
A FORMULA FOR THE SUPERSINGULAR POLYNOMIAL

LUÍS R. A. FINOTTI

Abstract. In these notes we prove that the supersingular polynomial in characteristic

p ≥ 5 is given by

ssp(X) =

(
−2

9

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i

Xi−r′1(X − 1728)r
′
2−i,

where r
def
= (p − 1)/2, r1

def
= dr/3e, r2

def
= br/2c, r′1

def
= br/3c and r′2

def
= dr/2e. We also

exhibit and prove a differential equation satisfied by this polynomial.

1. Introduction

Let k be a perfect field of characteristic p > 0 and E/k an elliptic curve over k. If k̄

denotes the algebraic closure of k, then E(k̄) is an Abelian group and its p-torsion, denoted

by E[p], is either 0 or Z/pZ. (See, for instance, Theorem V.3.1 in [Sil85].) E is then

called supersingular if E[p] = 0, and ordinary otherwise. (As observed by Silverman in

Remark V.3.2.2 of [Sil85], there are other characterizations of supersingular elliptic curves

relevant to various applications.)

Its a known fact that, for a fixed characteristic p > 0, there are (up to isomorphism)

finitely many supersingular elliptic curves. (See, for instance, Theorem V.4.1(c) of [Sil85].)

Let s be the number of supersingular elliptic curves (for the fixed characteristic p) and

j1, . . . , js be the j-invariants of these curves. The supersingular polynomial is defined as

ssp(X)
def
=

s∏
i=1

(X − ji). (1.1)

In these notes we deduce a explicit formula for ssp.

Deuring (in [Deu41]) gave a characterization of supersingular elliptic curves for p > 2

based on the Legendre form: if E is given by

E/k : y2 = x(x− 1)(x− λ), (1.2)

then E is supersingular if, and only if, λ is a root of

Lp(X)
def
=

r∑
i=0

(
r

i

)2

Xi, where r
def
=

p− 1

2
. (1.3)
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It turns out that this polynomial has distinct roots in k̄, which allows us to deduce that there

are exactly dr/2e−br/3c supersingular elliptic curves (up to isomorphism) in characteristic

p.

On the other hand, the supersingular polynomial, as previously defined, seems to be

a more natural criterion for supersingularity, since it depends on the j-invariant directly,

which would be more appropriate in most situations than the λ for the curve’s Legendre

form. Deuring, also in [Deu41], found formulas for the Hasse invariant (see section 2) of an

elliptic curve in terms of the j-invariant, from which one can deduce a formula for ssp. In

fact we will follow a similar approach and the formula deduced here could be derived from

Deuring formulas without too much difficulty. Hence, the formula presented in these notes

is not necessarily new, but as far as the author knows, it has not appeared explicitly in

other publications. Also, the formula as presented here is not broken into cases depending

on the congruence class of p modulo 12, as are the formulas presented by Deuring.

Several papers have dealt with the supersingular polynomial in the past, notably [KZ98],

[BM04], and [Mor06]. In [BM04], J. Brillhart and P. Morton give an explicit formula for

the supersingular polynomial, which depends on the Jacobi polynomials P
(α,β)
n . In [KZ98],

which is partially expository, a few different polynomials in Q[X] are given that reduce to

the supersingular polynomial and, in particular, the Atkins Polynomials are quite explicit.

Also, Morton’s [Mor06] has a few formulas, and in fact mentions that a formula can also

be deduced from Deuring’s [Deu41]. The formula given here is simpler than most previous

formulas, except for the one given by equations (1.2) and (1.6) of [Mor06], which is equally

simple.

We have:

Theorem 1.1. Let p ≥ 5. Then

ssp(X) =

(
−2

9

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i, (1.4)

where r
def
= (p− 1)/2, r1

def
= dr/3e, r2

def
= br/2c, r′1

def
= br/3c and r′2

def
= dr/2e.

In section 4, we give an application of the approach taken here, giving a direct and ele-

mentary proof of the known and complex differential equation satisfied by the supersingular

polynomial.

2. Deduction of the Formula

Let k be a perfect field of characteristic p ≥ 5 and E/k an elliptic curve over k:

E/k : y2 = x3 + ax+ b. (2.1)
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then, the Hasse invariant of E is the coefficient xp−1 in (x3 + ax+ b)(p−1)/2. The following

theorem, which is the only non-elementary result that we need here, gives a simple criterion

for supersingularity, and is the crucial step of our deduction.

