1) [15 points] Write the negation of the statement below as a positive statement [i.e., no negation before quantifiers].

$$\forall \epsilon \left[\epsilon > 0 \to \exists N \left(\forall n \left(n \ge N \to \frac{1}{n} < \epsilon \right) \right) \right]$$

[The universe is \mathbb{R} here.]

[You don't *have* to show work here, but skipping steps makes it harder to understand what you've done, so might lead to less partial credit if you got it wrong.]

Solution.

$$\exists \epsilon \left[\epsilon > 0 \land \forall N \left(\exists n \left(n \ge N \land \frac{1}{n} \ge \epsilon \right) \right) \right]$$

2) [10 points] Analyze the logical structure of the following statement:

Everyone who has a musician friend knows Pink Floyd.

Careful: Don't make multiple statements into one. For instance, something like

P(x) = x is married to someone who speaks Spanish

is not a simple statement, as it contains two statements: x is married and whoever he is married to speaks Spanish. [Look in the book for examples!]

Solution. Let

M(x) = "x is a musician"; P(x) = "x knows Pink Floyd"; F(x, y) = "x and y are friends".

Then, the statement is:

$$\forall x \left[(\exists y (F(x, y) \land M(y))) \to P(x) \right]$$

3) [10 points] Let

$$L(x,y) = x$$
 loves y .

Translate the following statement to [natural sounding] English.

$$\exists x \left[L(\text{Alice}, x) \land \forall y \left(\left[L(\text{Alice}, y) \land y \neq x \right] \rightarrow y = \text{Alice} \right) \right]$$

[Try not to lose precision when making it sound natural!]

Solution. "Alice just loves one other person besides herself."

4) [10 points] Write the truth table for $P \lor Q \to Q \land \neg R$.

Solution.

P	Q	R	$P \lor Q$	$Q \wedge \neg R$	$P \lor Q \to Q \land \neq R$
Т	Т	Т	Т	F	F
Т	Т	F	Т	Т	Т
Т	\mathbf{F}	Т	Т	F	F
Т	\mathbf{F}	F	Т	F	Т
F	Т	Т	Т	\mathbf{F}	F
F	Т	F	Т	Т	Т
F	F	Т	F	F	Т
F	\mathbf{F}	F	F	F	Т

- 5. 5) [25 points] Let $P \mid Q$ denote "P and Q are not both true".
 - (a) Write the truth table of $P \mid Q$.

Solution. The truth table is:

P	Q	$P \mid Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

(b) Find a formula [involving P and Q] using only \land , \lor and \neg operations logically equivalent to $P \mid Q$.

Solution.
$$\neg (P \land Q)$$
 or $(\neg P) \lor (\neg Q)$.

(c) Find a formula logically equivalent to $\neg P$ using only | [and P]. [Show that your formula is indeed equivalent!]

Solution. We have $P \mid P$ works:

$$P \mid P \sim \neg (P \land P) \sim \neg P.$$

(d) Find a formula for $P \wedge Q$ using only | [and P and Q]. [Show that your formula is indeed equivalent!]

Solution. We have that $P \mid Q$ is $\neg (P \land Q)$ by (b). So by double negatives, we need to negate $P \mid Q$ to get $P \land Q$. But, by (c), this is the same as $(P \mid Q) \mid (P \mid Q)$.

(e) Find a formula for $P \lor Q$ using only | [and P and Q]. [Show that your formula is indeed equivalent!]

Solution. By DeMorgan's Law, $P \mid Q \sim (\neq P) \lor (\neg Q)$. So, $(\neg P) \mid (\neg Q) \sim P \lor Q$ [by double negatives]. By part (c), we then have $(P \mid P) \mid (Q \mid Q) \sim P \lor Q$. \Box

6) [15 points] Let A, B and C be sets and consider:

$$S_1 = (C \setminus A) \cap (A \cup B),$$

$$S_2 = (A \cap C) \cup ((B \cap C) \setminus A)$$

(a) Give the Venn Diagrams for S_1 and S_2 . [Label them clearly!]

Solution.

(b) If the Venn Diagrams above show that $S_1 = S_2$, then show it using logic. If the diagrams are different, give simple *concrete* examples of A, B and C for which the corresponding S_1 and S_2 are different. [Show work!]

Proof. We have
$$S_1 \neq S_2$$
: let $A = B = C\{1\}$. Then, $C \setminus A = \emptyset$ and so $S_1 = \emptyset$. Now, $A \cap C = \{1\}$ and $(B \cap C) \setminus A = \emptyset$. So, $S_2 = \{1\} \neq \emptyset = S_1$.

7) [15 points] Let I be a non-empty set of indices and $\{A_i \mid i \in I\}$ and $\{B_i \mid i \in I\}$ be families of sets indexed by I. Prove or disprove:

$$\left(\bigcap_{i\in I} A_i\right) \cap \left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} (A_i \cup B_i).$$

Solution. The statement is false. Let $I = \{1, 2\}, A_1 = \{1\}, A_2 = \{2\}, B_1 = \{2\}, B_2 = \{1\}$. Then,

$$\left(\bigcap_{i\in I} A_i\right) \cap \left(\bigcap_{i\in I} B_i\right) = (A_1 \cap A_2) \cap (B_1 \cap B_2)$$
$$= \varnothing \cap \varnothing$$
$$= \varnothing.$$

On the other hand:

$$\bigcap_{i \in I} (A_i \cup B_i) = (A_1 \cup B_1) \cap (A_2 \cup B_2)$$
$$= \{1, 2\} \cap \{1, 2\}$$
$$= \{1, 2\} \neq \emptyset.$$

_		
Г		L
L		L
		L