tain Skills
» Determine whether a given equation is linear.
o Determine whether a given n-tuple is a solution of a
lingar system,
« Find the augmented matrix of a linear system,
o Find the linear system corresponding to a given
augmented matrix.
° T Exercise Set 1.1
= @ In each part, determine whether the equation is lisiear in x,,
X2, and x;.
@ x4+ 5% —+2x =1 (B X 432 + 203 =2
(©) x1 = —Tx; -+ 3x3 W) x72+ 2+ 803 =5
© xP =24 x;=4
(f) mx1 — V2x2 + 23 = 7'
2. In each part, determine whether the equations form a linear
system.
(@) ~2x+4y+z=2 (b) x=4
]
2 =
Ix——=0 2x =8
¥
‘ (c) 4x —y+2z=-1
‘ —x+{In2)y—-3z= 0
(d) 3z+x=-4
y+iz= 1
i % 6x+2z= 3
~x—-y—z= 4
3. In cach part, determine whether the equations form a linear
system.
(@ 2x — Xg= 5
—x1 4+ 5% 4 3x3 — 2xg = —1
; (b) sin(2x; + x3) = +/3
i g—in-2a — i
e : P
; 4xy =

€ Txy— X34 2x35= 0 (d) xy+xp==x3+ x4
204 X —xxg= 3
~X+ 3 — xp=-—1

| 4. Foreach system in Exercise 2 that is linear, determine whether
it is consistent,

1.1 Introduction to Systems of Linear Equations ©

o Perform elementary row operations on a linear system
and on its corresponding augmented matrix.

= Determine whether a linear system is consistent or
inconsistent,

o Find the set of solutions to a consistent linear system.

5. For each system in Exercise 3 that is Iinear, determine whether
it is consistent.

6. Write a system of linear equations consisting of three equa-
tions in three unknowns with
{(a) no solutions.
(b) exactly one soluticn.
(c) infinitely many solutions.

7. In each part, determine whether the given vector is a solution
of the linear system

2x1. —4dx; — x3=1

=34+ np=I1

3xp —Sxpy =3y =1
by 3,1, 1)
(e) (17,7,5)

@ 3,11
@ ($.3.9)

(8.. In each part, determine whether the given vector is a solution
of the linear system

(©) (13,52

X1+ 2x —2x3=3
3y — x4+ =1
—X1 + 5% — 5x3 =95

@ (.40 ® (220

@G5 ©G%2

9. In each part, find the solution set of the linear equation by
using parameters as necessaty.
(a8 7Tx—5y=3

—-8.JC1 + 2xp — 5X3 by =1

In each part, find the solution set of the linear equation by
using parameters as necessary.

(@) 3x) - Sxy+dx3 =7
b)3Jv—Bw+2xr—~y+4z=0

(©) (5,8,1)

10
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11. In each part, find a system of linear equations corresponding
to the given augmented matrix,

2 0 0 P 0 -2 5
(@ |3 -4 .0 ‘®l7 1 4 -3
o 1 1 oo 2 1 7
: 7 2 1 -3 5
@5 2 4 o 1]
16 0 0 7
ol0 ! 0 0 -2
(d) 0o 0 1 0 3
0 0 0 1 4
12. In each part, find a system of linear equations corresponding
to the given augmented matrix.
[ 2 -1
—4 -6 o 3 -1 -1 -1
@1 ®) [5 2 0 -3 —6il
| 39
[ 1 2 3 4
P -4 -3 =2 -1
@ s 6 1 1
| -8 0 0 3
3 0 1 -4 3
-4 0 4 1 -3
! @ -1 3 0 -2 -9
} L o 0o 0 -1 -2
/ 13. In each part, find the augmented matrix for the given system
of lingar equations.
(@ —2x = 6 (b) 6x; — x +3x3=4
3JC| = 8§ S.XZ - X3 = 1
9X] =-3
(c) 2x; —3xg+ x5= 0
—3x— x+x =1
: 6x1+2x2—x3+2x4—3x5= 6
@) x1—xs=7
' 14. In.each part, find the augmented matrix for the given system
5 of linear equations,
(8) 3x; — 220, = —1 () 2,  +2p=1
: ax) + 5%, = 3x;—xz+ 4 =7
Txy+3x= 2 6x1+x2— x3=0
© X+ 2x; — xtxs=1
. 312 + X3 — X5 = 2
X3+ Txa =1
(d) x =1
X2 =2
.‘ X3 = 3
15, The curve y = ax? + bx + ¢ shown in the accorﬁpanying fig-

ure passes through the points (x1, y1), (x2, ¥2), and (x3, y3).

Show that the coefficients @, b, and ¢ are a solution of the
system of linear equations whose augmented marix is14

x x 1 w
x% X2 1 ¥z
% x 1l on

X
-

<4 Figure Ex-15

16.. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

17. Show that if the linear equations
X +kia=c and x +lxy=d

have the same solution set, then the two equations are identical
(i.e., k =!and c = d).

© *True-False Exercises

In parts (a)-(h) determine whether the statement is true or false,
and justify your answer.

(a) A linear system whose equations are all homogeneous must
be consistent,

(b) Multiplying a linear equation through by zero is an accepfable
elementary row operatiot. )

{c) The linear system
x— y=3
2x —2y=k

cannot have a unique solution, regardless of the value of &.

(d) A single linear equation with two or more unknowns must
always have infinitely many solutions.

(¢) Ifthe number of equations ina linear system exceeds the num-
ber of unknowns, then the system must be inconsistent.

(f) If each equation in a consistent linear system is multiplied
through by a constant ¢, then all solutions to the new system
can be obtained by multiplying solutions from the original
systemn by c.

(g) Elementary row operations permit one equation in a linear
system to be subtracted from another.

(h) The linear system with corresponding augmented matrix

o % ]

0 0 -1

is consistent.
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so unless precautions ate taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability.
For example, it can be shown that for large linear systems Gauss—Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in

Chapter 9.
—
Goncept Review :
» Reduced row echelon form = Gaussian elimination > Nontrivial solution
o Row echelon form o Gauss-Jordan elimination » Dimension Theorem for
o Leading 1 o Forward phase Homogeneous Systems
o Leading variables » Backward phase s Back-substitution
» Free variables : = Homogeneous linear system

» General solution to a linear system  ° Trivial solution

. Skills
' s Recognize whether a given matrix is in row echelon o Use Gauss—Jordan elimination to find the general
form, reduced row echelon form, or neither, _solution of a linear system.
o Construct solutions to linear systems whose o Analyze homogeneous linear systems using the Free
corresponding augmented matrices that are in row Variable Theorem for Homogeneous Systems. .

echelon form or reduced row echeion form.