Theorem 2.1 (Deuring, Hasse). An elliptic curve E given by Eq. (2.1) is supersingular if,

and only if, its Hasse invariant is zero.

To find an explicit formula for the Hasse invariant, we provide the following simple lemma:

Lemma 2.2. Let n and t be positive integers with t ≤ 3n, and n1
def
= d(3n − t)/3e and

n2
def
= min{n, b(3n− t)/2c} . Then, if a, b 6= 0, the coefficient of xt in (x3 + ax+ b)n is(

b

a

)3n−t n2∑
i=n1

(
n

i

)(
i

3i− (3n− t)

)(
a3

b2

)i
. (2.2)

Proof. One has

(x3 + ax+ b)n =
n∑
i=0

(
n

i

)
x3(n−i)(ax+ b)i

=
n∑
i=0

i∑
l=0

(
n

i

)(
i

l

)
albi−lx3n+l−3i.

Hence, the terms in xt are obtained when 3n+ l− 3i = t, i.e., l = 3i− (3n− t). Since l ≥ 0,

we must have i ≥ d(3n− t)/3e and since l ≤ i ≤ n, we must have i ≤ min{n, b(3n− t)/2c}.
�

Thus, if E is as in (2.1), then the Hasse invariant is given by:(
b

a

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
a3

b2

)i
, (2.3)

where r
def
= (p−1)/2, r1

def
= dr/3e, and r2

def
= br/2c. (We shall keep this notation throughout

these notes.) Note that the use of floor and ceiling above prevents the need of dealing with

different cases for the congruence class of p modulo 12.

So, if a 6= 0 (i.e., j 6= 0) and b 6= 0 (i.e., j 6= 1728), then E is supersingular if, and only

if, a3/b2 is a root of

F (X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi−r1 . (2.4)

The j-invariant of E is given by

j
def
= 1728

4a3

4a3 + 27b2
.

So, if a 6= 0 and b 6= 0, then
a3

b2
= −27

4
· j

j − 1728
.
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Thus, if j 6= 0 and j 6= 1728, E is supersingular if, and only if, j is a root of

F

(
−27

4
· X

X − 1728

)
.

Clearing denominators, we obtain,

G(X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r1(X − 1728)r2−i. (2.5)

So, E is supersingular, with j 6= 0, 1728, if, and only if, its j-invariant is a root of G(X).

We now deal with the cases when j = 0 or j = 1728. (It’s well known when those values

are supersingular, but we present a proof here, since this can be easily deduced from the

Hasse invariant.) If j = 1728 (i.e., b = 0), then the Hasse invariant of E, which we shall

denote by A, is given by the coefficient of xp−1 in

(x3 + ax)r =
r∑
i=0

(
r

i

)
aix3r−2i.

So,

A =

 0 , if r ≡ 1 (mod 2);(
r
r/2

)
ar/2, if r ≡ 0 (mod 2).

Therefore, if r ≡ 1 (mod 2), we should multiply G(X) by (X−1728), and leave it unchanged

otherwise. Hence, if we let r′2
def
= dr/2e, this can be accomplished by changing (X−1728)r2−i

in G (Eq. (2.5)) by (X − 1728)r
′
2−i.

If j = 0 (i.e., a = 0), then the Hasse invariant of E is given by the coefficient of xp−1 in

(x3 + b)r =
r∑
i=0

(
r

i

)
bix3(r−i).

So,

A =

 0 , if r 6≡ 0 (mod 3);(
r
r/3

)
br/3, if r ≡ 0 (mod 3).

Therefore, if r 6≡ 0 (mod 3), we should multiply G(X) by X, and leave it unchanged

otherwise. Hence, if we let r′1
def
= br/3c, this can be accomplished by changing Xi−r1 in G

(Eq. (2.5)) by Xi−r′1 .

So, the roots of the polynomial

H(X)
def
=

r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i (2.6)

are exactly the j-invariants of the supersingular polynomial. Since we know (see The-

orem V.4.1(c) of [Sil85]) that there are exactly r′2 − r′1 such j-invariants, H(X) has no
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multiple roots and therefore is, up to a constant multiple, the supersingular polynomial.

(An alternative proof of this fact will be given in section 4. See also [Fin08].)

3. The Leading Coefficient

In this section we finish the construction of the supersingular polynomial by adjusting

the leading coefficient of H(X). The leading coefficient of H(X) is given by

r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
. (3.1)

Also, by Eq. (2.3), the coefficient of xp−1 in (x3 − 3x+ 2)r = (x− 1)p−1(x+ 2)(p−1)/2 is(
−2

3

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
.

