
Two-sided SLE8=3 and theIn�nite Self-Avoiding PolygonGregory F. Lawler1Joan R. LindAbstratIn this paper we onstrut two-sided SLE8=3 and desribe why it is a model of thein�nite self-avoiding polygon.1 IntrodutionThe Shramm-Loewner evolution, SLE�, as introuded in [9℄, is a andidate for saling limitsof random paths at ritiality in two dimensions. Di�erent values of � orrepond to di�erentsystems. One value of partiular importane is � = 8=3, and the orresponding system isonjetured to be the limit of the self-avoiding walk. Trying to understand this led to thede�nition of the restrition property [6℄, and then the (nonrigorous) identi�ation of the limitfor self-avoiding walks.The saling limit an be onsidered a probability measure on urves  : [0;1)! C with(0) = 0. The point 0 is speial on the urve. If we look loally at any other point onthe urve, then loally we see two urves at that point (the \past" and the \future"). Tounderstand this, one might onsider the limit as r !1 of the urves (r)(s) = (s+r)�(r).Assuming this limit exists, we should have a limiting measure on urves  : (�1;1)! Cwith (0) = 0. Equivalently, we an onsider this as a measure on pairs of noninterseting(one-sided) urves.In this paper, we omplete the piture in [7℄ by desribing the measure on two-sidedurves. We an think of a two-sided urve as a simple loop that goes through both theorigin and in�nity. For this reason, we onjeture that this measure is the saling limit forself-avoiding polygons.Let us outline this paper. We start by disussing the disrete model, the in�nite self-avoiding polygon (ISAP). While we do not know how to prove the saling limit of ISAP exists,we do use the heuristis from this model to derive the de�ntion of the two-sided SLE8=3. Inpartiular, our approah is to make preise the idea that two-sided radial SLE8=3 is obtainedby taking two independent radial SLE8=3 and onditioning them not to interset. This isonditioning on an event of probability zero, so one must take a limit. Muh of this paperdeals with the justifying this limit.In Setion 4, we onsider the probability that two radial SLE8=3 paths do not interset,one running to time 1 and the other to time t. This tends to zero as t ! 1, and wegive the asymptoti behavior. The alulation uses the restrition property whih reduesthe problem to a derivative estimate for radial SLE8=3. We do this alulation in detail1Researh supported by National Siene Foundation grant DMS-0405021.1



although the argument is similar to arguments that have appeared in previous papers. Afterdoing this, we weight a path by a orresponding martingale to give a proess that we allone-side of radial two-sided SLE8=3. It is a radial analogue of the SLE8=3(�:�) proesses asintrodued in [6℄.This de�nition is not obviously symmetri in the two paths. In the next setion, wedesribe an alternate de�ntion that is obviously symmetri. This shows that the two-sidedradial SLE8=3 an be grown in any order, that is, we grow one side for a while and then theother. The fat that the order does not make a di�erene is an example of ommutation.See [1℄ for a muh more detailed disussion of ommutation properties of SLE� paths. InSetion 6, we prove the restrition property for two-sided radial SLE8=3.We then onsider the hordal analogues of two-sided SLE8=3. This is an example of ahordal SLE(�; �) proess and is also an example of the kind of proesses disussed in [1℄.Our �nal setion gives a proof that hordal SLE� is the limit of radial SLE� in thefollowing sense. Suppose that � : (0;1) ! D is a simple urve with �(0+) 2 �D n f1g and�(t)! 0 as t!1. For every t <1, we an onsider radial SLE� from 1 to 0 in D n �(0; t℄.As t!1, this measure approahes that of hordal SLE� from 1 to 0 in D n �(0;1℄. Thisfat, whih we prove for � � 4, is used in one of our onstrutions of two-sided radial SLE8=3.We give a more preise formulation of the limit in this setion.Exept for the �nal setion, we restrit our onsideration to � = 8=3 for simpliity. Theideas an be generalized to other � � 4, but in these ases the measure is not obtained by\two SLE� paths onditioned not to interset".We assume that the reader knows the basi fats about omplex variables and onfor-mal transformations (Shwarz lemma, Shwarz reetion, Koebe-(1=4) lemma, Bieberbahestimate, Beurling estimate). See [2℄ or [4℄ for referenes.2 The in�nite self-avoiding polygon
oIn this setion we will desribe the disrete model whose limit we are trying to desribe.A two-sided self-avoiding walk (2-SAW) inZ2 =Z+iZof lengths j; k (entered at the origin)is a nearest neighbor path! = [!�j ; !�j+1; : : : ; !k�1; !k℄; !l 2Z2;2



with !0 = 0 and !l 6= !m;�j � l < m � k: Let Lj;k denote the set of suh walks and writejust Lk for L0;k. Walks in Lk are alled (one-sided) self-avoiding walks (SAW) of length k(rooted at the origin). Note that there is a natural one-to-one orrespondene between Lj;kand Lj+k. For any n � j;m � k, there is a probability measure �j;k;n;m on Lj;k given by�j;k;n;m(!) = #f~! 2 Ln;m : [~!�j ; : : : ; ~!k℄ = !g#(Ln;m) :It is onjetured but has not been proven that the limits��k(!) = limm!1 �0;k;0;m(!);�j;k(!) = limn;m!1 �j;k;n;m(!);exist and the seond limit is independent of the way that n;m go to in�nity. Assuming thisonjeture, the measures f��k : 0 � k < 1g and f�j;k : 0 � j; k < 1g must be onsistent.Hene we get a probability measure �� on in�nite (one-sided) SAWs! = [!0 = 0; !1; !2; : : : ℄and a probability measure � on in�nite two-sided self-avoiding walks! = [: : : ; !�2; !�1; !0 = 0; !1; !2; :::℄;with projetion measures ��k; �j;k. We all these measures the (whole plane) in�nite self-avoiding walk (ISAW) and (whole plane) in�nite self-avoiding polygon (ISAP), respetively.Assuming the onjeture, the measure � must be stationary, i.e., if�n! = [: : : ; !n�2 � !n; !n�1 � !n; 0; !n+1 � !n; !n+2 � !n; � � � ℄;then for eah integer n, �n� = �. We an also onsider � as a measure on one-sided in�niteself-avoiding walks, by looking at the projetion! 7! [!0 = 0; !1; !2; : : : ℄:We all this one side of ISAP. Note that this is not the same measure as the ISAW ��.There are two important ritial exponents for SAWs. While these are usually de�nedin terms of uniform measures on Ln, they an also be de�ned in terms of the measure �.The mean-square displaement exponent � is de�ned by saying that under the measure �,the expeted value of j!nj2 grows like n2� as n ! 1. The intersetion exponent � (this isthe same as the exponent  � 1 as in [8℄) is de�ned by saying that if two one-sided walks!1 = [!10; !11; : : : ℄; !2 = [!20; !21; : : : ℄;3



