . .),

(1, λ1, 0, 0, . . .)
6(b, B1, B2, B3, . . .) = (b, B′1, B

′
2, B

′
3, . . .),

then A′1 ∈ U∆ ∩ S4p and B′1 ∈ U∆ ∩ S6p. Therefore, now we want some λ2 such that if we

let

(1, 0, λ2, 0, . . .)
4(a,A′1, A

′
2, A

′
3, . . .) = (a,A′1, A

′′
2, A

′′
3, . . .), (4.1)

(1, 0, λ2, 0, . . .)
6(b, B′1, B

′
2, B

′
3, . . .) = (b, B′1, B

′′
2 , B

′′
3 , . . .), (4.2)

then A′′2 ∈ U∆ ∩ S4p2 and B′′2 ∈ U∆ ∩ S6p2 .

With the notation from Theorem 3.1, we write

A1 =
C1 +D1

bph
, B1 =

C1 +D1

aph
,

with C1, D1 ∈ Fp[a, b], and where C1 contains all the monomial terms with valuation at b

less than p.

By Theorems 2.1 and 2.3, we can also write

A2 =
C2 +D2 + E2

a2p2b4p2h2p+1
, B2 =

C2 +D2 + E2

a3p2b3p2h2p+1
, (4.3)

where D2 contains all the terms with monomials aibj such that i ≥ 2p2 and j ≥ 4p2, E2

contains all the terms with monomials aibj such that either i < 2p2 or j < 3p2, and C2

contains the remaining terms.

Lemma 4.1. In C2 (as above), we have that every monomial aibj satisfies i, j ≥ 3p2.

Proof. Of course, by definition, we must have that the monomials aibj from C2 must satisfy

i ≥ 2p2 and 3p2 ≤ j < 4p2. But note that we have wgt(A2) = 4p2 (and wgt(h) = p− 1), so
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if i < 3p2, we would have

4p2 = 4i+ 6j − (8p2 + 24p2 + (2p+ 1)(p− 1))

< 12p2 + 24p2 − (32p2 + (2p+ 1)(p− 1))

= 4p2 − (2p+ 1)(p− 1),

a contradiction. �

Let now F1
def
= −(C1/4 + D1/6), and so λ1 = F1/(a

pbph). Our main goal in this section

is to prove the following result:

Theorem 4.2. With the notation above, if all the monomials aibj of

E2 − 12F 2p
1 ap

2
b2p

2
h

are such that i ≥ 2p2 and j ≥ 3p2, then there is λ2 (as in Eqs. (4.1) and (4.2)) that yields

A′′2 ∈ U∆ ∩ S4p2 and B′′2 ∈ U∆ ∩ S6p2.

Unfortunately we were unable to prove that the above condition holds in general, but it

allowed us, with the help of the computer, to show such λ2 exists for p between 5 and 31.

First we need to study how λ1 affected A2 and B2, i.e., we need to describe A′2 and B′2.

Lemma 4.3. We can write

A′2 =
F2 + 4E′2 + 6F 2p

1 ap
2
b2p

2
h + E2

a2p2b4p2h2p+1
,

B′2 =
G2 + 6E′2 + 15F 2p

1 ap
2
b2p

2
h + E2

a3p2b3p2h2p+1
,

where E′2
def
= F p1 (C1 +D1)pap

2
b2p

2
h, and each monomial aibj of either F2 or G2 is such that

i ≥ 2p2 and j ≥ 3p2. Moreover, A′2 ∈ S4p2 and B′2 ∈ S6p2.

Proof. We start by observing that

(1, λ1, 0)r =

(
1, rλ1,

(
r

2

)
λ2p

1 +
r − rp

p
λp1

)
. (4.4)

(Of course, note that (r − rp)/p ∈ Z.) This gives us

A′2 = 6λ2p
1 a

p2 +
4− 4p

p
λp1a

p2 + 4λp1A
p
1 +A2 −

p−1∑
k=1

(
1

p

(
p

k

))
(4λ1a

p)p−kAk1. (4.5)

Now, since A1 = (C1 +D1)/(bph) ∈ S4p and λ1 = −(6C1 + 4D1)/(24apbph), it is clear that

wgt(λ1) = 0, and therefore A′2 ∈ S4p2 .
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We now consider each term in Eq. (4.5) above. First, we have

6λ2p
1 a

p2 =
6F 2p

1 ap
2
b2p

2
h

a2p2b4p2h2p+1
.

