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Abstract. An ordinary elliptic curve y2
0 = x3

0 + ax0 + b has a canonical lifting y2 =

x3 + ax + b, where a = (a,A1, A2, . . .), b = (b,B1, B2, . . .) and the An’s and Bn’s are

rational functions on a and b. Two constructions have been given for these functions,

and some of their properties have been studied in some of the authors’ previous work.

In this paper, we further study those properties, showing that the Greenberg transform

construction gives A1 and B1 of the form C/h, where h is the Hasse invariant, and giving

better bounds for the powers of a and b in the denominators of A2 and B2 given by the

j-invariant construction.

1. Introduction

Let p ≥ 5 be a prime, and a and b be indeterminates. Let E be the elliptic curve

E/Fp(a, b) : y20 = x30 + ax0 + b,

and

E/W(Fp(a, b)) : y2 = x3 + ax+ b

be the canonical lifting of E, where a = (a,A1, . . .), b = (b, B1, . . .). Note that An and

Bn are then functions on a and b, but since the canonical lifting is unique only up to

isomorphism, these coordinate functions are not uniquely defined.

The first author asked about the nature of these An and Bn. In [Fin20] he showed that these

functions can be, depending on choices under isomorphisms, universal modular functions,

and then asked whether these could also be chosen so that the discriminant ∆ does not

appear in their denominators. In other words, he asked whether the universal modular

functions can be taken in ring Fp[a, b, 1/h], where h is the Hasse invariant of E. Two

approaches were suggested to solve this problem.
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The first approach is to find the canonical lifting by the Greenberg transform construction,

as described in [FL21] and reviewed below, and show that An and Bn satisfy all the re-

quirements. Computations with MAGMA showed that this is the case for small primes p

and short lengths, and the first author conjectured it would be true in general. In [FL21]

the authors showed that indeed this construction gives A1, B1 ∈ Fp[a, b, 1/h], and therefore,

the conjecture is true for n = 1.

The second approach is to find the canonical lifting by the j-invariant construction, again

introduced in [FL21] and reviewed below, and then create isomorphic canonical liftings that

satisfy the requirements, as these might not always be universal. More precisely, in [FL20]

it was shown that the j-invariant construction yields An’s and Bn’s of the form C/(aαbβhγ),

where C is homogeneous, and hence are not defined for curves with j-invariant equal to

either 0 or 1728. On the other hand, one can try to create isomorphic liftings by choosing

some λ such that a′ = λ4a and b′ = λ6b give coordinate functions satisfying all the

requirements (i.e., universal modular functions, with no ∆ in the denominator). It was

shown in [FL21] this can be done for n = 1, and under some extra assumption, also for

n = 2 (after a second change of coordinates).

Also of interest for computations would be to determine the power of each factor in the

denominators of An and Bn for each construction. That is, for the Greenberg transform

construction, An and Bn have the form C/(hα∆β), and we would like to find upper bounds

for α and β. For the j-invariant construction, An and Bn have the form C/(aαbβhγ), and

we would like to find upper bounds for α, β, and γ.

Besides having its own intrinsic value, this problem can also help solving the problem of

finding universal modular functions in Fp[a, b, 1/h] giving the coefficients of the canonical

lifting. For example, the authors studied these bounds for the j-invariant construction

in [FL20], and were then able to use them in [FL21] to find the isomorphic liftings with no

discriminant in the denominator mentioned above.

In the present paper, we will show that the Greenberg transform construction yields A1 and

B1 of the form C/h, i.e., the maximal power of the h in their denominators is 1, and give

better bounds for the powers of a and b in the denominators of the A2 and B2 obtained

by the j-invariant construction. (Note that the bounds given for A1 and B1 in [FL20] were

already improved over the general bound.)
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2. Previous Results

We shall assume throughout that p is a prime greater than or equal to 5. Then, let a and

b be indeterminates and E be the elliptic curve given by the Weierstrass coefficients (a, b),

i.e.,

E/Fp(a, b) : y20 = x30 + ax0 + b.

Since E is ordinary, it has a canonical lifting

E/W(Fp(a, b)) : y
2 = x3 + ax+ b,

over the ring of Witt vectors W(Fp(a, b)) (see [Fin20]). By definition, this means that E

reduces to E modulo p, i.e., a = (a, . . .) and b = (b, . . .), and has a lifting of the Frobenius.

Let then

a = (a,A1(a, b), A2(a, b), . . .),

b = (b, B1(a, b), B2(a, b), . . .).

These coordinates An and Bn are then functions on a and b, but since the canonical lifting

is only unique up to isomorphism, they are not uniquely determined. In [Fin20] it is shown

that An and Bn can be chosen as to have some “nice” properties. For instance, they can

be modular functions of weights 4pn and 6pn, respectively. To be clear, if we assign weights

wgt(a) = 4 and wgt(b) = 6, and let

Sn = {f/g : f, g ∈ Fp[a, b] homog.,wgt(f)− wgt(g) = n} ∪ {0},

then the elements of Sn are modular functions of weight n.