are hosen independently using ��, then the probability thatf!11; : : : ; !1ng \ f!12; : : : ; !2ng = ;deays like n��. The existene of these exponents has not been proved but there is very strongevidene for the values � = 3=4; � = 11=32 (see [8℄). Combining these two onjetures, we ansay that the probability that two independent SAWs reah distane R without intersetingdeays like R�11=24.We will onsider ontinuum limits of these measures. Assuming that the exponent �exists, we ould expet that we an sale the walks by n�� to get a measure on ontinuousurves. There are atually four measure on ontinuous urves:� m�: the saling limit of �� whih gives a measure on simple urves  : [0;1)! C with(0) = 0.� m: the saling limit of � whih gives a measure on simple urves  : (�1;1) ! Cwith (0) = 0. Equivalently, it an be onsidered as a measure on ordered pairs ofurves (1; 2) where j : [0;1)! C with j(0) = 0 and1(0;1) \ 2(0;1) = ;:� The marginal measure on 1 in the measure m.� The onditional measure on 2 given 1 in m.The �rst and fourth of these measures were onsidered in [7℄ where it was shown that thereis only one possibility for the saling limit assuming that the limit exists and is onformallyinvariant. The fourth measure was onsidered �rst. Under the assumption of onformalinvariane, given 1 we an map C n 1[0;1) to the upper half-plane H mapping 0 to 0and 1 to 1. Then the stationarity property of the ISAP implies that the measure on2, appropriately parametrized, satis�es the onformal Markov property. From this it wasderived that the distribution must be that of hordal SLE� as introdued by Shramm [9℄.The nature of the saling limit also implied that the limit would satisfy a ertain propertywhih was denoted the restrition property. In [6℄ it was shown that this implies that � mustbe 8=3. A similar argument established that the only possibility for m� is that of whole-planeSLE8=3, whih is really a version of radial SLE8=3.At the moment there is no proof of the existene of the saling limit or of its onformalinvariane. However, there is strong numerial evidene [3℄ that the limit of SAWs is givenby SLE8=3. Moreover, the analogues of the exponents � = 4=3; � = 11=32 an be omputedfor SLE8=3 whih gives very strong evidene for their orretness.In this paper we will omplete the piture by onsidering the other two measures. Thisrequires onsidering two SLE8=3 at one time. In summary the onjetured saling limits ofthe four measures above are 4



� whole-plane SLE8=3, in other words, the distribution of [t;1) given [0; t℄ is radialSLE8=3.� two-sided whole-plane SLE8=3, in other words, the distribution of (�1;1) given[�s; t℄ is two-sided radial SLE8=3.� one side of two-sided whole-plane SLE8=3,� hordal SLE8=3.3 Radial SLE8=3 and restritionIn this setion, we remind the reader of the de�nition of radial SLE� and the restritionproperty, whih SLE8=3 satis�es. The restrition property will be ruial in our developmentof two-sided SLE8=3. See [4℄ for more details.Let Bt be a standard Brownian motion. Then radial SLE� is the solution to the Loewnerequation with driving funtion p�Bt. That is to say, it is the family of onformal maps ~gtsolving the initial value problem�t~gt(z) = ~gt(z)eip�Bt + ~gt(z)eip�Bt � ~gt(z) ; ~g0(z) = z;for z 2 D . These maps satisfy the normalization that ~g0(0) = et. It will be onvenient for usto hange this parametrization by a fator of 1=�. This is equivalent to onsidering solutionsto the initial value problem�tgt(z) = a2 gt(z) eiBt + gt(z)eiBt � gt(z) ; g0(z) = z; (1)for z 2 D , where a = 2=�. Here the onformal maps gt are normalized so that g0(0) = eat=2.Although this hange may make some of the exponents in our omputations a little lessfriendly, we prefer to work with a standard Brownian motion rather one multiplied by p�.If � � 4, then radial SLE� gives a measure on simple urves. The radial SLE� pathis the funtion  : [0;1) ! D with the following properties: (0) = eiB0; (0;1) �D n f0g; limt!1 (t) = 0; and gt is the unique onformal transformation of D n [0; t℄ onto Dwith gt(0) = 0 and g0t(0) > 0. We will often refer to this path as radial SLE8=3 (starting ateiB0) rather than the family of maps gt.Simply stated, the restrition property says that SLE8=3 in a subdomain of D is SLE8=3in D onditioned to stay in the subdomain. To desribe this more fully, let A denote the setof A 2 D suh that D n A is a simply onneted domain ontaining the origin. If x 2 R, letA(x) = Ax = fA 2 A : dist(eix; A) > 0g. For A 2 A, let DA = D nA and let 	A : DA ! Dbe the unique onformal transformation with 	A(0) = 0 and 	0A(0) > 0. If A 2 Ax, then	A has an analyti extension in a neighborhood of eix, and hene 	0A(eix) is well de�ned.Suppose A 2 Ax and  is radial SLE8=3 started at eix. On the event f(0;1) \ A = ;g let5



�(t) = 	A Æ (t). Then the restrition property states that the onditional distribution of �given f(0;1) \ A = ;g is the same (modulo time reparametrization) as radial SLE from	A(eix) to 0 in D .The following omputation is at the heart of the restrition property:Pf[0;1)\A = ;g = j	0A(eiB0)j5=8	0A(0)5=48; (2)and we will often refer to this simply as the restrition property. To establish (2), one mustshow that Mt, as de�ned below, is a bounded martingale with limt!1Mt = 1f(0;1)\A =;g: This will allow us to onlude that Mt = P[(0;1)\A = ;jFt℄, sine the latter is alsoa bounded martingale with the same limit at in�nity. We de�neMt = 1f(0; t℄ \A = ;gj	0At(eiBt)j5=8	0At(0)5=48;where At = gt(A)\ D . Notie that M0 = j	0A(eiB0)j5=8	0A(0)5=48: For the details, see Setion6.5 of [4℄. In Setion 5, we will prove the restrition property for two-sided radial SLE8=3,and the proof of this will follow the same general argument.Whole-plane SLE�If D is a simply onneted domain, z 2 �D;w 2 D, then radial SLE� from z to w in D isthe onformal image of radial SLE� in D from 1 to 0 by the onformal transformation ofD onto D mapping 1 to z and 0 to w. This is onsidered a measure on paths modulo timereparametrization.Whole plane SLE�, 0 < � � 4, is the measure on simple urves  : [0;1) ! C with(0) = 0 that has the property that given [0; t℄ the onditional distribution of (t;1) isthat of radial SLE� from (t) to 1 in C n [0; t℄. Standard results about onformal mapsan be used to see that this is well de�ned; see, e.g., [4, Setion 6.6℄.4 One side of two-sided radial SLE8=3The measure on two-sided SAWs of lengths n; n is exatly the same as the measure of twoindependent (one-sided) SAWs of length n onditioned not to interset. Hene, we an thinkof the in�nite ISAP as the measure on two independent ISAWs given by ondtioning thatthey do not interset. This desription does not make preise sense sine this is onditioningon an event of probability zero. However, we ould hope to make rigorous sense by a limitingargument.Using this as an analogy, we will try to build up two-sided radial SLE8=3 by takingtwo (one-sided) radial SLE8=3 paths and onditioning them not to interset. Again, this isonditioning on an event of probability zero so we must take a limiting argument. We beginour study of two-sided radial SLE8=3 by using the restrition property to understand theprobability that a SLE8=3 path will avoid the beginning of another, independent SLE8=3path. We will obtain a partiular martingale Ms, and then then we will de�ne one side of6