» Use Gaussian elimination to find the general solution of
! a linear system,

E}gé-r-ci'sé —Se.t"i 2

In each part, determine whether the matrix is in row echelon 1 5 -3 i 2 3
form, reduced row echelon form, both, or neither. @ |0 1 -1 @ |0 o o
1 0 o0 100 010 0 0 O 0 0 1
(@ |0 1 ¢ |0 1 0 c) |0 0 1 1 2 3 4 5
0 0 1 000 000 1 7 3 _
| L : ® 14 g 0 :) 1 &) [(1) 3 1 —;]
g 1 20 3 0
?‘i (d)'1031] ,(6)00110 00000
| . L_0 1 2 4 _ 0 06 0 0 1
1 00000 _
3. In each part, suppose that the augmented matrix for a system

: 0 o} | 1 =7 3 5 of linear equations has been reduced by row operations to the
; fy|o C (z) [0 | 3 2] given row echelon form. Solve ;he system.
i 00 i -3 4 1
; 2. In each part, determine whether the matrix is in row echelon @ |¢ 1 2 2
I form, reduced row echelon form, both, or neither. 0o 0 1 5
|
| 120 1 00 1 3 4 1 0o 8 -5 6
t @@ |0 1 0 ® {0 1 0 © [0 0 1 ®mlo 1 4 -9 3
e 0 00 0 2 0 0 0 0O o o0 & 1 2
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toa 1 7 —2 0 -8 -3 M x +30n - x3=0 A8, anx + anx: + apx; =0
alled S 0 o0 1 1 6 5 X3 — 8x3 =0 anx1 + anx; + anxs =0
ility. _ (©} 0o 0 0 1 3 9 4x3 =0
ation ;
yuter "0 0 0 0 0 0 ia 3JC| - 2)62 =0
e in 1 -3 7 1 6xy —dy =10
@ {0 1 4 0 ¥ In Exercises 17-24, solve the given linear system by any
| 0 0 0 1 method. <
mn,r A4,) In each part, suppose that the augmented matrix for a system 17. 22 + xp +3x3 =0 1\8 26— y~3=0
of linear equations has been reduced by row operations to the X+ 23y =0 —x+2y—-3z=0
given row echelon form. Solve the system. X2+ x3=0 x4+ yv+4z=0
(]) {1’ g *3 19. 35 4+ 02 b v Fxs =0 20, V43w —2x=0
@) 0 0 ) ; Sxp—xp+x3—x3=10 2u+ v—4w+3x=10
- 2u+3v4+2w— x=0
1 0 0 -7 8 -4y - 3v+ 5w —4x =0
@ie 1 0o 3 2 .
‘ o 0 1 1 -5 21 2%+ 2y +4z2=0
—_— : - : w - y—3z=0
1 6 0 0 3 -2 2w+3x+ y+ z2=0
© 0o 0 1 60 4 7 2w+ x+3y—-22=0
o 0 0 1 5 8
. 0 0 0 0 0 0 22. Xy + 3JC2 + Xq = 0
- x) +4x + 2x =0
3 0 o 1 2 3
d 0 0 1 0 — 2%~ 2x3 ~x4=0
() 0 0 0 ) 2x1—4x2+ x3+x4=0
: L x—2x— x3+x=0
k r I?l E?(ercisgs 5-8, solve the linear system by Gauss—Jordan 23, 21, — L +35+4L,= 9
R &llmmatlon. & ~ I -2+ T =11
' B x4 mh2u=8  6) 2u42u+2u= 0 3 —3h+ L+5h=8
e ’L X1 — 2%+ 3x0n= 1 —2x; + 5%+ 2= 1 2+ L+454+44L =10
— Ty + 4xy = 8 4xy = —1
3x X+ dxy =10 X+ X+ 4x; 24, Zy 4t Zad Zs—=0
: 7. x— y+2Z— w=—I —Z|—Zz+223—324+25:0
2x 4+ y—2z—2w=-2 Zi+ Zy 227, — Zs=0
—x+2y-4z+ w= 1 22\ + 27, — Z4 + Z5=0
3x —3w=-3 N . \ . '
i f b= In Exercises 25-28, determine the values of a4 for which the
9 i 8. —2b43c= 1 system has no solutions, exactly one solution, or infinitely many
3a4+6b—3c=-2 solutions. -
6a+6b+3c= 5 25, x+ 2y~ 3z= 4
b In Exercises 912, solve the I tom by Gaussian elimi oo = 2
: #- In Bxercises 9-12, solve the linear system by Gaussian elimi- ' _
stem o nation, % . Bt yt@-ldz=a+2
o the : 9. Exercise 5 10. Exercise 6 26 x+2y+ z=2
' 11, Exercise 7 12. Exercise 8 2x -2y + s Sz=1
x+2y—(@—3z=a
B In Exercises 13-16, determine whether the homogeneous sys-
ter has nontrivial solutions by inspection (without pencil and 27+ X+ Zy= 1
- paper), -f A+ @-Sy=a-1
48 23 ~ 30+ dxy — x4 =0 28 x+ y+ Te= —7
Tx1 4+ x2—8x3+9x4=0 2x + 3y + 172 = —16
2x; + 814+ 3~ x3=0 x+2y+@+Dz= 3a
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k= In Exercises 2938, solve the fotlowing systems, where a, b,
and c are constants, <

29.2x+ y=a 0. x4+ 0+ x3=a
Ix+6y=0>b 2x +2x3=0b
3+ 3In=c

31. Fiad two different row echelon forms of

;]

This exercise shows that a matrix can have multiple row ech-

elon forms.
32. Reduce
2 1 3
0 -2 -29
3 4 5

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if

0<e<2r,0<pg<2mand0 <y <27

sine +2cos B+ Jtany =0
2sine + 5cosf + 3tany =0
—sine — 5cosf + Stany =0

[Hint: Begin by making the substitutions x = sine,
y=cosf,and z = tany.]

34. Solve the following system of nonlinear equations for the un-
known angles &, 8, and y, where 0 <o <27, 0 < § < 27,

and 0 <y < 7.

h

2sine — cosf+3tany =3
4sine +2cos 8 — 2tany =2
6sine — 3cosf + tany =9

35. Solve the following system of nonlinear equations for x, y,

and z.

