MIDTERM 2 SOLUTION

1) [15 points] Let A, B and C be sets. Prove that $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$.

Proof. Let $x \in (A \cup B) \setminus C$. Then, $x \in A \cup B$ and $x \notin C$. Since $x \in A \cup B$, either $x \in A$ or $x \in B$.

Case 1: Assume $x \in A$. Then, $x \in A \cup (B \setminus C)$.

Case 2: Assume $x \in B$. Since also $x \notin C$, we have that $x \in B \setminus C$ and hence $x \in A \cup (B \setminus C)$. Thus, for $x \in (A \cup B) \setminus C$, we always have $x \in A(B \setminus C)$.

2) [15 points] Let \mathcal{F} and \mathcal{G} be non-empty families of sets with $\mathcal{F} \subseteq \mathcal{G}$. Prove that $\bigcap \mathcal{G} \subseteq \bigcap \mathcal{F}$.

Proof. Let $x \in \bigcap \mathcal{G}$. [So, for all $B \in \mathcal{G}$, we have that $x \in B$.] Let $A \in \mathcal{F}$. [We need to show $x \in A$.] Now, since $A \in \mathcal{F}$ and $\mathcal{F} \subseteq \mathcal{G}$, we have that $A \in \mathcal{G}$. Now, as $A \in \mathcal{G}$ and $x \in \bigcap \mathcal{G}$, we have that $x \in A$.

Since $A \in \mathcal{F}$ was arbitrary, we have that $x \in \bigcap \mathcal{F}$.

3) [15 points] Let R be a relation from A to B and S and T be relations from B to C. Prove that $(S \circ R) \setminus (T \circ R) \subseteq (S \setminus T) \circ R$.

Proof. Let $(a,c) \in (S \circ R) \setminus (T \circ R)$, i.e., $(a,c) \in (S \circ R)$, but $(a,c) \notin (T \circ R)$. So, there is $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. Since $(a, c) \notin (T \circ R)$, we have that $(b, c) \notin T$, and hence $(b,c) \in S \setminus T$. Since $(a,b) \in R$ and $(b,c) \in (S \setminus T)$, we have that $(a,c) \in (S \setminus T) \circ R$. \Box

4) [15 points] Let R_1 and R_2 be symmetric relations on A. Prove that $R_1 \setminus R_2$ is also symmetric.

Proof. Let $(a,b) \in R_1 \setminus R_2$, i.e., $(a,b) \in R_1$ and $(a,b) \notin R_2$. Since R_1 is symmetric, we have that $(b,a) \in R_1$. Also, since R_2 is symmetric, we have that $(b,a) \notin R_2$, for if $(b,a) \in R_2$, then $(a, b) \in R_2$, which is a contradiction [as $(a, b) \notin R_2$]. Thus, $(b, a) \in R_1 \setminus R_2$. 5) [20 points] Consider the ordering relation in \mathbb{R}^2 defined by $(a, b) \preccurlyeq (c, d)$ [the LATEX code for this symbol is \preccurlyeq] if both $a \le c$ and $b \le d$. [You can assume without proving it that this is a partial order in \mathbb{R}^2 .] Consider the set $B = \{(0,0)\} \cup \{(1,y) \mid y \in \mathbb{R}\}$. [So, B is the origin together with the vertical line x = 1.]

(a) Show that (0,0) is a minimal element of B.

Proof. Let $(a, b) \in B$ such that $(a, b) \preccurlyeq (0, 0)$. [We need to prove that (a, b) = (0, 0.]Then, by definition, we have that $a \le 0$. Since all elements in B have first coordinate either 0 or 1, we must have a = 0. Since (0, 0) is the only element of B with the first coordinate equal to 0, we must have (a, b) = (0, 0).

(b) Show that B has no other minimal element besides (0,0).

Proof. Suppose that $(a, b) \in B$ is a minimal element other than (0, 0). Then, we must have a = 1 [as all other elements of B have the first coordinate equal to 1], i.e., (a, b) = (1, b). But then, $(1, b - 1) \preccurlyeq (1, b)$ [by definition of \preccurlyeq], and thus (1, b) is not minimal, a contradiction. Thus, (0, 0) is the only minimal element of B.

(c) Show that B has no smallest element. [In particular, (0, 0) is the only minimal element, but not the smallest element.]

Proof. If B has a smallest element, this would be the only minimal element. Thus, by the above, (0,0) is the only possibility. But $(1,-1) \in B$ and it is not true that $(0,0) \preccurlyeq (1,-1)$, and so (0,0) is not a minimal [and hence, there is no minimal element]. \Box

6) [20 points] Let $A = \mathbb{R}^2 \setminus \{(0,0)\}$ [i.e., the Cartesian plane without the origin] and $\mathbb{R}_{>0} = \{x \in \mathbb{R} \mid x > 0\}$ [i.e., the interval $(0, \infty)$]. Define a relation R on A by:

$$R = \{ ((a,b), (c,d)) \in A \times A \mid \exists x \in \mathbb{R}_{>0} \ (c = ax \land d = bx) \}.$$

[I.e., (a, b) R(c, d) if (c, d) = (ax, bx) for some positive real number x.]

(a) Prove that R is an equivalence relation on A.

Proof. Reflexive: Let $(a, b) \in A$. Since $a = a \cdot 1$, $b = b \cdot 1$ [and $1 \in \mathbb{R}_{>0}$], we have that (a, b)R(a, b) [by definition of R].

Symmetric: Assume that (a, b)R(c, d). Then, [by definition of R] there is $x \in \mathbb{R}_{>0}$ such that c = ax and d = bx. Since $x \neq 0$, we have that $a = c \cdot (1/x)$ and $b = d \cdot (1/x)$. Observing that $1/x \in \mathbb{R}_{>0}$ [since $x \in \mathbb{R}_{>0}$], we have that (c, d)R(a, b) [again, by definition of R].

Transitive: Assume that (a, b)R(c, d) and (c, d)R(e, f). Then, there is $x \in \mathbb{R}_{>0}$ such that c = ax and b = dx and $y \in \mathbb{R}_{>0}$ such that e = cy and f = dy. Thus, we have that e = cy = axy and f = dy = bxy. Since $xy \in \mathbb{R}_{>0}$ [since $x, y \in \mathbb{R}_{>0}$], we have that (a, b)R(e, f).

(b) Draw on $A = \mathbb{R}^2 \setminus \{(0,0)\}$ [or describe geometrically] the equivalence class $[(0,1)]_R$.

Solution. We have that $[(0,1)]_R = \{(a,b) \in A \mid a = 0 \cdot x, b = 1 \cdot x, \text{ for some } x \in \mathbb{R}_{>0}\} = \{(0,x) \mid x \in \mathbb{R}_{>0}\}$. Hence, geometrically, it is the upper half of the line x = 0, not including (0,0).