Then, if we let

F2,1
def
=

4− 4p

p
F p1 a

2p2b3p
2
hp+1,

we have
4− 4p

p
λp1a

p2 =
F2,1

a2p2b4p2h2p+1
.

Observe that each monomial aibj of F2,1 is such that i ≥ 2p2 and j ≥ 3p2.

Next, letting

E′2
def
= F p1 (C1 +D1)pap

2
b2p

2
h,

we have

4λp1A
p
1 = 4

F p1 (C1 +D1)p

ap2b2p2h2p
=

4E′2
a2p2b4p2h2p+1

.

Then, by letting F2,2
def
= C2 +D2, we have

A2 =
F2,2 + E2

a2p2b4p2h2p+1
.

Observe that, by the definition of D2 and Lemma 4.1, each monomial aibj of F2,2 is such

that i ≥ 2p2 and j ≥ 3p2.

Finally, letting

F2,3,k
def
= −

(
1

p

(
p

k

))
(4F1)p−k(C1 +D1)ka2p2b3p

2
hp+1,

we have

−
(

1

p

(
p

k

))
(4λ1a

p)p−kAk1 = −
(

1

p

(
p

k

))
(4apF1)p−k

ap(p−k)bp(p−k)hp−k
(C1 +D1)k

bkphk

=
F2,3,k

a2p2b4p2h2p+1
.

Note that, clearly, each monomial aibj of F2,3,k is such that i ≥ 2p2 and j ≥ 3p2.

Defining then

F2
def
= F2,1 + F2,2 +

p−1∑
k=1

F2,3,k,

it’s clear that each monomial aibj of F2 is such that i ≥ 2p2 and j ≥ 3p2, and the formula

for A′2 in the statement holds.

The proof of the formula for B′2 is obtained in a similar way. �
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The next lemma has the crucial idea behind the proof of Theorem 4.2:

Lemma 4.4. Suppose that all the monomials aibj of

E2 − 12F 2p
1 ap

2
b2p

2
h

are such that i ≥ 2p2 and j ≥ 3p2. Then, we can write

A′2 =
C ′2 +D′2 + 4E′′2
a2p2b4p2h2p+1

, B′2 =
C ′′2 +D′′2 + 6E′′2
a3p2b3p2h2p+1

,

where:

• each monomial aibj of either C ′2 or C ′′2 is such that i ≥ 3p2 and j ≥ 3p2,

• each monomial aibj of either D′2 or D′′2 is such that i ≥ 2p2 and j ≥ 4p2,

• each monomial aibj of E′′2 is such that i < 2p2 or j < 3p2.

Proof. Remember that, by Lemma 4.3, we have

A′2 =
F2 + 4E′2 + 6F 2p

1 ap
2
b2p

2
h + E2

a2p2b4p2h2p+1
.

Let C2,1 be the sum of the terms from F2 with monomials aibj such that i ≥ 3p2 and

j ≥ 3p2, and let D2,1 be the sum of the remaining terms. (Thus, F2 = C2,1 +D2,1.)

Now, by construction, each monomial of aibj of F2 is such that i ≥ 2p2 and j ≥ 3p2.

Moreover, since A′2 ∈ S4p2 , we have that F2 ∈ S38p2−p−1. So, if aibj is a monomial of F2

with i < 3p2, then 6j > 26p2 − p− 1 > 24p2, so j ≥ 4p2. Therefore, each monomial aibj of

D2,1 is such that 2p2 ≤ i < 3p2 and j ≥ 4p2.

We now write

E′2 = C2,2 +D2,2 + E2,2, F 2p
1 ap

2
b2p

2
h = C2,3 +D2,3 + E2,3,

where, for k = 2, 3, where D2,k contains all the terms with monomials aibj such that i ≥ 2p2

and j ≥ 4p2, E2,k contains all the terms with monomials aibj such that either i < 2p2 or

j < 3p2, and C2,k contains the remaining terms. Note that, similar to Lemma 4.1, we have

that the monomials aibj from C2,k are such that i, j ≥ 3p2.

Now, by assumption, each monomial aibj of E2−12(C2,3 +D2,3 +E2,3) must have i ≥ 2p2

and j ≥ 3p2. Thus, by construction of C2,3 and D2,3, we must have that each monomial

aibj of E2− 12E2,3 must have i ≥ 2p2 and j ≥ 3p2. Therefore, similar to what was done for

F2 above, we can break

E2 − 12E2,3 = C2,4 +D2,4,
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where C2,4 is the sum of every term with monomial aibj such that i ≥ 3p2 and j ≥ 3p2, and

D2,4 contains the remaining terms. Again, similar to the case of F2 above, we have that

each monomial aibj of D2,4 is such that 2p2 ≤ i < 3p2 and j ≥ 4p2.