24yt + 2=6
¥ =y 222
2%+ yr — 72=3
[Hint: Begm by making the substitutions X = x?, ¥ = y?,
Z=22]

365 Solve the following system for x, y, and z.

1 2. 4
R =R |
x y z
2 3 8
S+ = =0
X"y oz
1.9 10
R s
X ¥y z

37. Find the coefficients a, b, ¢, and 4 so that the curve shown
in the accompanying figure is the graph of the equation
y=ax® +bx® +ex+d.

AY
20
©.10) . .7
1 /’éh\;\\ L1 af g
-2 /
20}
4 Figure Ex-37

38. Find the coefficients a, b, ¢, and 4 so that the curve shown in
the accompanying figure is given by the equation
ax’* +ay’ +bx +cy+d=0.

AY

27

(-4, 5)

X

T

\\‘—-”;/({—3) < Figure Ex-38

39, Ifthe linear system
ax+bhy+teaz=0
dx —by+toz=0
ax+bhy—cz=0

has only the trivial solution, what can be said about the solu-
tiotis of the following system?
ax+bhy+eaz= 3
ax —byy+eoz= 17
ax F by —c3z =11
40. (a) If Aisa 3 x 5 matrix, then what is the maximum possible
number of leading 1’ in its reduced row echelon form?

(b) If Bisa3 x 6 matrix whose last column has all zeros, then
what is the maximum possible number of parameters in
the general solution of the linear system with augmented
matrix B?

{c) fCisa5 x 3 matrix, then what is the minimum possible
number of rows of zeros in any row echelon form of C?

41. (a) Provethat if ad — bc # 0 then the reduced row echelon

form of
a b ) 1 0
e a|l ¥ o1

(b) Use the result in part (a) to prove that if ad — bc # 0,
then the linear system

ax+by=k
cx +dy==1

has exactly one solution.
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42, Consider the system of equations

ax+by=0
ex+dy=90
ex+ fy=0

Discuss the relative positions of the lines ax + by = 0,
cx +dy = 0,and ex + fy = 0 when (a) the system has only
the trivial solution, and (b) the system has nontrivial solutions.

43. Describe all possible reduced row echelon forms of

a b ¢ b o d

' h

@ |d e f wle L8
¢ h i J

m n p q

__rue-False Exercises

In parts (a)—(i) determine whether the statement is true or false,

and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in
row echelon form,

(b} If an elementary row operation is applied to a matrix that is
in row echelon form, the resulting matrix will still be in row
echelon form.

1.3 Matrices and Matrix Operations 25

(c) Every matrix has a unigue row echelon form.

(d) A homogeneous linear system in n unknowns whose corre-
sponding augmented matrix has a reduced row echelon form
with r leading 1's has n — ¢ free variables.

() Allleading 1's in a matrix in row echelon form must occur in
different columns,

(f) Ifevery column ofa matrix in row echelon form has a leading
1 then ali entries that are not leading 1's are zero.

(g) Ha homogeneous linear system of n equations in r unknowns
has a corresponding augmented matrix with a reduced row
echelon form containing n leading 1’s, then the linear system
has only the trivial solution.

(h) If the reduced row echelon form of the augmented matrix for
a linear system has a row of zeros, then the system must have
infinitely many solutions.

(i) 1falinear system has more unknowns than equations, then it
must have infinitely many solutions.

F 1.3

Matrix Notation and
Terminology

Matrices and Matrix Operations

Rectangular arrays of real nusbers arise in contexts other than as augmented matrices for
linear systems. In this section we will begin to study matrices as objects in their own right
by defining opetations of addition, subtraction, and multiplication on them.

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, 10
abbreviate systems of linear equations. However, rectangular arrays of numbers occur in
other contexts as well, For example, the following rectangular array with three rows and
seven columns might describe the number of hours that a student spent studying three
subjects during a certain week:

Mon. Tues, Wed, Thurs, Fri Sat.  Sun.

| Math 2 3 2 4 1 4 2
Histary 0 3 1 4 3 2 2
Language 4 1 3 i 0 0 2

Tf we suppress the headings, then we are left with the following rectangular array of
numbers with three rows and seven columns, called a “matrix™:

2 3 2 41 4 2

0314322

4 131002

More generally, we make the following definition. -
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DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is
defined to be the sum of the entries on the main diagonal of A. The trace of A is
undefined if A is not a square matrix.

B EXAMPLE 11 Trace of a Matrix
The following are examples of matrices and their traces.

an
A= a2
a3l

tr(A) = an + a2 + a3

a2
a2
32

) -1 2 71 0
13 3 5 —8 4
asl. B=1 | 5 7 _3
43 4 -2 1 0

tr(B) =—-1+4+5+74+0=11 S

In the exercises you will have some practice working with the transpose and trace

i operations.

I

:;

r

: Concept Review

= Matrix o Matrix operations: sum, o Row-column method
i > Entries difference, scalar multiplication o Column method

:; o Column vector (or column matrix) » Linear combination of matrices o Row method

‘ = Row vector (or row matrix) > Product of marices (matrix » Coefficient matrix of a linear
o Square matrix multiplication) system

» Main diagonal » Partitioned matrices o Transpose

i * Submatrices ° Trace

» Equal matrices

Skilis

o Determine the size of a given matrix.

o Identify the row vectors and column vectors of 2 given
matrix.

o Perform the arithmetic operations of matrix addition,
subtraction, scalar multiplication, and multiplication.

o Determine whether the product of two given matrices is
defined.

o Compute matrix products using the row-column
method, the column method, and the row method.

L]

Express the product of a matrix and a column vector as
a linear combination of the columns of the matrix.

Express a linear system as a matrix equation, and
identify the coefficient matrix.

Compute the transpose of a matrix.
Compute the trace of a square matrix.

Exercise Set 1.3
“T Suppose that A, B, C, D, and E are matrices with the follow-

! ing sizes:
A B c D E
(4 % 5) (4 x 5) (5x2) 4 x2) (5 x4)
In each patt, determine whether the given matrix expression
is defined. For those that are defined, give the size of the

resulting matrix,

(2) BA () AC+ D (c) AE+ B
(d) AB + B (&) E(A+ B) (f) E(AC)
(8) ETA (h) (AT + E)D
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2. Suppose that A, B, C, D, and E are matrices with the follow-

3

6

-

ing sizes:
A B c D E
3x1 (3 x6) (6 x2) 2 x 6) (1x3)

In cach part, determine whether the given matrix expression
is defined. For those that are defined, give the size of the
resulting matrix.