two-sided SLE8=3 by weighting a SLE8=3 path by Ms=M0. The proess so obtained is alsoreferred to as \SLE8=3 onditioned to avoid another SLE8=3." We onlude the setion bydisussing an alternate de�nition of the proess, derived using Girsanov's Theorem.Let Bt and B̂t be independent standard Brownian motions with z := eiB0 6= eiB̂0 :=ẑ, and let  and ̂ denote the SLE8=3 paths generated by these Brownian motions (withorresponding funtions gt and ĝt) by solving (1) (with a = 3=8). The restrition propertytells us that Pf[0; t℄\ ̂[0;1) = ; j [0; t℄g = e5t=128 jg0t(ẑ)j5=8:(Reall that g0t(0) = e3t=8 and hene e5t=128 = g0t(0)5=48.) Hene,Pf[0; t℄\ ̂[0;1) = ;g = e5t=128 E [jg0t(ẑ)j5=8℄; (3)where the expetation is over the �rst Brownian motion Bt. As we wish to understand whathappens with (3) as t approahes in�nity, we must examine E[jg0t(ẑ)j5=8℄.Our �rst step is to introdue ht(z) = �i log gt(eiz). Here the branh of the logarithm ishosen so that �i log eiB0 = B0. For �xed t < 1, this is well de�ned in a neighborhoodof [0; t℄. Note that jg0t(ẑ)j = h0t(B̂0); allowing us to study �(t; x) = E[h0t(x)5=8℄ instead.Equation (1) implies that_ht(z) = 38 ot�ht(z)�Bt2 � ; h0(z) = z: (4)Di�erentiating this givesh0t(z) = exp�� 316 Z t0 s2�hs(z)�Bs2 � ds� :If we let x = B̂0 and Vt = ht(x)�Bt, then Vt satis�esdVt = 38 ot�Vt2 � dt� dBt;and h0t(x) = exp�� 316 Z t0 s2�Vs2 � ds� :We will assume for ease that B0 = 0. Let Ft denote the �ltration generated by fBs : 0 �s � tg. Then if s < t, E [h0t(x)5=8 j Fs℄ = h0s(x)5=8 �(t� s; Vs):Sine this is a martingale, Itô's formula implies that� _�(t; x) + 12 �00(t; x) + 38 ot�x2� �0(t; x)� 15128 s2 �x2� �(t; x) = 0: (5)7



We ould also have obtained the di�erential equation for �(t; x) by appealing to the Feynman-Ka formula.Let L be the di�erential operator desribed by (5), that isL(f) := � _f + 12 f 00 + 38 ot �x2� f 0 � 15128 s2 �x2� f:To solve a di�erential equation like L(f) = 0, one often attempts to �nd a solution of theform e��tF (x); by solving an ordinary di�erential equation for F . In our ase, we wouldneed to solve 12 F 00(x) + 38 ot �x2� F 0(x) + �� � 15128 s2 �x2�� F (x) = 0: (6)We notie that F (x) =  sin3=4(x=2);is a solution when � = 27=128.Although we now know � e�27t=128 sin3=4(x=2), is a solution to L(f) = 0, this annot beequal �(t; x) sine they do not have the same initial onditions. In partiular, �(0; x) = 1.We wish to ompare �(t; x) to this solution, however, and we will be espeially interested inthe behavior of these two funtions as t goes to in�nity. Although the hoie seems arbitraryat this point, we will take � = R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :In the subsetion below, we explain how we obtained the onstant �. However, the exatvalue of this onstant will not matter for our development of two-sided SLE8=3.To show that �(t; x) � � e�27t=128 sin3=4(x=2) as t ! 1, we onstrut funtions F�(t; x)and G�(t; x) as follows. To begin, for � > 0 setF�(t; x) = � e�27t=128 sin3=4(x=2) + e�at=128 �1 � � sin3=4(x=2)�+ �� �(t; x);where a > 27: ThenL(F�(x; t)) = e�at128 �a� 15 s2(x=2) � (a� 27)� sin3=4(x=2)� � 15�128 s2(x=2);whih is negative for an appropriate hoie of a, suh as a = 54. Looking at the boundaryonditions, note that F�(0; x) = � > 0, and F�(t; 0) = F�(t; 2�) > 0. Suppose that F�(t; x) < 0for some (t; x) 2 [0;1) � [0; 2�℄. Then there is some point (t0; x0) 2 [0;1) � [0; 2�℄ withF�(t0; x0) = 0 and with F�(t; x) � �(t; x) > 0 for all t < t0. It follows that we musthave _F�(t0; x0) � 0; F 0�(t0; x0) = 0, and F 00� (t0; x0) � 0. This, however, ontradits the8



fat that L(F�(t0; x0)) < 0. Therefore, F� � 0; and by letting � go to zero, we have that� e�27t=128 sin3=4(x=2) +  e�at=128 � �(t; x): In partiular, notie that we havelimt!1 e27t=128�(t; x) � � sin3=4(x=2):We also wish to obtain the opposite inequality. We an aomplish this with a similarargument in whih we utilizeG�(t; x) = � e�27t=128 sin3=4(x=2) �1 + e�(a1�27)t=128�� 2� e�a2t=128 � �� �(t; x);with a2 > a1 > 27 appropriately hosen so that L(G�) > 0. In this way, we obtainlimt!1 e27t=128�(t; x) = � sin3=4(x=2) = 2�3=4� jeix � 1j3=4: (7)We have now established the following proposition.Proposition 4.1. Suppose ; ̂ are independent radial SLE8=3 urves started at z; ẑ respe-tively. Then, limt!1 e11t=64Pf[0; t℄\ ̂[0;1) = ;g = C� jz � ẑj3=4;where C� = 2�3=4� = 2�3=4R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :Proof. Assume without loss of generality that z = 1; ẑ = eix, and as before, let �(t; x) =E[h0(x)5=8℄. Then, Pf[0; t℄\ ̂[0;1) = ;g = e5t=128�(t; x):The proposition then follows from (7).We ontinue to use the notation x = B̂0 and Vs = hs(x) � Bs, and now we wish toonsider Ms = C� e27s=128 jg0s(eix)j5=8jeiBs � gs(eix)j3=4 = e27s=128h0s(x)5=8F (Vs);where F (x) = � sin3=4(x=2) satis�es (6) with � = 27=128. Using this, we an ompute thatdMs = �38 ot�Vs2 � Ms dXs;where Xs = Bs. Therefore Ms is a martingale with jMsj � 0 e27s=128.9