Moreover, it was shown that these An and Bn can also be taken to be universal, meaning

that they are defined for every a = a0 and b = b0 such that (a0, b0) gives Weierstrass

coefficients of an ordinary elliptic curve. In other words, one can find (modular) functions

An and Bn in the ring Fp[a, b, 1/(∆h)], where ∆ and h are the discriminant and Hasse

invariant of E, respectively.

The proofs of the properties above allow the discriminant ∆ to appear in the denominators,

but concrete examples seem to indicate that there are such universal modular functions

An and Bn for which it does not, i.e., for which we have An, Bn ∈ Fp[a, b, 1/h] instead of

Fp[a, b, 1/(∆h)], raising the question if this is indeed always the case, and if so, how to find

such functions.
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In [Fin20], two methods to construct the canonical lifting are introduced. The first method

uses the elliptic Teichmüller lift, which is a section of the reduction modulo p (from E

to E) that commutes with the Frobenius maps, and we call this the Greenberg transform

construction. But by [Fin20, Theorem 2.3], the An and Bn given by this construction are

in S4pn ∩Fp[a, b, 1/(∆h)] and S6pn ∩Fp[a, b, 1/(∆h)], respectively, while [FL21, Theorem 5.1]

shows that A1, B1 ∈ Fp[a, b, 1/h]. In Section 3 we show that the denominators of A1 and

B1 have no powers of h higher than one.

The second method to compute An and Bn introduced in [Fin20] is the j-invariant con-

struction: if j is the j-invariant of the canonical lifting E, which was extensively studied

in [Fin10], [Fin12], and [Fin13], then

a = λ4 27j

4(1728− j)
= (a,A1, A2, . . .),

b = λ6 27j

4(1728− j)
= (b, B1, B2, . . .),

where λ = (
√

b/a, 0, 0, . . .). By [FL20, Theorems 6.3, 10.2, 11.1, 12.2], we have that this

construction gives An ∈ S4pn , Bn ∈ S6pn of the form

An =
C

hnpn−1+(n−1)pn−2a(n−1)pn−(n−1)pn−2b2npn
,

Bn =
D

hnpn−1+(n−1)pn−2anpn−(n−1)pn−2b(2n−1)pn
,

where C,D ∈ Fp[a, b]. Moreover, [FL20, Corollaries 13.2, 13.3] give better bounds for the

powers of a and b in the denominators for n = 1. More precisely, if νq is the valuation at q,

then:

νa(A1) =

1, if p ≡ 1 (mod 6),

−1, if p ≡ 5 (mod 6),
νa(B1) =

−p+ 1, if p ≡ 1 (mod 6),

−p− 1, if p ≡ 5 (mod 6),

νb(A1) ≥

−p+ 1, if p ≡ 1 (mod 4),

−p− 1, if p ≡ 3 (mod 4),
νb(B1) ≥

1, if p ≡ 1 (mod 4),

−1, if p ≡ 3 (mod 4).

Similar improvements for the bounds in the case of n = 2 will be given here in Section 4.

Before we proceed, we state some of the results we will use below.

Theorem 2.1. There are rational functions Ji ∈ Fp(X), for i ≥ 1 such that if j is the j-

invariant of an ordinary elliptic curve, then the j-invariant of its canonical lifting is given

by (j, J1(j), J2(j), . . .).
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Proof. This is [Fin12, Theorem 1.1]. □

Let ssp be the supersingular polynomial (i.e., the monic polynomial having as simple roots

exactly the j-invariants of supersingular curves) and

Sp(X)
def
=

ssp(X)

Xδ(X − 1728)ϵ
, (2.1)

where

δ =

0, if p ≡ 1 (mod 6),

1, if p ≡ 5 (mod 6),
ϵ =

0, if p ≡ 1 (mod 4),

1, if p ≡ 3 (mod 4).

and hence

Sp(X) ∈ Fp[X], Sp(0), Sp(1728) ̸= 0.

Then, we have:

Theorem 2.2. Let J2 be defined as in Theorem 2.1. Then, we have that

J2(X) = F2(X)/G2(X) ∈ Fp(X),

where:

(1) F2, G2 ∈ Fp[X], with (F2, G2) = 1;

(2) F2 has a zero at 0 of order (2⌊(p− 1)/6⌋+ 1)p;

(3) G2(X) = (X − 1728)ϵpSp(X)2p+1.