Hence, letting

C ′2
def
= C2,1 + 4C2,2 + 6C2,3 + C2,4,

D′2
def
= D2,1 + 4D2,2 + 6D2,3 +D2,4,

E′′2
def
= E2,2 +

9

2
E2,3,

gives the desired expression for A′2.

Now, since again by Lemma 4.3 we have

B′2 =
G2 + 6E′2 + 15F 2p

1 ap
2
b2p

2
h + E2

a3p2b3p2h2p+1
,

proceeding as above and writing G2 = C ′2,1 + D′2,1, where C ′2,1 is the sum of terms from

G2 with monomials aibj such that i ≥ 3p2 and j ≥ 3p2, and D′2,1 is the sum of the

remaining terms (and hence, as before, we have that each monomial aibj of D′2,1 is such

that 2p2 ≤ i < 3p2 and j ≥ 4p2), we can define

C ′′2
def
= C ′2,1 + 6C2,2 + 15C2,3 + C2,4,

D′′2
def
= D′2,1 + 6D2,2 + 15D2,3 +D2,4,

to establish the desired expression for B′2. �

We finally can prove Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.4, we have

A′2 =
C ′2 +D′2 + 4E′′2
a2p2b4p2h2p+1

, B′2 =
C ′′2 +D′′2 + 6E′′2
a3p2b3p2h2p+1

.

Let

λ2
def
=
−1

4C
′
2 − 1

6D
′′
2 − E′′2

a3p2b4p2h2p+1
.

As (1, 0, λ2, . . .)
k = (1, 0, kλ2, . . .), we have that

(1, 0, λ2, 0, . . .)
4(a,A′1, A

′
2, . . .) = (a,A′1, A

′
2 + 4λ2a

p2 , . . .)

and

(1, 0, λ2, 0, . . .)
6(b, B′1, B

′
2, B

′
3, . . .) = (b, B′1, B

′
2 + 6λ2b

p2 , . . .).
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Then,

A′′2 = A′2 + 4λ2a
p2 =

ap
2
D′2 − 4

6a
p2D′′2

a3p2b4p2h2p+1
(4.6)

and

B′′2 = B′2 + 6λ2b
p2 =

bp
2
C ′′2 − 6

4b
p2C ′2

a3p2b4p2h2p+1
. (4.7)

Now, the conditions on C ′2, C ′′2 , D′2, and D′′2 (as stated in Lemma 4.4) give that A′′2, B
′′
2 ∈ U∆.

Finally, note that since A′2 ∈ S4p2 and B′2 ∈ S6p2 (as show in Lemma 4.3), the formulas

from Lemma 4.4 give us that C ′2, C ′′2 , D′2, and D′′2 all have weight 38p2− p− 1, and therfore

λ2 has weight 0. Thus, Eqs. (4.6) and (4.7) give that A′′2 ∈ S4p2 and B′′2 ∈ S6p2 . �

5. Denominator of Greenberg Transform Construction

We now turn back to the Greenberg transform construction. The main goal of this section

is to prove the following result:

Theorem 5.1. Let A1 and B1 be the coordinate function obtained by the Greenberg trans-

form construction. Then, A1 ∈ S4p ∩ U∆ and B1 ∈ S6p ∩ U∆. Therefore, both parts

of Conjecture 1.3 are true for i = 1.

Before we can prove this, we need to review the Greenberg transform construction. Since

we will only deal with the second coordinate, we will only look at the first two coordinates

of this construction, which is much simpler, but the general construction for any length can

be found in [Fin20].

The construction is based on an algorithm for the computation of the canonical lifting

by Voloch and Walker, which instead of using the modular polynomial (as in [LST64]), uses

the elliptic Teichmüller lift : if σ denotes the Frobenius of both k and W(k), φ : E → Eσ

denotes the p-th power Frobenius, and φ : E → Eσ denotes its lift to E, the elliptic

Teichmüller lift τ : E(k) → E(W(k)) is a section of the reduction modulo p (and an

injective homomorphism of groups) that makes the following diagram commute:

E(W(k))
φ
//

π

��

Eσ(W(k))

π

��
E(k)

φ
//

τ

TT

Eσ(k)

τσ

TT

In [VW00, Theorem 4.2], we have:

Theorem 5.2. Let k be a perfect field of characteristic p > 0 and

E/k : y2
0 = x3

0 + a0x0 + b0



14 LUÍS R. A. FINOTTI AND DELONG LI

be an ordinary elliptic curve with Hasse invariant h0 = h(a0, b0). Suppose that:

(1) E/W2(k), where W2(k) is the ring of Witt vectors of length 2 over k, is an elliptic

curves that reduces to E modulo p;

(2) there is a section of the reduction τ : E(k) \ {O} → E(W2(k)) \ {O}, where O and

O represent the points at infinity of E and E respectively;

(3) τ(x0, y0) = ((x0, F1(x0)), (y0, y0H1(x0))), with F1, H1 ∈ k[x0] and degF1 ≤ (3p −
1)/2 and degH1 ≤ (4p− 3)/2.

Then τ is regular at O, E is the canonical lifting of E (modulo p2), and τ is the elliptic

Teichmüller lift.

Moreover, if τ(x0, y0) = ((x0, F1(x0)), (y0, y0H1(x0))) is the elliptic Teichmüler lift, then

F ′1 = h−1
0 (x3

0 + a0x0 + b0)
(p−1)/2 − xp−1

0 . (5.1)

(Note that Eq. (5.1) is not in the statement of [VW00, Theorem 4.2], but is proved in its

proof.)

We then use the theorem above to compute the canonical lifting in this construction.

Since we want to obtain general formulas, we will consider again

E/K : y2
0 = f(x0)

def
= x3

0 + ax0 + b,

where, as before, K
def
= Fp(a, b), with a and b indeterminates. Let’s also denote S def

= Fp[a, b].
Since h (the coefficient of xp−1

0 in f (p−1)/2) is not zero, we can find its canonical lifting. Let

then,

E/W2(K) : y2 = x3 + (a,A1)x+ (b, B1)

be the first two coordinates of its canonical lifting, where A1 and B1 are still unknown. By

replacing x by (x0, x1) and y by (y0, y1), where x0, y0, x1, and y1 are all indeterminates,

we can expand the equation for E above using sums and products of Witt vectors. The

variety over K obtained by equating the coordinates of the Witt vectors obtained this way

is called the Greenberg transform of E and denoted by G(E). (To be precise, the Greenberg

transform is given by the infinitely many equations we obtain when we use infinite Witt

vectors. But here we will only consider the first two coordinates.) It’s clear then that we

have a natural bijection between E(W2(K)) and G(E)(K), given by ((x0, x1), (y0, y1)) 7→
(x0, y0, x1, y1).

The second coordinate of the Greenberg transform of E is given by

2yp0y1 = (f ′)
p
x1 +A1x

p
0 +B1 + η1(f), (5.2)
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where η1(f) is defined as follows: consider the polynomial

η1(X,Y, Z)
def
=

Xp + Y p + Zp − (X + Y + Z)p

p
.

Then, η1 ∈ Z[X,Y, Z] and we can define η1(f)
def
= η1(x3

0, a0x0, b0). (This notation for η1

is the same used in [Fin14], where a more general formula for the Greenberg transform is

given.) Therefore, it is clear that η1(f) ∈ S[x0].

Following Theorem 5.2, we need that τ(x0, x1) = ((x0, F1), (y0, y0H1)), for some polyno-

mials F1 and H1, should give a point in G(E). Therefore, we must have

2yp+1
0 H1 = (f ′)

p
F1 +A1x

p
0 +B1 + η1(f),

or, using y2
0 = f , we have

2f (p+1)/2H1 = (f ′)
p
F1 +A1x

p
0 +B1 + η1(f), (5.3)

where now we have no term in y0 left.

Again, by Theorem 5.2, we know F ′1 = h−1f (p−1)/2 − xp−1
0 . Of course, since we are in

characteristic p > 0, this means we know, by formal integration, all terms of F1 except for

terms in xkp0 , for k ≥ 0. On the other hand, we also know that degF1 ≤ (3p − 1)/2, and

therefore we can write

F1 = F̂1 + c1x
p
0 + c0,

where F̂1 is the formal integral of h−1f (p−1)/2 − xp−1
0 , and only c1 and c0 are unknown.

(Note that F̂1 ∈ U∆[x0], where U∆
def
= Fp[a, b, 1/h].)

By letting g
def
= η1(f) + (f ′)pF̂1, and thus g ∈ U∆[x0], we can rewrite Eq. (5.3) as

2f (p+1)/2H1 = (f ′)
p
(c1x

p
0 + c0) +A1x

p
0 +B1 + g. (5.4)

Thus, the unknowns on the right-hand side are c0, c1, A1, and B1. Although we do not

know much about the left-hand side, we do know that H1 must be a polynomial, and thus

if divide the right-hand side by 2f (p+1)/2, we must have that remainder is zero.