We laim that Ms = limt!1 e11t=64Pf[0; t℄\ ̂[0;1) = ; j Fsg:By using the restrition property, we havePf[0; t℄ \ ̂[0;1) = ; j Fsg= Pf[0; s℄\ ̂[0;1) = ; and gs Æ [s; t℄ \ gs Æ ̂[0;1) = ; j Fsg= e5s=128 h0s(x)5=8Pfgs Æ [s; t℄ \ gs Æ ̂[0;1) = ; j FsgProposition 4.1 implies thatlimt!1 e11(t�s)=64Pfgs Æ [s; t℄ \ gs Æ ̂[0;1) = ; j Fsg = C�jeiBs � gs(eix)j;whih proves the laim.This seond view of Ms leads us to de�ne one side of two-sided SLE8=3, otherwise alledSLE8=3 onditioned to avoid another SLE8=3, by weighting a SLE8=3 path by Ms=M0. Inpartiular, letQ denote the probability measure on paths indued by this positive martingale,and let Qs denote this measure restrited to Xt; 0 � t � s. Then dQs=dP =Ms=M0.By making use of Girsanov's Theorem, we obtain an alternate viewpoint of this objet:we an onsider one side of two-sided SLE8=3 to be the solution to the Loewner equationwhere the driving term has an appropriate drift. Girsanov's Theorem states that with respetto the measure Q, Ws := Xs + 38 Z s0 ot�Vt2 � dt;is a standard Brownian motion, or in other words,dXs = �38 ot�Vs2 � ds+ dWs:Thus one side of two-sided SLE8=3 is the proess generated by the Loewner equation withdriving term Xs, where Ws is a Brownian motion,dXs = �38 ot X̂s �Xs2 ! ds + dWs;and dX̂s = 38 ot X̂s �Xs2 ! ds:Note that we have replaed hs(x) by X̂s in antiipation of the notation we will use in the nextsetion, whih will reet the fat that the two sides of two-sided SLE8=3 are symmetri.10



The onstant �In this subsetion, we briey desribe how we obtained the onstant � found in our previousalulations. It arises naturally when �nding a ertain invariant density. The basi ideasused here are disussed in Setion 1.11 of [4℄.Reall that dVt = 38 ot�Vt2 � dt� dBt;and h0t(x)5=8 = exp�� 15128 Z t0 s2(Vs=2) ds� :Let p(t; x; y) denote the transition probability density de�ned byEx [f(Vt)h0t(x)5=8℄ = Z 2�0 p(t; x; y) f(y) dy;and notie that for �(t; x) = Ex [h0t(x)5=8℄, we have that�(t; x) = Z 2�0 p(t; x; y) dy:There are two di�erential equations that p(t; x; y) must satisfy, one for when y is �xedand the other for x �xed. If we had started in a simpler situation and were interested inthe transition probability density for Ex [f(Vt)℄, we ould easily obtain the two di�erentialequations from Kolmogorov's bakward and forward equations. Although our situation isslightly more ompliated, it is not diÆult to �nd the desired equations. We have alreadyseen that �(t; x) satis�es the di�erential equation (5), and one an show that p must satisfythis as well. That is, _p = 12pxx + 38 ot(x=2) px � 15128 s2(x2 ) p:By onsidering the adjoint, we an �nd our seond di�erential equation for p:_p = 12pyy � �y [38 ot(y=2) p℄� 15128 s2(y=2) p:See setion 1.11 of [4℄ for further details.As we did for �, we an solve these di�erential equations to understand the behavior ofp as t approahes in�nity. In partiular, we will �nd positive funtions  1 and  2 satisfyingthe ordinary di�erential equations12  001(x) + 38 ot(x=2) 01(x) + [� � 15128 s2(x=2)℄ 1(x) = 0;11



12  002(y)� �y [38 ot(y=2) 2(y)℄ + [� � 15128 s2(y=2)℄ 2(y) = 0;so that p(t; x; y) �  e��t  1(x) 2(y) as t!1. The desired solutions are 1(x) = sin3=4(x=2);  2(y) = sin9=4(y=2);with � = 27=128. We therefore getp(t; x; y) � 1 e�27t=128 sin3=4(x=2) sin9=4(y=2); t!1: (8)We will now ompute the onstant 1 as well as our previous onstant �. The funtionsin9=4(y=2) an be onsidered an invariant density in the sense thatZ 2�0 sin9=4(x=2) p(t; x; y) dx = e�27t=128 sin9=4(y=2):Plugging in (8) gives 1 = �Z 2�0 sin3(x=2) dx��1 :Using (8) with �(t; x) = Ex [h0t(x)5=8℄ = Z 2�0 p(t; x; y) dy;gives again that �(t; x) � � e�27t=128 sin3=4(x=2);and here it is lear that � = R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :5 Two-sided radial SLE8=3In this setion we will de�ne two-sided radial SLE8=3 by weighting two independent SLE8=3paths by a two-parameter martingale Ns;r=N0;0. We will show that Ns;r is symmetri in sand r, and this will give ommutation, meaning that we an \grow" the two urves in eitherorder.We begin by establishing the notation we will use. Let  and ̂ be independent radialSLE8=3 paths starting at z and ẑ with orresponding onformal maps gt and ĝt. Let Fs;r12



denote the �-algebra generated by fBt : 0 � t � sg [ fB̂t : 0 � t � rg, let Et;r denote theevent Et;r = f[0; t℄ \ ̂[0; r℄ = ;g;and let Et = Et;1. In Proposition 4.1 we showed thatlimt!1 e11t=64P(Et) = C� jz � ẑj3=4:On the event Es;r, we let vs;r denote the unique onformal transformation of D n ((0; s℄ [̂(0; r℄) onto D with vs;r(0) = 0 and v0s;r(0) > 0. Note that gs = vs;0 and ĝr = v0;r. For Us;r :=vs;r((s)) and Ûs;r := vs;r(̂(r)), we observe that Us;0 = eiBs; Ûs;0 = gs(ẑ), U0;r = ĝr(z); andÛ0;r = eiB̂r . Finally, de�ne gs;r and ĝs;r by the relations vs;r = gs;r Æ ĝr = ĝs;r Æ gs.
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Û0,0