Proof. This is [Fin12, Theorem 7.2]. □

We also have:

Theorem 2.3. We have

νa(J1(j)) =

2p+ 1, if p ≡ 1 (mod 6),

2p− 1, if p ≡ 5 (mod 6),
νb(J1(j)) =

2, if 1728p ≡ 1728 (mod p2),

0, otherwise,

and if 1728− j = (u0, u1), then

νb(u1) ≥

p+ 1, if p ≡ 1 (mod 4),

p− 1, if p ≡ 3 (mod 4).

Proof. This is [FL20, Theorem 13.1]. □
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Finally, we briefly review some basic results about Witt vectors. (More details can be

found in [Ser79], [Jac84], or [Rab14].) Let S0 = X0 + Y0, P0 = X0Y0, and define Sn and Pn

inductively as follows

Sn = Xn + Yn +
1

p
(Xp

n−1 + Y p
n−1 − Sp

n−1) + · · ·+ 1

pn
(Xpn

0 + Y pn

0 − Spn

0 ),

Pn =
1

pn
[(Xpn

0 + · · ·+ pnXn)(Y
pn

0 + · · ·+ pnYn)− (P pn

0 + · · ·+ pn−1P p
n−1)].

Then it is known that Sn and Pn have coefficients in Z, and if A is a ring of characteristic

p, then addition and multiplication of a = (a0, a1, . . .) and b = (b0, b1, . . .) in the ring of

Witt vectors W(A) are given by

a+ b = (S̄0(a0, b0), S̄1(a0, a1, b0, b1), . . .), ab = (P̄0(a0, b0), P̄1(a0, a1, b0, b1), . . .),

where S̄n and P̄n are the reductions modulo p of Sn, Pn, respectively.

Moreover, one has −(a0, a1, . . .) = (−a0,−a1, . . .) for p ̸= 2, and

(λ, 0, 0, . . .)(a0, a1, a2, . . .) = (λa0, λ
pa1, λ

p2a2, . . .).

We will also need:

Lemma 2.4. The monomials
∏n

i=0X
si
i

∏n
j=0 Y

tj
j occurring in P̄n satisfies

n∑
i=0

sip
i =

n∑
j=0

tjp
j = pn.

Proof. This is [Fin02, Lemma 2.1]. □

3. The power of Hasse invariant in the Greenberg transform construction

Let A1 and B1 be the second coordinates of the Weierstrass coefficients of the canonical

lifting given by the Greenberg transform construction. In this section we show that the

power of Hasse invariant h in the denominators of A1 and B1 is less than or equal to 1.

We start by giving a sufficient condition for the result. Let

f (p−1)/2 =

(3p−3)/2∑
i=0

eix
i
0,

where f = x30 + ax0 + b. (Thus, we have that ei ∈ Fp[a, b] and ep−1 is the Hasse invariant

h.)
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Lemma 3.1. Assume that h = ep−1 and ep−2 have no non-trivial common divisor. Then

A1 = C1/h, B1 = D1/h for some C1, D1 ∈ Fp[a, b].

The proof is similar to [FL21, Section 5].

Proof. From [FL21, Eqs. (5.4), (5.5)], we have

2f (p+1)/2H1 = (f ′)
p
c0 +A1x

p
0 +B1 + η1(f) + (f ′)

p
F̂1,

where F̂1 is the formal integral of h−1f (p−1)/2 − xp−1
0 , η1(f) ∈ Fp[a, b, x0], H1 ∈ Fp(a, b)[x0],

and c0 ∈ Fp(a, b). Then η1(f) + (f ′)pF̂1 = g1/h for some g1 ∈ Fp[a, b, x0]. Therefore

2f (p+1)/2H1 = (f ′)
p
c0 +A1x

p
0 +B1 + g1/h. (3.1)

Let

(f ′)
p
= 2f (p+1)/2q1 + r1,

g1 = 2f (p+1)/2q2 + r2,

where deg ri ≤ (3p+1)/2 (where deg refers to degrees as polynomials in x0). Since 2f
(p+1)/2

has leading coefficient 2 and (f ′)p, g1 ∈ Fp[a, b, x0], we have qi, ri ∈ Fp[a, b, x0]. So

(f ′)
p
c0 +A1x

p
0 +B1 + g1/h = 2f (p+1)/2(c0q1 + q2/h) + (c0r1 + r2/h+A1x

p
0 +B1).

Let

r
def
= c0r1 + r2/h+A1x

p
0 +B1. (3.2)

So, deg r ≤ (3p+ 1)/2, and hence r = 0 by Eq. (3.1). We now determine r1.

Remember

f (p−1)/2 =

(3p−3)/2∑
i=0

eix
i
0,

and let

q̂
def
=

p−1∑
i=0

eix
i
0, q

def
= 3

f (p−1)/2 − q̂

2xp0
.

Then q ∈ Fp[a, b, x0] and

(f ′)
p − 2f (p+1)/2q = −2ap + 3

f (p+1)/2q̂ − bp

xp0
.