Performing this division and setting the remainder equal to zero gives us a linear system

in the four unknowns. By Theorem 5.2, finding a solution will give us the canonical lifting

(i.e., A1 and B1) and F1 (i.e., c0 and c1), from which we can find H1 (as the quotient of the

division).

Now, [Fin20] states that (in this case) if we take c1 = 0, then the obtained A1 and B1

are in S4p ∩U and S6p ∩U, where U def
= Fp[a, b, 1/(∆h)]. This is what we call the Greenberg

transform construction (for two coordinates) of A1 and B1.



16 LUÍS R. A. FINOTTI AND DELONG LI

Therefore, to prove Theorem 5.1, we need to prove that choosing c1 = 0 gives A1, B1 ∈
U∆.

Proof of Theorem 5.1. We take then c1 = 0, and hence Eq. (5.4) becomes

2f (p+1)/2H1 = (f ′)
p
c0 +A1x

p
0 +B1 + g. (5.5)

We need to look at the remainder of the division of the right-hand side when divided by

f (p+1)/2.

Let

(f ′)
p

= f (p+1)/2q1 + r1,

g = f (p+1)/2q2 + r2,

with deg ri ≤ (3p + 1)/2. Note that since f (p+1)/2 is monic and g, (f ′)p ∈ U∆[x0], we have

that qi, ri ∈ U∆[x0]. Then,

(f ′)
p
c0 +A1x

p
0 +B1 + g = f (p+1)/2(c0q1 + q2) + (c0r1 + r2 +A1x

p
0 +B1).

Let then

r
def
= (c0r1 + r2 +A1x

p
0 +B1). (5.6)

So, deg r ≤ (3p + 1)/2, and hence r is the remainder in question. We shall now explicitly

find r1.

Let

f (p−1)/2 =

(3p−3)/2∑
i=0

eix
i
0,

and define

q̂
def
=

p−1∑
i=0

eix
i
0 and q

def
= 3

f (p−1)/2 − q̂
xp0

.

Therefore, we have q ∈ S[x0] and

(f ′)
p − f (p+1)/2q = (3x2p

0 + ap)− 3
fp − f (p+1)/2q̂

xp0

= (3x2p
0 + ap)− 3x3p

0 + 3apxp0 + 3bp − 3f (p+1)/2q̂

xp0

= −2ap + 3
f (p+1)/2q̂ − bp

xp0
.
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(Note that since q ∈ S[x0], clearly the expression above is in S[x0].) One can clearly see that

the degree of the expression above is equal to (3p+1)/2 with leading coefficient 3ep−1 = 3h.

Therefore, the expression above must be r1 and q1 = q.

We then look at the coefficient of x
(3p+1)/2
0 in r (given by Eq. (5.6)). Since the remainder

must be zero, this coefficient must be zero. On the other hand, this coefficient is clearly

equal to c0 times the coefficient of x
(3p+1)/2
0 in r1, which, as we have just seen, is equal to

3h, plus the coefficient of x
(3p+1)/2
0 in r2, which must be in U∆, as observed above. Hence,

solving for c0, we get that c0 ∈ U∆.

Now, since then c0r1, r2 ∈ U∆[x0], the equations for the coefficients of xp0 and the constant

term in r = 0, give us that A1, B1 ∈ U∆. �

6. Factors of the Hasse Invariant

In [FL20], the authors checked (with MAGMA) that for all primes p ≤ 997, the Hasse

invariant has no repeated irreducible factor. We now prove this result in general:

Theorem 6.1. The Hasse invariant polynomial h (for p ≥ 5) has no repeated irreducible

factor, i.e., if h is an irreducible factor of h, then h2 - h.

As a consequence, we can improve on [FL20, Corollary 10.2]:

Corollary 6.2. Let h ∈ Fp[a, b] be an irreducible factor of h, with h 6= a, b. Then, for i ≥ 1,

we have νh(Ai), νh(Bi) ≥ −
(
ipi−1 + (i− 1)pi−2

)
.

Proof. Corollary 2.2 states that

νh(Ai), νh(Bi) ≥ −νh(h)
(
ipi−1 + (i− 1)pi−2

)
,

and by Theorem 6.1, we have νh(h) = 1. �

The remaining of this section will be devoted to the proof of Theorem 6.1. The proof is

based on the relation between the Hasse invariant and the supersingular polynomial ssp, as

outlined in [Fin09]. (Although we will not need it here, remember that the supersingular

polynomial is the polynomial given by ssp(X)
def
=
∏
j supersing.(X − j).)