U
0,r

U
0,r

^

Us,r Us,r
^

Us,0

Us,0
^

vs,r

vs,0

v
0,r g 

s,r
^

gs,rFigure 1: The maps vs;r; gs;r; ĝs;r. Note that gs = gs;0 = vs;0 and similarly ĝr = ĝ0;r = v0;r:Suppose 0 � s � t; 0 � r <1, and letNs;r := limt!1 e11t=64P(Et j Fs;r):Although it is not immediately obvious that the limit exists and that the de�nition of Ns;r issymmetri, that is, it does not depend the way we order the two SLE8=3's, the next lemmaestablishes these fats. 13



Lemma 5.1. Ns;r = C� 1Es;r g0s;r(0)5=48 jg0s;r(Û0;r)j5=8 ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8� jUs;r � Ûs;rj3=4 v0s;r(0)11=24:In partiular, Ns;r is a two-parameter martingale in the sense that if s � s0 and r � r0,E[Ns0 ;r0 j Fs;r℄ = Ns;r: (9)Moreover, there is a  suh that for all s and r, Ns;r �  e11(r+s)=64.Proof. We �rst write Ns;r = limt!1 e11t=64 E[P(Et j Ft;r) j Fs;r℄The restrition property implies thatP[Et j Ft;r℄ = 1Et;r g0t;r(0)5=48 jg0t;r(Û0;r)j5=8;and hene, Ns;r = limt!1 e11t=64 E[1Et;r g0t;r(0)5=48 jg0t;r(Û0;r)j5=8 j Fs;r℄= limt!1P[Et;r j Fs;r℄ e11t=64 E[g0t;r (0)5=48 jg0t;r(Û0;r)j5=8 j Fs;r; Et;r℄:Another appliation of the restrition property giveslimt!1P[Et;r j Fs;r℄ = P[E1;r j Fs;r℄ = 1Es;r ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8:On the event Et;r, let ut;s;r = vt;r Æ v�1s;r ; so that gt;r = ut;s;r Æ gs;r. Therefore,Ns;r =1Es;r ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8 g0s;r(0)5=48 jg0s;r(Û0;r)j5=8� limt!1 e11t=64 E[u0t;s;r(0)5=48 ju0t;s;r(Ûs;r)j5=8 j Fs;r; Et;r℄:Using the restrition property a third time, we an rewrite the above expetation asPfa SLE8=3 path from Ûs;r to 0 avoids vs;r Æ [s; t℄g:If we reparametrize the urve vs;r Æ [s; � ℄ so that u0�;s;r(0) = e3�=8, we will be able to applyProposition 4.1 to obtainlim�!0 e11�=64Pfa SLE8=3 path from Ûs;r to 0 avoids vs;r Æ [s; � ℄g = C� jUs;r � Ûs;rj3=4:14



Thus, limt!1 e11t=64 E[u0t;s;r(0)5=48 ju0t;s;r(Ûs;r)j5=8 j Fs;r; Et;r℄= C� jUs;r � Ûs;rj3=4 limt!1 e11t=64 �u0t;r;s(0)��11=24= C� jUs;r � Ûs;rj3=4 v0s;r(0)11=24;sine u0t;r;s(0) = v0t;r(0)=v0s;r(0) and v0t;r(0) � g0t(0) = e3t=8 as t approahes in�nity with r �xed.The exponent 11=24 results from (11=64)=(3=8): We have now shown that Ns;r has the formwe laimed.From the restrition property, we an see that[g0s;r(0)5=48 jg0s;r(Û0;r)j5=8℄ [ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8℄ � 1;sine the terms in brakets eah represent probabilities of events. Also v0s;r(0) �  e3(r+s)=8,implying that jNs;rj �  e11(r+s)=64. The relation (9) is immediate.Notie that if r = 0, vs;0 = gs;0 = gs and ĝs;0 is the identity. Hene,Ns;0 = C� e27s=128 jg0s(ẑ)j5=8 jeiBs � gs(ẑ)j3=4;whih is equal to the martingale Ms that we onsidered in the previous setion.With Lemma 5.1 behind us, we will now de�ne two-sided radial SLE8=3:De�nition. If z; ẑ 2 �D are distint points, then two-sided radial SLE8=3 in D startingat (z; ẑ) is the measure on ordered pairs of paths (; ̂) suh that for eah s; r < 1, thedistribution of (s0); 0 � s � s0; ̂(r0); 0 � r � r0is given by saying that the Radon-Nikodym derivative of this distribution with respet tothat of independent radial SLE's starting at z; ẑ is Ns;r=N0;0, whih is equal to1Es;r g0s;r(0)5=48 jg0s;r(Û0;r)j5=8 ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8 jUs;r � Ûs;rj3=4jz � ẑj3=4 v0s;r(0)11=24:Note that we an write Ns;rN0;0 = Ns;0N0;0 Ns;rNs;0 = N0;rN0;0 Ns;rN0:r : (10)In other words we an grow the �rst path and then the seond or the seond path then the�rst and we get the same distribution. SineNs;0 =Ms = C� e27s=128 jg0s(ẑ)j5=8 jeiBs � gs(ẑ)j3=4;15



growing one of the paths orresponds to growing one side of two-sided SLE8=3, whih was thetopi of the previous setion. Again, we an desribe this in terms of the Loewner equation.Let Us;0 = eiXs; Ûs;0 = eiX̂s: If Xs and X̂s satisfydXs = �38 ot X̂s �Xs2 ! ds + dBs; dX̂s = 38 ot X̂s �Xs2 ! ds; (11)then the Loewner hain driven by Xs gives the two-sided SLE8=3 up to time (s; 0). To getthe seond path we map down by gs and then proeed similarly, interhanging the roles ofthe two paths. In this ase we need to go until a time that depends on the path .We will use the notation (; ̂) to denote two-sided SLE8=3 starting at (z; ẑ). By a slightabuse of notation, we will write just  for [0;1℄ and (; ̂) for [0;1℄[ ̂[0;1℄. Note thatthese urves are de�ned modulo reparametrization.Conditional distribution of ̂ given Suppose that t is large and we have generated [0; t℄ aording to the distribution of oneside of two-sided radial SLE8=3. What is the onditional distribution of ̂[0; 1℄ given this?By (10), we an see that the Radon-Nikodym derivative of this onditional measure withrespet to that of radial SLE8=3 run until time 1 is Nt;1=Nt;0, i.e.,1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8 ĝ0t;1(0)5=48 jĝ0t;1(Ut;0)j5=8 jUt;1 � Ût;1j3=4 v0t;1(0)11=24e27t=128 jg0t(ẑ)j5=8 jeiBt � gt(ẑ)j3=4; : (12)Given , we an onsider three distributions of ̂[0; 1℄:� radial SLE8=3 in D weighted by Nt;1=Nt;0;� radial SLE8=3 in D n [0; t℄ from ẑ to 0;� hordal SLE8=3 in D n [0;1) [ f0g from ẑ to f0g.What we would like to show is that as t ! 1 these three distributions on ̂[0; 1℄ areasymptotially the same.Let us �rst onsider the seond distribution. The restrition property states that thedistribution of radial SLE8=3 in D n [0; t℄ from ẑ to 0 is exatly the same as that of radialSLE8=3 in D from ẑ to 0 onditoned on the event E = f[0; t℄ \ ̂[0;1) = ;g. From thiswe see that the Radon-Nikodym derivative of the seond distribution with respet to that ofradial SLE8=3 in D from ẑ to 0 is given by1f̂[0; 1℄ \ [0; t℄ = ;g Pf̂[1;1) \ [0; t℄ = ; j ̂[0; 1℄gPf[0; t℄\ ̂[0;1) = ;gwhih equals 1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8g0t;0(0)5=48 jg0t;0(ẑ)j5=8 = 1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8e5t=128 jg0t;0(ẑ)j5=8 :16