The above expression has degree (3p+ 1)/2 and leading coefficient 3h (as h = ep−1). Since

it is in Fp[a, b, x0], it must be equal to remainder r1 above.
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Comparing the coefficients of x
(3p+1)/2
0 in Eq. (3.2), we have

0 = 3hc0 + t/h,

for some t ∈ Fp[a, b]. So

c0 = −t/(3h2).

Comparing the coefficients of xp0 and 1 in Eq. (3.2), we have

−ts/(3h2) + u/h+A1 = 0, (3.3)

−tv/(3h2) + w/h+B1 = 0, (3.4)

for some s, u, v, w ∈ Fp[a, b].

Now, we also have that r1’s second highest term is 3ep−2x
(3p−1)/2
0 . Comparing the terms of

x
(3p−1)/2
0 in Eq. (3.2), we have

0 = 3ep−2c0 + z/h,

for some z ∈ Fp[a, b]. So c0 = −z/(3ep−2h) = −t/(3h2). Hence zh = tep−2. But since h and

ep−2 have no non-trivial common divisor by assumption, we must have h | t in Fp[a, b]. So

t = t1h for some t1 ∈ Fp[a, b].

Thus, Eqs. (3.3) and (3.4) then give us A1 = C1/h, B1 = D1/h for some C1, D1 ∈ Fp[a, b].

□

Now, we want to show (h, ep−2) = 1, where ep−2 is the coefficient of xp−2
0 in f (p−1)/2. We

start with the following lemma:

Lemma 3.2. The variables a and b are not common divisors of h and ep−2.

Proof. According to [Fin09, Lemma 2.2], we have

ep−2 =

(
b

a

)r+1 s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)(
a3

b2

)i

=

s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)
a3i−r−1br+1−2i,

where r
def
= (p− 1)/2, s1

def
= ⌈(r + 1)/3⌉, s2

def
= ⌊(r + 1)/2⌋.
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So νa(ep−2) = 3s1 − r− 1, νb(ep−2) = r+ 1− 2s2. Considering the four possible residues of

p modulo 12, we get

νa(ep−2) =

2, if p ≡ 1 (mod 6),

0, if p ≡ 5 (mod 6),
νb(ep−2) =

1, if p ≡ 1 (mod 4),

0, if p ≡ 3 (mod 4).

On the other hand, by [Li20, Lemma 5.17], we have

νa(h) =

0, if p ≡ 1 (mod 6),

1, if p ≡ 5 (mod 6),
νb(h) =

0, if p ≡ 1 (mod 4),

1, if p ≡ 3 (mod 4).

So, neither a nor b are common divisors of h and ep−2. □

It is easier to show that two polynomials in one variable are coprime than to show it for

polynomials in two variables. So, we introduce

F (X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi−r1 , (3.5)

F1(X)
def
=

s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)
Xi−s1 , (3.6)

where r1
def
= ⌈r/3⌉, r2

def
= ⌊r/2⌋, and remembering that s1 = ⌈(r + 1)/3⌉, s2 = ⌊(r + 1)/2⌋.

(Note that F is defined in the same way as in [Fin09].) Then, we show it suffices to prove

that (F, F1) = 1 to get the desired result.

Lemma 3.3. If (F, F1) = 1, then ep−2 and h have no non-trivial common factors.

Proof. Assume d ∈ Fp[a, b] \ Fp divides both ep−2 and h. Then ep−2 = dg and h = dh for

some g, h ∈ Fp[a, b]. Define h̄ and h̄1 as in [FL21], i.e.,

h̄
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
a3(i−r1)b2(r2−i) ∈ Fp[a, b],

h̄1
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
ui−r1vr2−i ∈ Fp[u, v].
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Similarly, define

ē
def
=

ep−2

a3s1−r−1br+1−2s2

=

s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)
a3(i−s1)b2(s2−i) ∈ Fp[a, b],

ē1
def
=

s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)
ui−s1vs2−i ∈ Fp[u, v].

Then ē is homogeneous (with wgt(a) = 4 and wgt(b) = 6) and a, b ∤ ē. Since a, b ∤ d, we have
ē = dg1, and h̄ = dh1, where g1 = g/(a3s1−r−1br+1−2s2) and h1 = h/(a3r1−rbr−2r2) ∈ Fp[a, b].

We now show that d, g1, h1 ∈ Fp[a
3, b2]. We have ē is homogeneous, so is d. Since a, b ∤ d

and d /∈ Fp, we have d = c1a
m+ c2b

n+abd1 for some c1, c2 ∈ F×
p and d1 ∈ Fp[a, b], and with

4m = 6n. Let aibj be a monomial of d. Then 4i+ 6j = 4m = 6n, hence 3 | i and 2 | j. So

d ∈ Fp[a
3, b2]. Similarly, g1, h1 ∈ Fp[a

3, b2].