(a) EA (b} ABT () BT(A+ ET)
() 2A4-C (&) (CT+DYBT (f) CD+ BTET
(&) (BDT)YCT (h) DC + EA

Consider the matrices

A_?g B__4—1 C_142
—11’ “lo 2| 13 1 57

1 5 2 6 1 3
D={~1 0 1|, E=|-1 1 2
3 2 4 41 3

Tn each part, compute the given expression (where possible).

(8 D+E (b) D—E (c) 54

@ —7¢ () 2B—C (f) 4E — 2D
(8) =3(D+2E) () A—A () (D)

G) (D -3E) (k) 4tr(7B) O w4

. Using the matrices in Exercise 3, in each part compute the

given expression (where possible).

(a) 247 +C (by DT — ET © (P—-E7
(d) BT +5C7 (e) 3C" — A (fy B-B7
(8 2B7 -3D7  (h),@E" ~3D")" (i) (CD)E
(j) C(BA) ® tDE") 1) t(BC)

. Using the matrices in Exercise 3, in oach part compute the

given expression (where possible).

(a) AB (b) BA (cy BE)D
(d) (AB)C (&) A(BC) ®) ccT
(® (DAY (@) (c™B)A @) w(DD")

() tr@ET — D) (k) w(CTAT +2ET) (1) tr((ECT)"A)

Using the matrices in Bxercise 3, in each part compute the
given expression (where possible).

(8 DT - E)A (b) 4B)C 4+ 2B

ON(—AC)T +5D7
(e) BNCCT — ATA)

(d) (BAT —20)T
(f) DTET — (ED)"

10.

11.

12.

Let
3 -2 7 6 -2 4
A= |6 5 4| and B=|0 1 3
0 4 9 7 7 5

Use the row method or column method (as appropriate) to find
(a) the first row of AB. (b) the third row of AB.

(c) the second column of AB. (d} the first column of BA.
(e) the third row of AA. (f) the third column of AA.

. Referring to the mairices in Exercise 7, use the row method

or column method (as appropriate) to find

(3), the first column of AB.  (b) the third column of BB.
(d) the first column of AA.
(f) the first row of BA.

(5"a1he second row of BB.

(e) the third column of AB.

. Referring to the matrices in Exercise 7 and Example 9,

(a) express each columm vector of A A as a linear combination
of the column vectors of A.

(b) express each column vector of BB as a linear combination
of the column vectors of B,
Referring to the matrices in Exercise 7 and Example 9,

a) \express each column vector of AB as a linear combination
of the column vectors of A,

(b) express each column vector of BA asa linear combination
of the column vectors of B.

In each part, find matrices A, x, and b that express the given
system of linear cquations as a single matrix equation Ax = b,
@i)d write out this matrix equation.

X, —3x3 + Sxy = 7T

9%, — x4+ x3=-1

JC|+5X2-|:4X3= 0
{b) 4x, =3+ xy=1

Sx;1+ x - 8xy =3

2%, — Sx2+9x3 — x4=0
It — x3+Txg=2

In each part, find matrices A, x, and b that express the given

- gystem of linear equations as a single matrix equation Ax = b,

13.

and write out this matrix equation.

(@) x1—2x 4+ 3 =-3 B 34 +34+3n=-3
2%+ x = 0 —X —5x3 - 2x3= 3
—3xtd= 1 —4x3+ xy3= 0

X1 + x3= 5

In each part, express the matrix equation as a system of linear
equations.
5 6 =T||x 2
(a) -1 =2 3 X2 | = ¢
' 0 4 —-1]|x 3
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1 1 1 x| 2
{2 3 0f||x|=] 2
5 =3 —6|!x —9
14. In each part, express the matrix equation as a system of linear
equations.
3 -1 2] [x 2]
(2) 4 3 Tlix|=[-1
-2 1 501 x 4]
3 -2 ¢ 1] |w [0
0 2 =2|ix 0
®) =
3 1 4 7]ty 0
| -2 5 1 6]z 0

b

In Exercises 15-16, find ail values of &, if any, that satisfy the

equation. ¥

15.

16.

B

17.

18.

19.

@

21,

22,

23.

[k 1 1]

[\
l
w2
—
Il
(=1

i
<

12 2
[2 2 4|2 o 2
0 3 k

In Exercises 17-18, solve the matrix equation fora, b, ¢, and d.
a 37 4 d—2c
-1 a+b} |d+2c -2

a—b b+al]l [8 1
3d+c 2d—c] L7 6
Let A be any m x n matrix and let 0 be the m % # matrix each

of whose entries is zero. Show that if kA = 0, then k = 0 or
A=10

(a) Show that if AB and BA are both defined, then AB and
BA are square matrices.

(b) Show that if A is anm x n matrix and A(BA) is defined,
then B is an n X m matrix.

Prove: If A and B are n % n mafrices, then
tr(A + B) = tr(A) + tr(B)

(a) Show thatif A has a row of zeros and B is any matrix for

which AB is defined, then AB also has a row of zeros,
(b) Find a similar result involving a column of zeros.
In cach part, find a 6 x 6 matrix [a;] that satisfies the stated

condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

(@ ay=0 if [] ®a,=0 if i>j
©ay=0 if i<j
W@ ay=0 if }i—jl>1

24,

25,

26

-

27,

28,
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Find the 4 x 4 matrix A = [a;] whose entries satisfy the
stated condition.

(a) ag=i+j {b) a;,-:if"
boif fi—ji> 1
© %“_[—1 if li—-jls1

Consider the function y = f(x) defined for 2 x 1 matrices x

by v = Ax, where
11
A=lo

Plot f(x) togethef with x in each case below. How would you
describe the action of f7?
2
b =
® == ;)

()
o) @)

Let 7 be the r x n matrix whose entry in row i and column j
= j

is
1 if
0 if i#£j

Show that AJ = JA = A for every n x n matrix A.

How many 3 x 3 matrices A can you find such that

X X4y
Alyl=|x—»
z 0
for all choices of x, y, and z?
How many 3 x 3 matrices A can you find such that

X xy
Alyl=]0
Z 0

for all choices of x, y, and z?

29, Amatrix B issaid tobe asquare root ofamatrix Aif BB = A,

2 2
(b) How many different square roots can you find of
50
A=
o of
(c) Do you think that every 2 x 2 matrix has at [east one
square root? Explain your reasoning,.