If we reall that v0t;1(0) = ĝ0t;1(0) g0t;0(0) = e3t=8 ĝ0t;1(0), we an see that the quantity in (12)equals this times ĝ0t;1(0)27=48 jĝ0t;1(Ut;0)j5=8 jUt;1 � Ût;1j3=4jUt;0 � Ût;0j3=4 :Lemma 5.2. For every � > 0, there exists an r > 0 suh that the following holds. Suppose : (0; 1℄ ! D ; ̂ : (0; 1℄ ! D are two simple urves with (0+); ̂(0+) 2 �D and (0; 1℄ \̂(0; 1℄ = ;. Suppose ĵ(t)j � 1=4 for all t; 0 62 (0; 1℄ and j(1)j � r. Let g denote the uniqueonformal transformation of D n (0; 1℄ onto D with g(0) = 0; g0(0) > 0. Let A = g(̂(0; 1℄).Let h denote the unique onformal transformation of D nA onto D with h(0) = 0; h0(0) > 0.Let z = g((1)); w = g(̂(0)); z� = h(z); w� = h(g(̂(1))). Then,1 � h0(0) � 1 + �; j jh0(z)j � 1 j � �;���� jz � wjjz� � w�j � 1���� � �:We will not give the details of this proof, but the key estimate is the Beurling estimate(see, e.g., [4, Setion 3.8℄) whih an be used to show that there is a  suh thatdiam(A) �  r1=2 dist(z;A):A similar argument with more details is given in Setion 8.The asymptoti equivalene of the seond and third distributions will be disussed inSetion 86 Restrition property for two-sided radial SLE8=3As one might expet, two-sided radial SLE8=3 satis�es the restrition property, whih meansthat two-sided radial SLE8=3 onditioned to stay in a subdomain of D is two-sided radialSLE8=3 in that subdomain. More preisely, the restrition property states that the ondi-tional distribution of 	A(; ̂) given f(; ̂) \A = ;g is the same as two-sided SLE8=3 from(	A(eix);	A(eix̂)) to 0 in D , where (; ̂) is a two-sided SLE8=3 started at (eix; eix̂) andA 2 A(x)\A(x̂). Here we have ontinued to use our notation from the seond setion, thatis, A(x) denotes the set of A 2 D suh that D nA is a simply onneted domain ontainingthe origin with dist(eix; A) > 0; DA denotes D nA, and 	A : DA ! D is the unique onformaltransformation with 	A(0) = 0; and 	0A(0) > 0.In this setion we prove the restrition property for two-sided radial SLE8=3. The prooffollows the same general outline as in the ase of one-sided radial or hordal SLE8=3. Themain di�erene is that the martingale we will onsider is more ompliated, and hene ouralulations using Itô alulus will be more involved. The following theorem ontains theessential result for the restrition property. 17



Theorem 1. Suppose x; x̂ 2 R and A 2 A(x) \ A(x̂). If (; ̂) denotes two-sided radialSLE8=3 from (eix; eix̂) to 0, thenPf(; ̂) \ A = ;g = 	0A(0)2=3 j	0A(eix)	0A(eix̂)j5=8 ����	A(eix̂)�	A(eix)eix̂ � eix ����3=4 :If x = x̂, this is to be interpreted as	0A(0)2=3 j	0A(eix)j2:We �rst disuss how this implies the restrition property. To speify the distributionof a pair of simple, non-interseting paths (�1; �2) from (ex1; ex2) to 0, it suÆes to givePf(�1; �2) \ K = ;g for eah K 2 A(x1) \ A(x2). Thus, to prove the restrition propertyfrom the previous theorem, we need to show that for A 2 A(x1) \ A(x2), then P0 :=Pf	A(; ̂) \K = ; j (; ̂) \A = ;g is	0K(0)2=3 j	0K(z)	0K(ẑ)j5=8 ����	K(ẑ)�	K(z)ẑ � z ����3=4 ; (13)where z = 	A(eix) and ẑ = 	A(eix̂). We �rst note that P0 is equal toPf(; ̂) \ (A [ 	�1A (K)) = ;gPf(; ̂) \A = ;g :Sine 	A[	�1A (K) = 	K Æ	A, we obtain (13) from another appliation of Theorem 1.In order to prove Theorem 1, we start with a simple lemma.Lemma 6.1. There is a  <1 suh that if A;x; x̂; and 	A are as in the theorem, then	0A(0)2=3 j	0A(eix)j5=8 j	0A(eix̂)j5=8 ����	A(eix)�	A(eix̂)eix � eix̂ ����3=4 �  r1=3;where r = inrad(D nA) = dist(0; A):Proof. If f : D ! f(D ) is a onformal transformation with f(0) = 0, the Koebe (1=4)-theorem and the Shwarz lemma imply that 1 � f 0(0)=dist[0; �f(D )℄ � 4. Applying this tof = 	�1A gives 14r � 	0A(0) � 1r :Suppose I � �D and let h(A; I) denote the harmoni measure of I in D nA from 0; in otherwords, h(A; I) is the probability that a Brownian motion starting at the origin leaves D atI. The Beurling estimate implies that there is a  suh that the probability that a Brownianmotion starting at 0 reahes fjzj = 1=2g without leaving D is at most  r1=2. The probability18