We will now simplify the expression for this coefficient.

We need the following simple lemma:

Lemma 3.1. If h(x)
def
= (x− 1)p−1(x+ 2)r (in characteristic p), then

h(n)(0) =

n!
∑n

i=0

(
r
i

)
2r−i, if 0 ≤ n ≤ r;

n! 3r, if n ≥ r.

Proof. We prove the lemma by induction. For n = 0, the statement is trivially true. So,

assume it is true for n− 1, with n ≤ r. We have:

dn

dxn
((x− 1)h(x)) = (x− 1)p

dn

dxn
(x+ 2)r = (x− 1)p

r!

(r − n)!
(x+ 2)r−n.

On the other hand, Leibniz rule gives us:

dn

dxn
((x− 1)h(x)) = nh(n−1)(x) + (x− 1)h(n)(x). (3.2)

Comparing this two equations and evaluating at x = 0, the induction hypothesis gives us

h(n)(0) =
r!

(r − n)!
2r−n + nh(n−1)(0)

=
r!

(r − n)!
2r−n + n!

n−1∑
i=0

(
r

i

)
2r−i

= n!

n∑
i=0

(
r

i

)
2r−i.

Hence, the lemma holds for all n ≤ r.
Observing that,

r∑
i=0

(
r

i

)
2r−i = (1 + 2)r,
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we can proceed by assuming that the statement holds for some (n − 1) with n ≥ (r + 1).

Then, since,
dn

dxn
((x− 1)h(x)) = (x− 1)p

dn

dxn
((x+ 2)r) = 0,

by Eq. (3.2), and using the induction hypothesis, we obtain

h(n)(0) = nh(n−1)(0) = n! 3r,

which concludes the proof. �

Thus, we have that the coefficient of xp−1 in h(x) = (x− 3x+ 2)r is 3r. (Note that this

also implies that F (−27/4) 6= 0.) So, the leading coefficient of H(X) is(
−3

2

)r
3r =

(
−9

2

)r
,

which gives us the following formulas for the supersingular polynomial (still with p ≥ 5):

ssp(X) =

(
−2

9

)r r2∑
i=r1

(
r

i

)(
i

3i− r

)(
−27

4

)i
Xi−r′1(X − 1728)r

′
2−i

=

r′2−r′1∑
l=r1−r′1

(−2

9

)r
(−1728)r

′
2−r′1−l

r′1+l∑
i=r1

(
−27

4

)i(r
i

)(
i

3i− r

)(
r′2 − i

r′1 + l − i

)X l.

4. Differential Equations

Finally, we give differential equations satisfied by the polynomials F , G, and ssp, which

can sometimes be useful. In fact, Igusa proved in [Igu58] that Lp(X) (given by Eq. (1.3))

has simple roots by the fact that Lp satisfies the following differential equation:

4X(1−X)L′′p + 4(1− 2X)L′p − Lp = 0.

(One should observe that this equation comes up naturally in a proper context, which

we shall not describe here.) In the same spirit, we shall give a proof, at the end of this

section, that H has simple roots, which was crucial to prove that it gives the supersingular

polynomial up to a constant multiple. This would avoid quoting the known result on

the number of supersingular elliptic curves for a given characteristic, as we have done in

section 2.

One should note that the differential equations given for G and ssp are certainly not new,

but the proofs given here are elementary and do not depend on any previous result, as the

simplicity of the formulas allows us to check them directly. We start with a differential

equation for

F̃ (X)
def
= Xr1 · F (X) =

r2∑
i=r1

(
r

i

)(
i

3i− r

)
Xi. (4.1)
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This has a quite simple differential equation, from which we deduce all others. Note that

by Eq. (2.3), we have that

A =

(
b

a

)r
F̃

(
a3

b2

)
.

Proposition 4.1. We have:

4X2(4X + 27)F̃ ′′ + 4X(8X + 27)F̃ ′ + 3(X − 1)F̃ = 0. (4.2)

Proof. Expanding the left-hand side of the Eq. (4.2) using (4.1), we have that the term in

Xi+1 has coefficient(
r

i

)(
i

3i− r

)
(16i(i− 1) + 32i+ 3) +

(
r

i+ 1

)(
i+ 1

3i+ 3− r

)
(108(i+ 1)i+ 108i− 2).