So d = d2(a
3, b2), g1 = g2(a

3, b2), h1 = h2(a
3, b2) for some d2, g2, h2 ∈ Fp[u, v]. Then

ē1 = d2g2, h̄1 = d2h2, and hence

F1(X) = ē1(X, 1) = d2(X, 1)g2(X, 1),

F (X) = h̄1(X, 1) = d2(X, 1)h2(X, 1).

Therefore, since (F, F1) = 1, we have that d2(X, 1) ∈ F×
p . On the other hand, since d /∈ Fp

and d = d2(a
3, b2), defining wgt(u) = wgt(v) = 1, we have that d2 is homogeneous of

positive weight. Also v ∤ h̄1, so v ∤ d2, and thus d2 has a monomial of the form um for some

m > 0. Therefore, d2(X, 1) cannot be constant, which is a contradiction. □

Hence, now we must show that (F, F1) = 1. Let us first study F1. Our goal is to find a

differential equation satisfied by F1, but, following the ideas from [Fin09], we first find a

differential equation for the related polynomial

F̃1(X)
def
= Xs1F1(X) =

s2∑
i=s1

(
r

i

)(
i

3i− r − 1

)
Xi.

Lemma 3.4. We have:

4X2(4X + 27)F̃ ′′
1 + 16X2F̃ ′

1 + (15−X)F̃1 = 0.

One can easily verify that this equation holds simply by showing that the coefficient for

every degree is zero.
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From this simpler differential equation, we can obtain the one for F1:

Lemma 3.5. We have:

X(4X + 27)F ′′
1 + (4(2s1 + 1)X + 54s1)F

′
1 +

(
4s1 −

29

36

)
F1 = 0.

Proof. Since F̃1(X) = Xs1F1(X), taking derivatives both sides, we get equations for F̃ ′
1 and

F̃ ′′
1 . Plugging these into the differential equation above, dividing both sides by 4Xs1+1, we

get the desired differential equation. Here we used the fact that s1(s1 − 1) = −5/36 in Fp,

which can be shown by considering four cases where p ≡ 1, 5, 7, 11 (mod 12). □

Let p = 12m + 4δ + 6ϵ + 1, with ϵ, δ ∈ {0, 1}. Thus, with our previous notation, we have

that s1 = r1 + (1− δ) and s2 = r2 + ϵ. We then have:

Lemma 3.6. The polynomials F and F1 satisfy

δF + 3XF ′ = (r − 2r1 + 2δ − 1)X1−δF1 − 2X2−δF ′
1. (3.7)

Proof. First note that for n, k ∈ Z with n ≥ k ≥ 1, we have(
n

k

)
k =

(
n

k − 1

)
(n− k + 1) (3.8)

By Eq. (3.5) and since r = 3r1 − δ, we have

δF + 3XF ′ =

r2∑
i=r1

(
r

i

)(
i

3i− r

)
(3i− r)Xi−r1 , (3.9)

and by Eq. (3.6),

(r−2r1+2δ−1)X1−δF1−2X2−δF ′
1 =

r2+ϵ∑
i=r1+(1−δ)

(
r

i

)(
i

3i− r − 1

)
(r−2i+1)Xi−r1 . (3.10)

Now, by Eq. (3.8), (
i

3i− r

)
(3i− r) =

(
i

3i− r − 1

)
(r − 2i+ 1),

for i = r1 + (1− δ), . . . , r2 since i ≥ 3i− r ≥ 1, 3r1 − r = δ, and r − 2r2 = ϵ. Moreover, if

δ = 0, and hence 3r1 = r, we have the term with i = r1 in Eq. (3.9) is(
r

r1

)(
r1
0

)
0 = 0,
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and if ϵ = 1, and hence r = 2r2 + 1, the term with i = r2 + ϵ in Eq. (3.10) is(
r

r2 + 1

)(
r2 + 1

3r2 − r + 2

)
0 = 0.

These last three equations prove that the left sides of Eqs. (3.9) and (3.10) are equal,

concluding the proof. □

Note that by [FL21, Lemma 6.3], we know F has no repeated roots. Moreover, we have that

F (0), F (−27/4) ̸= 0 by the definition of F and the comment following [Fin09, Lemma 3.1].

Finally, remember that by [Fin09, Proposition 4.2], we have that F satisfies the differential

equation

X(4X + 27)F ′′ + (8(r1 + 1)X + 27(2r1 + 1))F ′ +

(
4r1 +

31

36

)
F = 0.

Now, we can finally show that (F, F1) = 1.

Theorem 3.7. We have (F, F1) = 1. Therefore, we have A1 = C1/h, B1 = D1/h for some

C1, D1 ∈ Fp[a, b].