(a) Find two square roots of A = [2 2]7.

30. Let @ denote a 2 x 2 matrix, each of whose entries is zero.

(a) Isthere a2 x 2 matrix A such that A # Oand AA = 07
Justify your answer.

(b) Isthere a2 x 2 matrix A such that A # 0 and AA = A?
Justify your answer.
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True-False Exercises

In parts (a)-(0) defermine whether the statement is true or false,
and justify your answet,

‘[(a)'j-.’l‘he matrix L2 3 has no main diagonal.
4 5 6

(0) Anm x 1 matrix has m column vectors and n row vectors.
(cy fAand Bare2 x 2 matrices, then AB = BA.

(d) ‘The ith row vector of matrix product AB can be computed
by multiplying A by the ith row vector of B.

(e) For every matrix A, it is true that (AT = A.

' (f } If A and B are square matrices of the same order, then

tr{AB) = tr(A)r(B).

(g) If A and B are square matrices of the same order, then
(AB)T = ATBT.

(h) For every square matrix A, it is true that tr(ATY = tr(A).

(i) If A is a 6 x 4 matrix and B is an m x n matrix such that
BTAT is a2 x 6 matrix, thenm =4 and n = 2.

a8 If A isan x x n matrix and ¢ is a scalar, thentr{cA) = cir(A).

(k) I A, B, and C are matrices of the same size such that
A—-C=B—-C,then A =B.

() If A, B,and C are square matrices of the same otder such that
AC = BC,then A = B. )

(m) If AB + BA is defined, then A and B are square matrices of
the same size.

() If B has a column of zeros, then so does AB if this product is
defined.

(0) If B has a column of zeros, then so does BA if this product is
defined.

BN

AR 1 fEee

1.4 Inverses; Algebraic Properties of Matrices

. AN T

In this section we will discuss some of the algebraic properties of matrix operations. We
will sce that many of the basic rules of arithmetic for real numbers hold for matrices, but we
will also see that some do'not,

Properties of Matrix
Addition and Scalar
Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

To prove any of the equalities in this theorem we must show that the matrix on the left

side has the same size as that on the right and that the corresponding entries on the two

o

T e




FAT is

n two

ale

aagnil T

s WAL

1.4 Inverses; Algebraic Properties of Matrices 49

R P A BN T e e T B D0 A A M A R e B B T MO VAT LT SO ERAT SRR,

oA R DA PN R T AT S L GRS R S AR A e N

Exercise Set 1.4

1 Let
2 -1 3 8 -3 -5
A= 0 4 51, B=1|0 1 2,
w2 1 4 4 -7 6
0 -2 3
C=|1 7 4|, a=4, b=-7
3 5 9 :
Show that

@ A+ B+C)=(A+B)+C
(b) (AB)C = A(BC) () @+ bH)C =aC+bC
(d) a(B—C)=aB —aC

2. Using the matrices and scalars in Exercise 1, verify that
{a) a(BC) = (aB)C = B(aC)
(b) A(B—C)=AB - AC
(d) a(bC} = (@b)C

() (B+C)A=BA+CA

3. Using the matrices and scalars in Exercise I, verify that
@ (AN =4 (®) (A+B)7" = AT + BT
© @C) =aCT (d) (AB)T == BTAT

B In Exercises 4-7, use Theorem 1.4.5 to compute the inverses
of the following matrices. <

4.A=[3 1] 5. 5= "3]

5 2 | 4 4
6 4 2 0
‘6.4.C—[_2 _1] 7.0=, 3]
8. “‘Find the inverse of
' cos@ sind]
‘ —sing cosd]

9. Find the inverse of
ye*+e>) i —e)
(\10) Use the matrix A in Exercise 4 to verify that
T AN =@

11, Use the matrix B in Exercise 5 to verify that
(BT)—I — (B_I)T.

{12y Use the matrices A and B in Exercises 4 and 5 to verify that
T (ABY ' = B1ATL.

13. Use the matrices A, B, and C in Exercises 4-6 to verify that
(ABC) ' =C-1B-14-1,

E= In Exercises 14—17, use the given information to find A. <«

a2 -1 a3 7
14. A _[3 5] 1_5. (74) _[ | o
-3 -1 o[-t 2
s ] 17. (I +24) _[ 4 5]

1]

In each part, com};ute the given quantity.
(a) A° (by A°?

(d} p(A), where p(x) =x—2

(&) p(A), where p(x) =222 —x + 1
(f) p(A), where p(x) = x> —2x + 4

16. (5AT)!' = [

18. Let A be the matrix

() A>—24+1

19. Repeat Exercise 18 for the matrix

'3 0 -1
A=1}0 =2 0
5 0 2

21. Repeat Exercise 18 for the matrix

ER
A=]0 -1 3
0 -3 —1

B In Exercises 22-24, let py(x) = x2 =9, pa(x) =x + 3, and
palx) =x — 3. Show that py(A) = p2(A)p;(A) for the given
mafrix. -4

22. The matrix A in Exercise 18.
23. The matrix A in Exercise 21.
24. An arbitrary square matrix A.

25. Show that if p(x) = x* — (a + d)x + (ad —~ bc) and
a b
a=[c ]

26. Show that if p(x) = x* — (@ + b + e)x + a(be — cd) and
¢ ¢

then p(A)=0.

c

a
A=1{0 b
0 d e

then p(A) = 0.
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27. Consider the matrix

[250] 0 0
0 0
A= a.zz
0‘ 0 o Gun

where a) ey - - - doy 7 0. Show that A is invertible and find
its inverse.

28. Show that if a square matrix A satisfies A* —3A+7 =0,
then A™' =3I — A.

20, (a) Show that a matrix with a row of zeros cannot have an
inverse.
(b) Show that a matrix with a column of zeros cannot have
an inverse.

