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We start with this lemma, which is what we’ve done in the proof of the fact that the

compositum of radical extensions are radical. [It’s not exactly the same though.]

Lemma. Let K1/F and K2/F be field extensions such that

F = F0 ⊆ F1 ⊆ · · · ⊆ Fm = K1

and

F = E0 ⊆ E1 ⊆ · · · ⊆ En = K2

with Fi/Fi−1 and Ej/Ej−1 of type A. If Ej = Ej−1[βi], then let Fm+1
def
= Fm[β1] and induc-

tively, Fm+j
def
= Fm+j−1[βj]. Then

F0 ⊆ F1 ⊆ · · · ⊆ Fm ⊆ Fm+1 ⊆ · · · ⊆ Fm+n = K1K2,

with Fi/Fi−1 type A for i = 1, . . . ,m+ n.

Proof. Clearly K2 = F [β1, . . . , βn], and since F ⊆ K1, we have that K1K2 = K1[β1, . . . , βn] =

Fm[β1, . . . , βn] = Fm+n.

Now if βj is a root of unity, we have then Fm+j/Fm+j−1 = Fm+j−1[βj]/Fm+j−1 is of type A.

If β
nj

j ∈ Ej−1 for some nj not divisible by the characteristic of F , then, as Ej−1 ⊆ Fm+j−1,

we have that Fm+j/Fm+j−1 is of type A.

If βpj −βj ∈ Ej−1, where p = char(F ), then since Ej−1 ⊆ Fm+j−1, we have that Fm+j/Fm+j−1

is of type A.
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Now we can proof the main result.

Theorem. If K/F is radical, then it is solvable.

Proof. Since K/F is radical, there is a finite extension L/K such that we have a tower

F = F0 ⊆ F1 ⊆ · · · ⊆ Fr = L,

with Fi/Fi−1 of type A. Then, for all σ ∈ EmbL/F we have that σ(Fi)/σ(Fi−1) is also of type

A [and same subtype, which is a simple exercise]. So, we have that

F = σ(F0) ⊆ σ(F1) ⊆ · · · ⊆ σ(Fr) = σ(L),

and by the lemma, we have that the Galois closure of L/F , namely L′
def
=

∏
σ∈EmbL/F

σ(L),

has a tower

F = L0 ⊆ L1 ⊆ · · · ⊆ Ls = L′

with Li/Li−1 of type A.

Now, let m be the product of all ni such that Li = Li−1[αi] with αni
i ∈ Li−1 and ni not

divisible by char(F ) [i.e., Li/Li−1 of type A(ii)]. Then, let ζ be a primitive m-th root of

unity and E
def
= F [ζ], Ei

def
= Li[ζ] for i = 0, . . . , s, and E−1

def
= F .

We then have that E/F is abelian [and hence Galois], and since L′/F is also Galois, we have

that L′E/F is Galois. [Note that L′E = L′[ζ].]

Now, we have:

F = E−1 ⊆ E0 ⊆ E1 ⊆ · · · ⊆ Es = L′E.

Then, for i ≥ 1 we have that Ei/Ei−1 is of type A [and same subtype as Li/Li−1, although

perhaps Ei = Ei−1], as Li−1 ⊆ Ei−1, and so is E0/E−1.

If Ei/Ei−1 is of type A(i), then it is abelian, and if it is of type A(iii), then it is cyclic.

Now, if Ei/Ei−1 is of type A(ii), then Ei = Ei−1[βi] with βni
i ∈ Li−1 ⊆ Ei−1 [and char(F ) - ni].

By definition of m, we have that ni | m and this ζm/ni ∈ E0 ⊆ Ei−1 is a primitive ni-th root

of unity and therefore [by previous theorem on cyclic extensions] we have that Ei/Ei−1 is

cyclic.

Therefore, we have that Ei/Ei−1 is abelian for i = 0, . . . , s. Using Galois correspondence

[i.e., the Fundamental Theorem of Galois Theory ] we get

Gs = 1 ≤ Gs−1 ≤ Gs−2 ≤ · · · ≤ G−1 = Gal(L′E/F ),
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where Gi = Gal(Es/Ei).

Still by the Fundamental Theorem of Galois Theory, since Ei/Ei−1 is abelian [and therefore

Galois by definition], we have that Gi E Gi−1 and Gal(Ei/Ei−1) ∼= Gi−1/Gi is abelian, for

i = 0, . . . , s. Hence, Gal(L′E/F ) is a solvable group.

Now, since K ⊆ L ⊆ L′ ⊆ L′E, all finite extensions, and L′E/F is Galois with solvable

Galois group, we have that K/F is solvable.

3