that a Brownian motio starting at fjzj = 1=2g leaves D at I is bounded by  l(I) where ldenotes length. Therefore h(A; I) �  r1=2 l(I)whih implies ����	A(z)�	A(w)z � w ���� �  r1=2:and j	0A(z)j �  r1=2:The proof ontinues as in the one-sided ase. The basi idea is to show the equality oftwo random variables: the �rst is a martingale ~Mt that is equal to Pf(; ̂) \ A = ;g whent = 0, and the seond is our \martingale andidate" Mt, whih has initial value	0A(0)2=3 j	0A(eix)	0A(eix̂)j5=8 ����	A(eix̂)�	A(eix)eix̂ � eix ����3=4 : (14)We will think of generating (; ̂) in two steps. First we obtain  by solving the Loewnerequation with the driving term Xt, where Xt is desribed by (11). Then we take ̂ to behordal SLE8=3 in D n . Let Ft denote the �ltration generated by Xt, and set~Mt := E �1f\A=;gPf̂ \ A = ; j g j Ft� :Note that ~M0 = Pf(; ̂)\A = ;g and ~Mt is a ontinuous, bounded martingale. Additionally,limt!1 ~Mt = 1f\A=;gPf̂ \A = ; j g:In what follows, we will de�ne our \martingale andidate" Mt; whih will satisfy M0 equalto (14), and we will show that Mt is also a ontinuous, bounded martingale with the samelimit at in�nity as ~Mt. This will imply that Mt = ~Mt, ompleting the proof. The mosttedious part of the work, whih is ontained in the subsetion below, is the alulation toshow that Mt atually is a martingale.The martingale alulationAs usual, we begin by establishing the notation we will use. Set X0 = eix and X̂0 = eix̂, andlet Xt and X̂t satisfy dXt = �38 Kt dt+ dBt; dX̂t = 38 Kt dt;where we write Kt = ot"X̂t �Xt2 # :19



Reall that the Loewner equation with driving term Xt generates one side of two-sidedSLE8=3, and we will refer to this urve as . Let gt be the onformal maps assoiated withthis Loewner hain. That is, _gt(z) = 38 gt(z) eiXt + gt(z)eiXt � gt(z) :As before, we let ht(z) = �i log gt(eiz). Then, as is disussed in Setion 4.6 of [4℄, on theevent f[0; t℄ \ A = ;g we take 	t and �t to be onformal perturbations of the Loewnerhains with 	0 = 	A. More spei�ally, if g�t is the the onformal map from D n	A Æ [0; t℄onto D with g�t (0) = 0 and (g�t )0(0) > 0, then 	t = g�t Æ	A Æ g�1t and �t(z) = �i log 	t(eiz).Finally, let X̂�t = �t(X̂t) and X�t = �t(Xt), and takeK�t = ot "X̂�t �X�t2 # ; Gt = s2 "X̂t �Xt2 # ; G�t = s2 "X̂�t �X�t2 # :We will make use of the following �ve equations from Setion 4.6 of [4℄:_�t(Xt) = �98�00t (Xt);_�t(X̂t) = 38 h�0t(Xt)2K�t � �0t(X̂t)Kti ;_�0t(Xt) = 38 �0t(Xt) � �00t (Xt)22�0t(Xt)2 � 4�000t (Xt)3�0t(Xt) + 1� �0t(Xt)26 � ;_�0t(X̂t) = 38 ��12 �0t(Xt)2�0t(X̂t)G�t � �00t (X̂t)Kt + 12 �0t(X̂t)Gt� ;_	0t(0) = 38(�0t(Xt)2 � 1)	0t(0):Note that these di�er from the results in [4℄ by a fator of 3=8 beause of our hoie ofparametrization for .We an now state our martingale andidate:Mt := 1f[0;t℄\A=;g	0t(0)2=3�0t(Xt)5=8�0t(X̂t)5=8 F (X̂�t �X�t )F (X̂t �Xt) ;where F (x) = sin3=4(x=2). Equiped with the tools of Itô alulus, we wish to show that Mtis a ontinuous martingale. 20



We begin by onsidering the three derivative terms in Mt. We �rst ompute thatd[	0t(0)2=3℄ = 14 	0t(0)2=3 (�0t(Xt)2 � 1) dt:Using the standard hain rule for funtions of two variables, we obtain next thatd[�0t(X̂t)b℄ = b�0t(X̂t)b _�0t(X̂t) dt+ �00t (X̂t) dX̂t�0t(X̂t)= �0t(X̂t)b ��3b16 �0t(Xt)2G�t + 3b16 Gt� dt;and so, d[�0t(X̂t)5=8℄ = �0t(X̂t)5=8 �� 15128 �0t(Xt)2G�t + 15128 Gt� dt:For the Xt term we need to use Itô's formula, whih tells us thatd[�0t(Xt)℄ = _�0t(Xt) dt+ �00t (Xt) dXt + 12�000t (Xt) dt:Hene, d[�0t(Xt)℄ = � 316 �00t (Xt)2�0t(Xt) + 116 �0t(Xt) [1� �0t(Xt)2℄� 38Kt�00t (Xt)� dt+�00t (Xt) dBt:From another use of Itô's formula, we obtaind[�0t(Xt)5=8℄ = �0t(Xt)5=8�� 5128 [1� �0t(Xt)2℄� 1564 Kt �00t (Xt)�0t(Xt) � dt+58 �00t (Xt)�0t(Xt) dBt� :Combining all of this gives thatd[	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8℄is 	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8 times�� 27128 (1� �0t(Xt)2) � 1564 Kt �00t (Xt)�0t(Xt) � 15128 �0t(Xt)2G�t + 15128 Gt� dt21



+58 �00t (Xt)�0t(Xt) dBt:We now turn our attention to the terms involving F (x) = sin3=4(x=2): Note thatF 0(x) = 38 ot(x=2)F (x); F 00(x) = �� 364 s2(x=2) � 964� F (x):If f(x) = 1=F (x) = sin�3=4(x=2), thenf 0(x) = �38 ot(x=2) f(x); f 00(x) = �2164 s2(x=2)� 964� f(x):Let Zt = X̂t �Xt; and Z�t = X̂�t �X�t . Then,dZt = 34Kt dt� dBt;and we have d[f(Zt)℄ = f 0(Zt) dZt + 12f 00(Zt) dt= f(Zt)��� 15128 Gt + 27128� dt+ 38KtdBt� ;where we have made use of the trig identity 1 +K2t = Gt:The last term we need to ompute is d[F (Z�t )℄, and to do this, we must �rst omputedX̂� and dX�: dX̂�t = _�t(X̂t) dt+ �0t(X̂t) dX̂t = 38 �0t(Ut)2K�t dt:dX�t = _�t(Xt) dt+ �0t(Xt) dXt + 12�00t (Xt) dt= ��58 �00t (Xt)� 38 Kt �0t(Xt)� dt+ �0t(Xt) dBt:Therefore, dZ�t = �38�0t(Xt)2K�t + 58 �00t (Xt) + 38 Kt �0t(Xt)� dt� �0t(Xt) dBt;and so, d[F (Z�t )℄ = F 0(Z�t ) dZ�t + 12F 00(Z�t )�0t(Xt)2 dt:22



