
Midterm 2 Solution

1) [15 points] Let A, B and C be sets. Prove that (A ∪B) \ C ⊆ A ∪ (B \ C).

Proof. Let x ∈ (A ∪B) \ C. Then, x ∈ A ∪B and x 6∈ C. Since x ∈ A ∪B, either x ∈ A or

x ∈ B.

Case 1: Assume x ∈ A. Then, x ∈ A ∪ (B \ C).

Case 2: Assume x ∈ B. Since also x 6∈ C, we have that x ∈ B \C and hence x ∈ A∪(B \C).

Thus, for x ∈ (A ∪B) \ C, we always have x ∈ A(B \ C).

2) [15 points] Let F and G be non-empty families of sets with F ⊆ G. Prove that
⋂
G ⊆

⋂
F .

Proof. Let x ∈
⋂
G. [So, for all B ∈ G, we have that x ∈ B.] Let A ∈ F . [We need to show

x ∈ A.] Now, since A ∈ F and F ⊆ G, we have that A ∈ G. Now, as A ∈ G and x ∈
⋂
G,

we have that x ∈ A.

Since A ∈ F was arbitrary, we have that x ∈
⋂
F .

3) [15 points] Let R be a relation from A to B and S and T be relations from B to C. Prove

that (S ◦R) \ (T ◦R) ⊆ (S \ T ) ◦R.

Proof. Let (a, c) ∈ (S ◦ R) \ (T ◦ R), i.e., (a, c) ∈ (S ◦ R), but (a, c) 6∈ (T ◦ R). So, there is

b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. Since (a, c) 6∈ (T ◦R), we have that (b, c) 6∈ T , and

hence (b, c) ∈ S\T . Since (a, b) ∈ R and (b, c) ∈ (S\T ), we have that (a, c) ∈ (S\T )◦R.

4) [15 points] Let R1 and R2 be symmetric relations on A. Prove that R1 \ R2 is also

symmetric.

Proof. Let (a, b) ∈ R1 \R2, i.e., (a, b) ∈ R1 and (a, b) 6∈ R2. Since R1 is symmetric, we have

that (b, a) ∈ R1. Also, since R2 is symmetric, we have that (b, a) 6∈ R2, for if (b, a) ∈ R2,

then (a, b) ∈ R2, which is a contradiction [as (a, b) 6∈ R2]. Thus, (b, a) ∈ R1 \R2.
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5) [20 points] Consider the ordering relation in R2 defined by (a, b) 4 (c, d) [the LATEX code

for this symbol is \preccurlyeq] if both a ≤ c and b ≤ d. [You can assume without proving

it that this is a partial order in R2.] Consider the set B = {(0, 0)} ∪ {(1, y) | y ∈ R}. [So, B

is the origin together with the vertical line x = 1.]

(a) Show that (0, 0) is a minimal element of B.

Proof. Let (a, b) ∈ B such that (a, b) 4 (0, 0). [We need to prove that (a, b) = (0, 0.]

Then, by definition, we have that a ≤ 0. Since all elements in B have first coordinate

either 0 or 1, we must have a = 0. Since (0, 0) is the only element of B with the first

coordinate equal to 0, we must have (a, b) = (0, 0).

(b) Show that B has no other minimal element besides (0, 0).

Proof. Suppose that (a, b) ∈ B is a minimal element other than (0, 0). Then, we must

have a = 1 [as all other elements of B have the the first coordinate equal to 1], i.e.,

(a, b) = (1, b). But then, (1, b − 1) 4 (1, b) [by definition of 4], and thus (1, b) is not

minimal, a contradiction. Thus, (0, 0) is the only minimal element of B.

(c) Show that B has no smallest element. [In particular, (0, 0) is the only minimal element,

but not the smallest element.]

Proof. If B has a smallest element, this would be the only minimal element. Thus, by

the above, (0, 0) is the only possibility. But (1,−1) ∈ B and it is not true that (0, 0) 4

(1,−1), and so (0, 0) is not a minimal [and hence, there is no minimal element].

6) [20 points] Let A = R2 \ {(0, 0)} [i.e., the Cartesian plane without the origin] and R>0 =

{x ∈ R |x > 0} [i.e., the interval (0,∞)]. Define a relation R on A by:

R = {((a, b), (c, d)) ∈ A× A | ∃x ∈ R>0 (c = ax ∧ d = bx)}.

[I.e., (a, b)R (c, d) if (c, d) = (ax, bx) for some positive real number x.]

(a) Prove that R is an equivalence relation on A.
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Proof. Reflexive: Let (a, b) ∈ A. Since a = a · 1, b = b · 1 [and 1 ∈ R>0], we have that

(a, b)R(a, b) [by definition of R].

Symmetric: Assume that (a, b)R(c, d). Then, [by definition of R] there is x ∈ R>0 such

that c = ax and d = bx. Since x 6= 0, we have that a = c · (1/x) and b = d · (1/x).

Observing that 1/x ∈ R>0 [since x ∈ R>0], we have that (c, d)R(a, b) [again, by

definition of R].

Transitive: Assume that (a, b)R(c, d) and (c, d)R(e, f). Then, there is x ∈ R>0 such

that c = ax and b = dx and y ∈ R>0 such that e = cy and f = dy. Thus, we have

that e = cy = axy and f = dy = bxy. Since xy ∈ R>0 [since x, y ∈ R>0], we have that

(a, b)R(e, f).

(b) Draw on A = R2 \ {(0, 0)} [or describe geometrically] the equivalence class [(0, 1)]R.

Solution. We have that [(0, 1)]R = {(a, b) ∈ A | a = 0 · x, b = 1 · x, for some x ∈
R>0} = {(0, x) | x ∈ R>0}. Hence, geometrically, it is the upper half of the line x = 0,

not including (0, 0).
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