We shall need some notation and definitions from [Fin09]: let r
def
= (p−1)/2, r1

def
= dr/3e,

and r2
def
= br/2c. Then, define

F (X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi−r1 . (6.1)
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As seen right before [Fin09, Proposition 4.1], we have

h =
br−2r1

ar−3r1
· F
(
a3

b2

)
. (6.2)

We also have:

Lemma 6.3. The polynomial F has no repeated irreducible factor.

Proof. By [Fin09, Proposition 4.2], we have that F satisfies the following differential equa-

tion:

X(4X + 27)F ′′ + (8(r1 + 1)X + 27(2r1 + 1))F ′ +

(
4r1 +

31

36

)
F = 0. (6.3)

It’s clear from it’s definition that F (0) 6= 0. Also, as observed after [Fin09, Lemma 3.1],

we have F (−27/4) 6= 0. Therefore, if F (x0) = F ′(x0) = 0, we have that x0 6= 0,−27/4, and

thus F ′′(x0) = 0. But, taking derivatives of Eq. (6.3), we’d then have that F (k)(x0) = 0 for

all k ≥ 0, which is a contradiction.

Hence, F has no repeated root, and therefore no repeated irreducible factor. �

Now, by Eq. (6.2), we have

h =

r2∑
i=r1

(
r

i

)(
i

3i− r

)
a3i−rbr−2i.

Thus, if we let

h̄
def
=

h

a3r1−rbr−2r2
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
a3(i−r1)b2(r2−i) ∈ Fp[a, b], (6.4)

we have that a, b - h̄, and h̄ ∈ S12(r2−r1). Furthermore, note that since 3r1−r, r−2r2 ∈ {0, 1},
in order to prove Theorem 6.1, it suffices to show that h̄ has no repeated irreducible factor.

Lemma 6.4. Let F̄p denote the algebraic closure of Fp. Then, every factor of h̄ is in

F̄p[a3, b2].

Proof. Let h ∈ F̄p[a, b] be a irreducible factor of h̄. Since h̄ is homogeneous (with wgt(a) = 4,

wgt(b) = 6), we have that h must also be homogeneous, say wgt(h) = k. Since, moreover,

h 6∈ F̄p and a, b - h̄, we have that

h = c1a
m + c2b

n + abh1,

with c1, c2 ∈ F̄×p and h1 ∈ F̄p[a, b]. But then, if aibj is a monomial of h, we have 4i+ 6j =

k = 4m = 6n, and so 3 | i and 2 | j. �
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Therefore, if we let

h̄1
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
ui−r1vr2−i ∈ Fp[u, v], (6.5)

and assign wgt(u) = wgt(v) = 1, then h̄1 is homogeneous of weight r2− r1, it has no factors

of u or v, h̄1(a3, b2) = h̄ (by Eq. (6.4)), and the lemma above tells us if h̄1 has no repeated

factors, then neither does h̄, which would finish the proof of Theorem 6.1. But that is indeed

the case:

Lemma 6.5. We have that h̄1 has no repeated irreducible factor.

Proof. Suppose then that h̄1(u, v) = P (u, v)2 · Q(u, v), with P irreducible. But note that,

by Eqs. (6.1) and (6.5), we have h̄1(X, 1) = F (X), and then by Lemma 6.3, we must have

that P (X, 1) ∈ F̄×p . But, since P (u, v) must be homogeneous of positive weight and v - h̄1,

we must have P (u, v) has a monomial of the form um, and hence P (X, 1) cannot be constant.

Therefore, we have a contradiction, and h̄1 has no repeated factors. �

Note that h does not need to be irreducible. For instance, for p = 11, we have h = 9ab.

Moreover, if p = 29 we have h = a(a3 + 2b2)(a3 + 22b2), so h̄ is not irreducible in general

either.
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Hamburg, 14:197–272, 1941.

[Fin09] L. R. A. Finotti. A formula for the supersingular polynomial. Acta Arith., 139(3):265–273, 2009.

[Fin10] L. R. A. Finotti. Lifting the j-invariant: Questions of Mazur and Tate. J. Number Theory,

130(3):620 – 638, 2010.

[Fin11] L. R. A. Finotti. Computations with Witt vectors of length 3. J. Théor. Nombres Bordeaux,
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