30. Assuming that all matrices are r x n and invertible, solve
for D.
ABC'DBATC = ABT

31. Assuming that all mairices are r x n and invertible, solve
for D.
CTB'A*BAC™'DA?BTC I =CT

32. If A is a square matrix and n is a positive integer, is it true that
(AT = (AT)"? Justify your answer.
'33) Simplify:
(AB)-'(ACYyD'ch ' D!
34, Simplify:
(Ac Ty lAcHac Y lADT!
% In Exercises 35-37, determine whether A is invertible, and

if so, find the inverse. [Ffint; Solve AX = I for X by equating
corresponding entries on the two sides.] - ‘

1 0 1]
BA=|1 1 O
[0 1 1]
M1 1] 0 0 1
36. A=|1 0 0 3T.A=| 1 1 0
[0 1 1] -1 1 1

38. Prove Theorem 1.4.2.
p~ In Exercises 39-42, use the method of Example 8 to find the
unique solution of the piven linear system. <4
39, 3x; — 2x; -1 :40.\ —x1 4+ 55 =4

4x; + 50 = 3 '

I

—x; =3 =1

41, 63,4+ K= 0
dx) — 33y = 2

42, 2x) —2x, =4
x1+4dx, =4

43

Prove part (a) of Theorem 1.4.1.

44. Prove part (¢) of Theorem 1.4.1.
45, Prove part (f} of Theorem 1.4.1.
46. Prove part {b) of Theorem 1.4.2.
47. Prove part (¢) of Theorem 1.4.2,
48. Verify Formula (4) in the text by a direct calculation.
49. Prove part (@) of Theorem 1.4.8.
50. Prove part (¢) of Theorem 1.4.8.

51. (a) Show that if A is invertible and AB = AC, then B =C.

(b) Explain why part (a) and Example 3 do not contradict one
another.

52, Show that if A is invertible and k is any nonzero scalar, then
(kA)" = k" A" for all integer values of n.

53. (a) Showthatif A, B, and A 4+ B are invertible matrices with
the same size, then

AAT 4B HYBA+B " =1

(b) What does the result in part {a) tell you about the matrix
ATV 4+ BT1?
54. A square matrix A is said to be idempotent if A=A,
{(a) Show that if A is idempotent, thensois I — A.
(b) Show that if A is idempotent, then 24 — I is invertible

and is its own inverse.

55, Show that if A is a square matrix such that A* = 0 for some
positive integer &, then the matrix A is inveriible and

U-A"'=I+A+A%+.. 44

Q-)True-False Exercises

In parts (a)-(k) determine whéther the statement is true or false,
and justify your answer.

(a) Two r x n matrices, A and B, are inverses of one another if
and only if AB = BA = 0.

(b) For alt square matrices A and B of the same size, it is true that
(A+ BY? = A’ +2AB + B

(c) For all square matrices A and B of the same size, it is true that
A2 —B*=(A-B)A+B).

(d) If A and B are invertible matrices of the same size, then AB
is invertible and (AB)~! = A~!B~!,

fe) If A and B are matrices such that AB is defined, then it is true

that (ABYT = ATBRT,
a b
a=[c d)

is invertible if and only if ad — bc # 0.

(f) The matrix
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: E (g) If A and B are matrices of the same size and % is a constant,  (j) A square malrix containing a row or colummn of zeros cannot
P then (kA + B)" = kA" + BT. be invertible.
. (h) If A is an invertible matrix, then so is AT (k) The sum of two invertible matrices of the same size must be
invertible.

(@) Ifpx) =ao+aix + ax” + - + a,x" and  is an identity
matrix, then p(I) =ag+a; +a; -+« +a,.

3 N T
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1.5 Elementary Matrices and a Method for Finding A

-C. ; In this section we will develop an algorithm for finding the inverse of a matrix, and we will
discuss some of the basic properties of invertible matrices.

stone
: In Section 1.1 we defined three elementary row operations on a matrix A:
» then a 1. Multiply a row by a nonzero constant c.
_ 2. Interchange two rows,
swith 3. Add a constant ¢ times one row to another,
It should be evident that if we let B be the matrix that results from A by performing one
of the operations in this list, then the matrix A can be recovered from B by performing
natrix the corresponding operation in the following list:
5 1. Multiply the same row by 1/c.
2. Interchange the same two rows.
; 3. If B resulted by adding ¢ times row r; of A to row ry, then add —c times r; to row ry.
tlible i- It follows that if B is obtained from A by performing a sequence of elementary row
_ operations, then there is a second sequence of clementary row operations, which when
some t applied to B recovers A (Exercise 43). Accordingly, we make the following definition.
I ,
‘ DEFINITION 1 Matrices A and B arc said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.
false, _ Our next goal is to show how matrix multiplication can be used to carry out an
‘ elementary row operation.
her if
7 DEFINITION 2 Ann x n matrix is called an elementary matrix if it can be obtained
e that _ from the n x n identity matrix I, by performing a single elementary row operation.
e that _ . ]
5 B EXAMPLE 1 Elementary Matrices and Row Operations
1 AB Listed below are four elementary matrices and the operations that produce them.
- 1000
o 1 0 3 1 00
s true : 1 0 10 0 0 1
010 0 1 0
0 -3 0010 0 0 1 0 0 1
- , 01 0 ¢
' B Multiply the Interchange the Add 3 times Mulfiply the
sécond row of second and fourth the third row of first row of

I by —3. rows of Iz, 1 to the first row. Lbyl. <
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“ Exercise Set 1.5-

~ 1. Decide whether each matrix below is an elementary matrix.

1 0 [—5 1
(@) s l] () 1 0]
. 0 0 2
110
@ lo o 1 (d)g:)?g
0 0 0
: 0 0 0 1

/2 Decide whether each matrix below is an elementary matrix.

(a)[1 0] (o) 010
0 V3 1 0 0
1 0.0 -1 0 0
@ |0 v 9 @] 0o 0 1
0 0 1 01 0

“3. Findarow operation and the corresponding elementary matrix
“ that will restore the given elementary matrix to the identity

matrix.
[ -3 -7 0 0
@ [y ] 0 1 0
L0 0 1
L0 o 0o 0 1 ¢
( 01 0 & ¢ 1 0 0
2 s 01 @1y 0 0 0
0 0 0 1

4. Find arow operation and the corresponding'elementary mairix
that will restore ihe given elementary matrix to the identity

matrix.
o 1 0 0
(a)31] b jo 1 0
L~ 0 0 3
0 0 0 1} 1 ¢ -4 0
010 0 01 00
©lg 01 0 @le 0 1 0
(1 0 0 0 \_00 01

n>

N,

. Ineach part, an elementary mairix E and a matrix A are given.
Write down the row operation corresponding to £ and show
that the product EA results from applying the row operation
to A.