We can then factor out r!/((r − i)!(3i+ 3− r)!(r − 2i)!) from this expression, leaving

(16i2 + 16i+ 3)(3i+ 3− r)(3i+ 2− r)(3i+ 1− r)+

(108i2 + 216i+ 105)(r − i)(r − 2i)(r − 2i− 1).

Since we are in characteristic p and r = (p − 1)/2, a simple calculation shows that the

expression above is zero. �

We now proceed to deduce the others. Their proofs are simple and tedious, so we shall

only give a brief description of the necessary steps.

Proposition 4.2. The polynomial F (X) (defined by Eq. (2.4)) satisfies the following dif-

ferential equation:

X(4X + 27)F ′′ + (8(r1 + 1)X + 27(2r1 + 1))F ′ +

(
4r1 +

31

36

)
F = 0. (4.3)

Proof. We just use Eq. (4.1) to replace F̃ (and its derivatives) by F (and its derivatives) in

Eq. (4.2). After that, we can divide the resulting expression by Xr1 .

Then, observing that in characteristic p we always have r2
1 = 1/36, one obtains Eq. (4.3).

�

Proposition 4.3. The polynomial G(X) (defined by Eq. (2.5)) satisfies the following dif-

ferential equation:

X(X − 1728)G′′ + ((−2r2 + 2r1 + 1)X − 1728(2r1 + 1))G′ + (r2 − r1)2G = 0. (4.4)

Proof. The idea is the same as before. We just use

G(X) = (X − 1728)r2−r1F

(
−27

4

X

X − 1728

)
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to replace F (and its derivatives) by G (and its derivatives) in Eq. (4.3). We multiply by

432(X − 1728)r2−r1 to clear denominators.

Observing that

(2r1 + 1)(r2 − r1) +
31

144
+ r1 = (r2 − r1)2,

which can be easily done, for instance by checking the possible congruences of p modulo

12 (which gives specific values for r1 and r2 in characteristic p), one can then divide the

resulting expression by (X − 1728), giving Eq. (4.4). �

We observe that Eq. (4.4) is the same as Eq. (1.6) in [BM04].

Finally, we find a differential equation for the supersingular polynomial itself.

Proposition 4.4. Let B(X)
def
= Xr1−r′1(X − 1728)r

′
2−r2 and C0(X), C1(X), and C2(X) be

the coefficients of G, G′, and G′′ in Eq. (4.4) respectively. Also, let

D2(X)
def
= C2B,

D1(X)
def
= C1B − 2C2B

′,

D0(X)
def
= C0B − C1B

′ + 2((B′)2 − (r1 − r′1)(r′2 − r2)B)C2/B.

Then,

D2 ss′′p +D1ss′p +D0 ssp = 0. (4.5)

Proof. As before, just use

ssp(X) = B(X)G(X)

to obtain Eq. (4.5) from Eq. (4.4). (Note that the term C2/B in D0 is in fact a polynomial.)

�

Although Eq. (4.5) does not depend on the possible congruences of p modulo 12, making

it somewhat more direct, we can give clearer equations if we break it into cases.

Corollary 4.5. Let p ≥ 5 be prime. If p ≡ 1 (mod 12), then

X(X − 1728) ss′′p +
1

6
(7X − 6912) ss′p +

1

144
ssp = 0.

If p ≡ 5 (mod 12), then

X2(X − 1728) ss′′p −
1

6
X(X − 6912) ss′p +

1

144
(49X − 165888) ssp = 0.

If p ≡ 7 (mod 12), then

X(X − 1728)2 ss′′p +
1

6
(X − 1728)(X − 6912) ss′p +

1

144
(25X + 81216) ssp = 0.
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If p ≡ 11 (mod 12), then

X2(X − 1728)2 ss′′p −
1

6
(X − 1728)(7X − 6912) ss′p

+
1

144
(169X2 − 333504X + 286654464) ssp = 0.

We now use the differential Eq. (4.4) to prove that H(X) has only simple roots. Indeed,

if H(x0) = H ′(x0) = 0, with x0 6= 0, 1728, we have also H ′′(x0) = 0. Then, successive differ-

entiation of would give that x0 is a zero of H(X) of infinite order, which is a contradiction.

But also note that neither X = 0 nor X = 1728 can be a root of H(X), as one can clearly

see from the definition (remembering that r1 ≤ r2 ≤ r = (p − 1)/2 < p), and hence H(X)

has no multiple roots at all.

Acknowledgement. The author would like to thank P. Morton and J. Cogdell for their useful

comments.
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