Proof. If p = 7, then F1 = F = 3, so (F, F1) = 1. We then assume p ̸= 7. It suffices to show

that F and F1 have no common roots, and hence suppose x0 ∈ F̄p is a common root. Then

x0 ̸= 0,−27/4, and using the differential equations for F and F1, we have

x0F
′′
1 (x0) = −(4(2s1 + 1)x0 + 54s1)F

′
1(x0)

4x0 + 27
, (3.11)

x0F
′′(x0) = −(8(r1 + 1)x0 + 27(2r1 + 1))F ′(x0)

4x0 + 27
. (3.12)

Observing that

r1 =

−1
6 , if δ = 0,

1
6 , if δ = 1,

we see that when δ = 0, Eq. (3.7) becomes

3XF ′ = −7

6
XF1 − 2X2F ′

1, (3.13)

and when δ = 1, it becomes

F + 3XF ′ =
1

6
F1 − 2XF ′

1. (3.14)
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Let us first look at the case when δ = 0. Dividing Eq. (3.13) by X and taking derivatives,

we obtain

3F ′′ = −19

6
F ′
1 − 2XF ′′

1 .

Therefore, evaluating these equations at X = x0, we have

3F ′(x0) = −2x0F
′
1(x0), (3.15)

3F ′′(x0) = −(19/6)F ′
1(x0)− 2x0F

′′
1 (x0). (3.16)

Then, using Eqs. (3.11) and (3.12), and noting that s1 = r1 + (1 − δ) = r1 + 1, Eq. (3.16)

gives

−3
((8r1 + 8)x0 + 54r1 + 27)F ′(x0)

x0(4x0 + 27)
= −19

6
F ′
1(x0) + 2

((8r1 + 12)x0 + 54r1 + 54)F ′
1(x0)

4x0 + 27
.

Using Eq. (3.15) we then get (7/6)F ′
1(x0) = 0. Since p ̸= 7, we have that F ′

1(x0) = 0, and

hence F ′(x0) = 0. This is a contradiction, since F has no repeated roots.

Now, for the case when δ = 1, taking derivatives on Eq. (3.14), we get

3XF ′′ + 4F ′ = −11

6
F ′
1 − 2XF ′′

1 .

Evaluating the two equations above at X = x0, we have

F ′
1(x0) = −3

2
F ′(x0), (3.17)

3x0F
′′(x0) + (5/4)F ′(x0) = −2x0F

′′
1 (x0). (3.18)

By Eqs. (3.11) and (3.12) and the fact s1 = r1 in this case, Eq. (3.18) gives

−3
((8r1 + 8)x0 + (54r1 + 27))F ′(x0)

4x0 + 27
+

5

4
F ′(x0) = 2

((8r1 + 4)x0 + 54r1)F
′
1(x0)

4x0 + 27
.

Using Eq. (3.17), we can simplify it, obtaining (7/4)F ′(x0) = 0. Again, since p ̸= 7, we

must have that F ′
1(x0) = 0, which, as before, yields a contradiction. □

4. The improved bounds for the powers of a, b in the j-invariant

construction

Let A2 and B2 be the third coordinates of the Weierstrass coefficients of the canonical lifting

from the j-invariant construction. The goal of this section is to give improved bounds for

the valuations νa(A2), νa(B2), νb(A2), and νb(B2).
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p = 5 p = 7

Actual Bound Actual Bound

νa(A2) −35 −61 −35 −98

νa(B2) −60 −86 −84 −147

νb(A2) −40 −100 −112 −211

νb(B2) −15 −75 −63 −162

Table 4.1. Actual valuations versus bounds.

By [FL20, Theorem 12.3], we have

νa(A2) ≥

−2p2, if p ≡ 1 (mod 6),

−2p2 − 2p− 1, if p ≡ 5 (mod 6),

νa(B2) ≥

−3p2, if p ≡ 1 (mod 6),

−3p2 − 2p− 1, if p ≡ 5 (mod 6),

νb(A2) ≥

−4p2, if p ≡ 1 (mod 4),

−4p2 − 2p− 1, if p ≡ 3 (mod 4),

νb(B2) ≥

−3p2, if p ≡ 1 (mod 4),

−3p2 − 2p− 1, if p ≡ 3 (mod 4).

Table 12.1 of [FL20] gives the comparison of the bounds with the actual values for p = 5, 7.

Table 4.1 records the relevant values, showing that the given bounds are still far from the

actual valuations. Our goal in this section is to improve these bounds.

The improvement follows a similar method as the one from [FL20], but also using Theo-

rem 2.2 (which is again simply [Fin12, Theorem 7.2]).

We start with valuations at a, for which we can determine the exact values at A2 and B2.

Theorem 4.1. We have

νa(A2) = 3p(2⌊(p− 1)/6⌋+ 1)− 2p2 =

−p2 + 2p, if p ≡ 1 (mod 6),

−p2 − 2p, if p ≡ 5 (mod 6),

νa(B2) = 3p(2⌊(p− 1)/6⌋+ 1)− 3p2 =

−2p2 + 2p, if p ≡ 1 (mod 6),

−2p2 − 2p, if p ≡ 5 (mod 6).