U b 2 5 -l
@ E=1y o> "] 3 -6 -6 -

1 o 0 2 -1 0 —4 -4
@ E=[0 1 of, a=[1 -3 -1 3 3
0 -3 2 0 1 3 -1
1 0 4 i 4
© E=|0 1 0|, A=[2 5
[0 0 ! 36

6. Ineach part, an elementary mairix E and a matrix A are given.
Write down the row operation corresponding to £ and show
that the product EA results from applying the row operation
to A.

—6 0 -1 -2 5 -l
(a)E=[0 1]‘ Aﬂ[s -6 —6 —]

2 -1 0 -4 —4

0
(b)) E=|—-4 1
0

1 0
(¢ E=|0 5
0

&

% In Exercises 7-8, use the following matrices.

3 4 1 g8 1 5]
A=|2 -7 -1|, B=|2 -7 -1
Ls 15 3 4 1
3 4 1 g8 1 5]
c=|2 -7 -1, P=|-6 21 3 1
Lz -7 3 3 4 1)
8 .1 5
F=|8 1 1] =
L3 4 1

- 7. Find an elementary matrix E that satisfies the equation,
() EA=B (b) EB=A
(c) EA=C d) EC=A

(8) Find an elementary matrix E that satisfies the equation.
(a) EB=D (b) ED=B
() EB=F (d) EF =B

b In Excrcises 9—24, nse the inversion algorithm to find the in-
verse of the given matrix, if the inverse exists. -4

D I e H
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5

In Exercises 29-32, write the given matrix as a product of

elementary matrices. -

-3 1 [ 1 0
29, . .
? | 2 2:| 30 | 5 2]
(1 0 -2 1 1 0
3. | ¢ 4 3 32,11 1 1
_0 0 1 0 1 1
B In Exercises 33-36, write the inverse of the given matrix as a

product of elementary matrices.
33, The matrix in Exercise 29,

34. The matrix in Exercise 30,
35, The matrix in Exercise 31.

36. The matrix in Exercise 32.

— 3 —
- R
12 13. /1 0 3
-3 2
L 2 5 —4
1 2 0 -1 3 -4
dd: 2 12 M. ] 2 4 1
oo 201 -4 2 -9
R 10 1]
16 [ + & 17. [0 1 1
R 11 0]
(V2 3/2 0 2 6 6]
18. |-4v2 V2 0 19. |2 7 6
L0 ¢ 1 (2 7 7]
[1 0 0 © 2 —4 0 0
1 3 0 0 o2 120
20. 21
1 3 5 0 (J 0 ¢ 2 0
1 3 5 7 0 -1 —4 -5
(-8 17 2 ! .1 1 0
0 % -9 2 -2
22. 3 23. 3 6
0 0 0 ~1 2 0
-1 13 4 2 | ¢ 0 1 5
0 0 2 ¢
1 0 o 1
24.
0 -1 3 0
12 1 5 -3

= In Exercises 37-38, show that the given matrices A and B are
row equivalent, and find a sequence of elementary row operations
that produces B from A. =

1 2 3 1 0 5
37.A=|1 4 1|, B=|0 2 =2
(2 1 9 i 1 4
2 1t 0 6 9 4
38. A=|-1 1 0|, B=|-5 -1 0
| 3 0 -1 -1 =2 =1
39, Show that if
1 ¢ 0
A=]0 1 0
a b ¢

I In Exercises 2526, find the inverse of each of the following

4 x 4 matrices, where k), k,, ki, k4, and k are all nonzero. <

0 0 07 Tk 1 0 0
0 k 0 0 010 0
25. :

@15 0 & o ® s 0 & 1
(0 0 0 & 0 0 0 1]
00 0 kT % 0 0 0]
0 0 k& O 1 &k 0 0

26.

@ 1o &% o o ® 1y 1 & 0

ks 0 0 0 0 0 1 &

is an elementary matrix, then at least one entry in the third
row must be zero,

40, Show that
00 a 0 0 O
b 0 ¢ 0 0
A={0 d 0 e 0
0 ¢ f 0 g
0 06 0 & O

41.

k- In Exercises 27-28, find all values of ¢, if any, for which the 42.

given matrix is invertible. <

¢ ¢ ¢ c 0
2.11 ¢ ¢ 8 [1 ¢ 1
1 1 ¢ I VI

1s not invertible for any values of the entries.

Prove that if A and B are m x n matrices, then A and B are
row equivalent if and only if A and B have the same reduced
row echelon form.

Prove that if A is an invertible matrix and B is row equivalent
to A, then B is also invertible.

. Show that if B is obtained from A by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, which when applied to B re-
covers A,
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~Jruye-False Exercises : (d) If A is an # x n matrix that is not invertible, then the linear
In parts (2)~(g) determine whether the statement is true or false, system Ax = 0 has infinitely many solutions.
and justify your answer. (e) If A is an n x n matrix that is not invertible, then the matrix
(a) The product of two elementary matrices of the same sizemust  obtained by interchanging two rows of A cannot be invertible.

| be an elomentary matrix.
: © an cloinentary matnx (f) If A is invertible and a multiple of the first row of A is added

(b) Every elementary matrix is invertible. to the second row, then the resulting matrix is invertible.

(c) If A and B are row equivalent, and if B and C are row equiv-  (g) An expression of the invertible matrix A as a product of ele-
' alent, then A and C are row equivalent. mentary matrices is unique.

THYRT VAR EREERENE AR R R

R

1.6 More on Linear Systems and Invertible Matrics

In this section we will show how the inverse of a matrix can be used to solve a linear system
[ and we will develop some more results about invertible matrices.

Number of Solutions of a  In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
Linear Systern  system has either no solutions, has exactly one solution, or has infinitely many solutions.
i We are now in a position to prove this fundamental result.

et e e

At T

| . Prooi - If Ax = b is a system of linear equations, exactly one of the following is frue:
| (a) the system has no solutions, (b) the system has exactly one solution, or (c) the system
has more than one solution. The proof will be complete if we can show that the system

P has infinitely many solutions in case (c). :
Assume that Ax = b has more than one solution, and let xy = x; — %5, where x; and
: X3 are any two distinct solutions. Because x; and x; are distinet, the matrix xp is nonzero;
| moreover, :
‘ AXg = A(X; — X)) = Ax; —Axy =b—-b=10

If we now let k be any scalar, then

Ax) + kxg) = Axy + A(kxg) = AX| + k(Axp)
=b+k0=b+0=D0

But this says that x; -+ kx is a solution of Ax = b, Since xq is nonzero and there are
infinitely many choices for &, the system Ax = b has infinitely many solutions. <4

Solving Linear Systems by Thus far we have studied two procedures for solving linear systems—Gauss—Jordan
Matrix Inversion  elimination and Gaussian elimination. The following theorem provides an actual formula
) for the solution of a linear system of n equations in # unknowns in the case where the

coefficient matrix is invertible.
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B EXAMPLE 4 Determining Consistency by Elimination
What conditions must by, b, and by satisfy in order for the system of equations

Xy 4+ 2x3 4 3x3 = by
2x; + 5x; + 3x3 = by
X1 + 8x3 = b3

to be consistent?