IMPROVED BOUNDS FOR DENOMINATORS IN THE FORMULAS OF THE CANONICAL LIFTING 15

Proof. Remember in the j-invariant construction we have that

a = λ4 · 27j

4(1728− j)
,

b = λ2a,

where λ = (
√

b/a, 0, 0, . . .).

Let then:

1728 = (α0, α1, α2), (4.1)

27/4 = (β0, β1, β2), (4.2)

1728− j = (u0, u1, u2), (4.3)

1

1728− j
= (v0, v1, v2), (4.4)

27

4(1728− j)
= (w0, w1, w2), (4.5)

27j

4(1728− j)
= (z0, z1, z2), (4.6)

and R be the localization of Fp[a, b] at the prime ideal (a).

Since νa(j) = 3,

νa(J1(j)) =

2p+ 1, if p ≡ 1 (mod 6),

2p− 1, if p ≡ 5 (mod 6),

by [FL20, Theorem 13.1], and by Theorem 2.2 we have νa(J2(j)) = 3p(2⌊(p − 1)/6⌋ + 1),

we obtain that j ∈ W3(R), and hence 1728− j ∈ W3(R). It is also clear that νa(u0) = 0.

Since then u0 is a unit ofR, we have that 1/(1728−j) ∈ W3(R) and νa(v0) = 0. Similarly, we

have that 27/(4(1728− j)) ∈ W3(R), which implies that νa(w1), νa(w2) ≥ 0, and νa(w0) =

νa(β0) + νa(v0) = 0.

Now, by Lemma 2.4, we have that z2 equals w
p2

0 J2(j) plus terms of the form jαJ1(j)
βwγ0

0 wγ1
1 wγ2

2 ,

where α+ βp = p2, and hence β ≤ p. Then, we have νa(w
p2

0 J2(j)) = 3p(2⌊(p− 1)/6⌋+ 1),

and by Theorem 2.3,

νa(j
αJ1(j)

βwγ0
0 wγ1

1 wγ2
2 ) ≥ 3α+ (2p− 1)β = 3p2 − (p+ 1)β ≥ p(2p− 1).

Since

3p(2⌊(p− 1)/6⌋+ 1) ≤ p((p− 1) + 3) = p(p+ 2) < p(2p− 1)
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for p ≥ 5, we have νa(z2) = νa(J2(j)). So, νa(A2) = νa(J2(j)) − 2p2 = 3p(2⌊(p − 1)/6⌋ +
1)− 2p2, and νa(B2) = νa(J2(j))− 3p2 = 3p(2⌊(p− 1)/6⌋+ 1)− 3p2.

The last equality of each equation can be shown by considering cases p = 6k+1, 6k+5. □

We now turn to the valuations at b, for which we only get lower bounds, although better

ones than previously known.

Theorem 4.2. We have:

νb(A2) ≥

−2p2, if p ≡ 1 (mod 4),

−2p2 − 2p, if p ≡ 3 (mod 4),

νb(B2) ≥

−p2, if p ≡ 1 (mod 4),

−p2 − 2p, if p ≡ 3 (mod 4).

Proof. We start with the case of p ≡ 3 (mod 4). Since in this case we have, by Theorem 2.2,

that

J2(X) =
F2(X)

(X − 1728)pSp(X)2p+1 ,

and Sp(1728) ̸= 0, we get νb(J2(j)) = −2p. We will keep the notation from Eqs. (4.1)

to (4.6).

Clearly νb(α0) = 0 and νb(α1), νb(α2) ≥ 0. Also, clearly we have νb(j) = 0 and νb(u0) = 2,

and by Theorem 2.3 we also have that νb(J1(j)) ≥ 0 and νb(u1) ≥ p− 1.

Moreover, u2 equals −J2(j) plus terms of the form jαJ1(j)
βαγ0

0 αγ1
1 αγ2

2 . Since νb(−J2(j)) =

−2p, and νb(j
αJ1(j)

βαγ0
0 αγ1

1 αγ2
2 ) ≥ 0, we have νb(u2) = −2p.

We now turn to (1728− j)−1. We clearly have that νb(v0) = −2 and v1 = −u1/u
2p
0 , and

hence νb(v1) ≥ −3p− 1. Also, v2 equals u−p2

0 times the sum of u2v
p2

0 and terms of the form

vα0 v
β
1u

γ
0u

δ
1, where α + βp = γ + δp = p2. Hence β, δ ≤ p. We have νb(u2v

p2

0 ) = −2p − 2p2,

and

νb(v
α
0 v

β
1u

γ
0u

δ
1) ≥ −2α+ (−3p− 1)β + 2γ + (p− 1)δ

= −2p2 + (−p− 1)β + 2p2 + (−p− 1)δ

≥ −2p− 2p2.

So, νb(v2) ≥ −2p− 4p2.
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Turning to 27/(4(1728− j)), we note that clearly νb(β0) = 0, νb(β1), νb(β2) ≥ 0, νb(w0) =

νb(β0) + νb(v0) = −2, w1 = vp0β1 + βp
0v1, and hence νb(w1) ≥ −3p− 1.

Also, w2 equals βp2

0 v2 + β2v
p2

0 plus terms of the form vα0 v
β
1β

γ
0β

δ
1 where α + βp = p2. From

our work above we have νb(β
p2

0 v2) ≥ −2p− 4p2, νb(β2v
p2

0 ) ≥ −2p2, and

νb(v
α
0 v

β
1β

γ
0β

δ
1) ≥ −2α+ (−3p− 1)β

= −2p2 + (−p− 1)β

≥ −3p2 − p.

So, νb(w2) ≥ −2p− 4p2.

Finally, we turn to 27j/(4(1728 − j)). We have that z2 equals w2j
p2 + wp2

0 J2(j) plus

terms of the form wα
0w

β
1 j

γJ1(j)
δ, where α + βp = p2. We have νb(w2j

p2) ≥ −2p − 4p2,

νb(w
p2

0 J2(j)) = −2p− 2p2, and since νb(J1(j)) ≥ 0,

νb(w
α
0w

β
1 j

γJ1(j)
δ) ≥ −2α+ (−3p− 1)β ≥ −3p2 − p.

So, νb(z2) ≥ −2p− 4p2. Hence, νb(A2) = νb(z2) + 2p2 ≥ −2p− 2p2, and νb(B2) = νb(z2) +

3p2 ≥ −2p− p2.

We now look at the case when p ≡ 1 (mod 4). Again, by Theorem 2.2, in this case we have

J2(X) =
F2(X)

Sp(X)2p+1 ,

and since Sp(1728) ̸= 0, we have νb(J2(j)) ≥ 0.

As before, we have νb(α0) = 0, νb(α1), νb(α2) ≥ 0, νb(u0) = 2. But now, by Theorem 2.3,

νb(u1) ≥ p+ 1. Also, νb(u2) ≥ 0, since the valuations of 1728 and j are all non-negative.

We then clearly have that νb(v0) = −2 and νb(v1) = νb(−u1/u
2p
0 ) ≥ −3p+1. Also, v2 equals

u−p2

0 times the sum of u2v
p2

0 and terms of the form vα0 v
β
1u

γ
0u

δ
1. We have νb(u2v

p2

0 ) ≥ −2p2,

and

νb(v
α
0 v

β
1u

γ
0u

δ
1) ≥ −2α+ (−3p+ 1)β + 2γ + (p+ 1)δ

= −2p2 + (−p+ 1)β + 2p2 + (−p+ 1)δ

≥ −2p2 + 2p.

So, νb(v2) ≥ −4p2.
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We also have νb(β0) = 0, νb(β1), νb(β2) ≥ 0, νb(w0) = −2, and since w1 = vp0β1 + βp
0v1, we

have νb(w1) ≥ −3p+ 1.

Also, w2 equals βp2

0 v2+β2v
p2

0 plus terms of the form vα0 v
β
1β

γ
0β

δ
1. We have νb(β

p2

0 v2) ≥ −4p2,

νb(β2v
p2

0 ) ≥ −2p2, and

νb(v
α
0 v

β
1β

γ
0β

δ
1) ≥ −2α+ (−3p+ 1)β

= −2p2 + (−p+ 1)β

≥ −3p2 + p.

So, νb(w2) ≥ −4p2.

Next, z2 equals w2j
p2 + wp2

0 J2(j) plus terms of the form wα
0w

β
1 j

γJ1(j)
δ. Since νb(w2j

p2) ≥
−4p2, νb(w

p2

0 J2(j)) ≥ −2p2, and

νb(w
α
0w

β
1 j

γJ1(j)
δ) ≥ −2α+ (−3p+ 1)β ≥ −3p2 + p,

we have νb(z2) ≥ −4p2. Hence, νb(A2) ≥ −2p2, and νb(B2) ≥ −p2. □

Computations show that the bounds from the theorem are sharp for p = 7, 11, the cases

when p ≡ 3 (mod 4). On the other hand, the bounds are not sharp for p = 5, 13, 17, the

cases when p ≡ 1 (mod 4). That is due to the lack of information about νb(u2) in this case.

The computations for these concrete examples in this case actually give that νb(u2) = 2p,

while in our proof we are only able to state that νb(u2) ≥ 0.

On the other hand, we were able to show that νb(u2) = −2p for the cases when p ≡ 3

(mod 4), thus obtaining better bounds.

Acknowledgments. The computations mentioned were done with MAGMA or Sage.
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