Solution The augmented matrix is

1 2 3 b
2 5 3 b
1 0 8 by

Reducing this to reduced row echelon form yields {verify)
1 0 0 —40b; 4 1683 + 9by
0 1 0 13— 5b;—3b 2
0.0 1 5hy — 2by— b

" In this case there are no restrictions on by, by, and b3, so the system has the unique

" What does the result in Exam-
ple4 tell you about the coeffi-
cient matrix of the system?

solution
X1 = *-'40b| + 1652 +9b3, Xy = 13b1 = sz - 3b3, X3 = 5b1 - 252 — b3 (3)
for all values of by, by, and ;. <

Skilis

o Determine whether a linear system of equations has no > Solve multiple linear systems with the same coefficient
solutions, exactly one solution, or infinitely many matrix simultaneously.
solutions. > Be familiar with the additional conditions of

 Solve linear systems by inverting its coefficient matrix. invertibility stated in the Equivalence Theorem.

R PALORAT

D

¥ In Exercises 1-8, solve the system by inverting the coefficient & In Exercises 9-12, solve the linear systems together by reduc-

matrix and using Theorem 1.6.2. <
2,

\1. x1 + JCQ_=2
5x;+6x2:=9

4
-1

3. i +3xn4x
2o+ 2xn 4+ xn
2xy + 3x; + x3

([

5. x+y+ z=5
x+y—4z=10
x4y z= 0

7. 3x| + 5XQ = b|
Xy -+ 2x2 = bz

4.

8.

ing the appropriate augmented matrix. -3

;341'1 — 3xy = -3 9. x — 56 =
2%, —5x= 9 3x) 4 25 = by
S5x1 4 3%+ 2x; =4 @ =1, b=4 i) h=-2, h=5
3x, +3x +2x3=2 10, —x; + 4%+ x3 = by
X2+ x3=35 X1+ 9% — 2x3 =b

6x1 + 4XZ — SX3 = b3
@ bi=0, by=1, by=0
(ll) b[:'—'3, b2=4, by = -5

- x=2y—=3z=0
wt+ x+dy+4z=17
w+3x+Ty+92=4
—w = 2x =4y —6z=06 Eli~i4x]—7x2=b1
X1 42 = by
i b=0, =1 (ii) by =—-4, b=
(i) by =-1, by=3 (iv) by =-3, bhh=1

X1+ 2x; + 3x%3 = by
2.JC1 + SXZ + 5353 = bz
304 533 + 8x3 = I
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12. x4+ 3x+ Sx3 = b
—X1 — 2x =b2
2x1 + 5% Hdr=b
() bi=1, by=0, by=—1

(i) By=0, by=1, by=1
(i) by=—1, by=—1, by=0

& In Exercises 13—17, determine conditions on the b; s, if any, in
order to guarantee that the linear system is consistent. <

13. x) + 3):2 = b; 14, 6)C1 - 4x2 = b]
2%+ Mm=b 3x, — 20 =5
: is: x; — 2x3 + Sx3 = by 16, X - 2%y — X3 = "
dxy — S5x3 + 8x3 =bs —dx, + 50+ 2m=h
—3x; 4+ 3x — 303 = by —4xy + Txa + 4xy = by
17. X1 — X+ 3at2x=bh

N

21+ -t Sxt xa=b
—3x; + 2% +2x3— xa=b;
4x1 - 3x2 + X3+ 3x4 =by

18. Consider the matrices

2 1 2 X
A=12 2 =2| and x=|x2
3 ] 1 X3

(2) Show that the equation Ax =x can be rewritten as
(A — I)x = 0 and use this result to solve Ax = x for x.

(b) Solve Ax = 4x.

# In Exetcises 19-20, solve the given matrix equation for X. =%

T -1 1 2 -1 5 7 8
192 3 o|lx=[4 0o -3 0 1
0 2 -l 3 05 -7 2 1
-2 o0 4 3 21
G| o -1 —1|x=]6 7 8 9
ol e 13 7 9

21. Let Ax = 0 be a homogencous system of n linear equations
in # unknowns that has only the trivial solution. Show that
if k is any positive integer, then the system A¥x = 0 also has
only the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations
in n unknowns, and let @ be an invertible 7 > n matrix.
Show that Ax = 0 has just the trivial solution if and only

if (2 A)x = 0 has just the trivial solution.

23, Let Ax = b be any consistent system of linear equations, and
let x; be a fixed solution. Show that every solution to the
system can be written in the form x = x; + Xo, where Xg is a
solution to Ax = 0. Show also that every matrix of this form

is a solution.

24. Use part (@) of Theorem 1.6.3 to prove part (b).

True-False Exercises
In parts (a)-(g) determine whether the statement is true or false,
and justify your answer.

(a) Ttisimpossible for a system of linear equations to have exactly
two solutions.

(b) If the tinear system Ax = b has a unique solution, then the
linear system Ax = ¢ also must have a unique solution.

(c) If A and B are nxn matrices such that AB = I, then
BA =1,

{(d} If A and B are row equivalent matrices, then the linear systems
Ax = 0 and Bx = 0 have the same solution set.

(e) If Aisann x n matrix and Sisann xn invertible matrix,
then if x is a solution to the linear system (S~' AS)X == b, then
Sx is a solution to the linear system Ay = Sb.

(f) Let A be an » x n matrix. The linear system Ax = 4x has a
unique solution if and only if A — 4/ is an invertible matrix.

(g) Let A and B be n x n matrices. If A or B (or both) are not
invertible, then neither is AB.

1.7 Diagonal, Trian-gular‘,‘ and Symmetric Matrices

In this section we will discuss matrices that have various special forms. These matrices arise
in a wide variety of applications and will play an important role in our subsequent work,

Diagonal Matrices A square matrix in which all the entries off the main diagonal ate zero is called a dingonal
matrix. Here are some examples:
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