Using that 1 + (K�t )2 = G�t , this simpli�es to gived[F (Z�t )℄ = F (Z�t ) �� 15128 G�t �0t(Xt)2 � 27128 �0t(Xt)2 + 1564 K�t �00t (Xt)+ 964 KtK�t �0t(Xt)� dt� 38 K�t �0t(Xt) dBt� :Now that we have omputed d[	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8℄; d[f(Zt)℄, and d[F (Z�t )℄, weare ready to ompute the drift of Mt on the event that f[0; t℄ \A = ;g. We �nd that thisis equal to zero, as desired.To show that Mt is a ontinuous martingale, one must also hek that the limit of Mt ast approahes tA from below is zero, where tA is the �rst time that [0; t℄ \ A 6= ;. We leavethis to the reader. Note that Lemma 6.1 implies that Mt is bounded.The behavior of the martingale at in�nityTo �nish our proof of the restrition property for two-sided radial SLE8=3, we must showthat Mt approahes 1f\A=;gPf̂ \A = ; j g as t!1. We �rst note that when t is large,A has small harmoni measure as viewed from zero in the domain D n ([0; t℄[A), and thisimplies that the harmoni measure of gt(A) in D n gt(A) is also small. Therefore, away fromgt(A), the maps 	t and �t will be lose to the identity, and so 	0t(0)2=3 and �0t(Xt)5=8 willbe lose to 1. Sine eiX̂t will be near to gt(A); we do not have immediate ontrol over thederivative of �t at X̂t. However, the small harmoni measure of gt(A) does imply that �tannot move X̂t muh, whih gives that F (Z�t ) f(Zt) = F (X̂�t �X�t )F (X̂t�Xt) is also lose to 1.The last step is to show that the remaining term, �0t(X̂t)5=8, approahes Pf̂\A = ; j gas t!1. The underlying idea here is that if we take t to be large and just look at the partof the boundary of the disk near gt(A) and eiX̂t, then our piture will look roughly like theupper halfplane, and in this setting �0t(X̂t)5=8 gives the probability that a hordal SLE8=3started at X̂t avoids gt(A). To make things more preise, we will use our result from Setion8 that tells us that the limit as t ! 1 of radial SLE8=3 in D n [0; t℄ from eiX̂0 to 0 is ahordal SLE8=3 from eiX̂0 to 0 in D n . Note thatPfa radial SLE8=3 in D n [0; t℄ from eiX̂0 to 0 avoids A j [0; t℄g= Pfa radial SLE8=3 in D from eiX̂t to 0 avoids gt(A)g= 	0t(0)5=48�t(X̂t)5=8:Sine 	0t(0) is approahing 1 and ̂ is preisely a hordal SLE8=3 in D n  from eiX̂0 to 0, wehave that limt!1�t(X̂t)5=8 = Pf̂ \ A = ; j g;as desired. 23



A onnetion to Brownian motionWe end our disussion by mentioning an alternate way to view two-sided radial SLE8=3started at (1; 1). We an obtain this proess by taking the outer boundary of two independentBrownian motions from 0 to 1 in D that are onditioned not to disonnet 0 from �D .7 Two-sided hordal SLE8=3Although we have previously onerned ourselves only with the radial ase, one an alsode�ne two-sided hordal SLE8=3 and two-sided whole plane SLE8=3. The hordal versionof this proess is atually one of the SLE(8=3; �) proesses, whih were introdued in [6℄.We will desribe this onnetion after onstruting the proess and disussing the restritionproperty that it satis�es. Here we follow the same general outline as our disussion of theradial ase: Given  and ̂, two independent hordal SLE8=3 proesses, we �rst wish tounderstand Pf(0; t℄\ (0;1) = ;g as t!1. From this we obtain a martingale, Ms, andweighting an SLE8=3 by Ms=M0 gives one side of the two-sided hordal proess. Girsanov'sTheorem allows us to desribe this proess via Loewner's equation. We �nish with thede�nition of the two-sided proess.Let Bt and B̂t be two independent standard Brownian motions with B0 < B̂0. Let ; ̂; gt,and ĝt be the orresponding SLE8=3. In other words, gt is the onformal transformation ofH n (0; t℄ onto H suh that gt(z)� z! 0 as z!1. It satis�es the Loewner equation_gt(z) = 3=4gt(z)�Bt ; g0(z) = z: (15)Here  has been parametrized so that hap((0; t℄) = 3t=4, instead of 2t: All the same holdsof ̂ and ĝt.By the restrition property for hordal SLE8=3, we know thatPf(0; t℄\ ̂(0;1) = ; j [0; t℄g = g0t(B̂0)5=8;and therefore, Pf(0; t℄\ ̂(0;1) = ;g = E[g0t(x̂)5=8℄:By di�erentiating (15), we see thatg0t(B̂0)5=8 = exp��1532 Z t0 dsY 2s � ;where Yt = gt(B̂0)�Bt satis�es dYt = 3=4Yt dt� dBt:24



We assume for ease that B0 = 0, and we let �(t; x) = E[g0t(x)5=8℄ for x > 0. Sine�(T � t; Yt) exp��1532 Z t0 dsY 2s � ; 0 � t < Tis a martingale, Itô's formula shows that � must satisfy_�(t; x) = 12�00(t; x) + 34x �0(t; x)� 1532x2 �(t; x):One ould also obtain this di�erential equation from the Feynman-Ka formula. If  (x) =�(1; x), then saling implies that �(t; x) =  (x=pt). Letting y = x=pt, we see that 00(y) +�y + 32y�  0(y)� 1516 y2  (y) = 0:We must have boundary onditions  (1) = 1 and  (0) = 0. The solution to this initialvalue problem, disussed in Appendix B.2 of [4℄, is  (x) = x3=4f(x); wheref(x) = e�x2=2 �(13=8)23=8 �(2) �(13=8; 2;x2=2)and � denotes the onuent hypergeometri funtion (of the �rst kind). The atual expres-sion for f is unneeded, as all we will use is that 0 = f(0) is well-de�ned and non-zero. Wehave now established that E[g0t(B̂0)5=8℄ = B̂3=40 t�3=8 f(B̂0=pt);and therefore limt!1 t3=8Pf(0; t℄\ ̂(0;1) = ;g = 0 (B̂0 �B0)3=4: (16)Now we de�ne Ms := 0 g0s(B̂0)5=8 Y 3=4s ;and a simple alulation show us thatdMs = �3=4Ys Ms dBs:Equation (16) allows us to onlude thatMs = limt!1 t3=8Pf(0; t℄\ ̂(0;1) = ; j Fsg;25



sine limt!1t3=8Pf(0; t℄\ ̂(0;1) = ; j Fsg= g0s(B̂0)5=8 limt!1(t� s)3=8Pfgs Æ (s; t℄ \ gs Æ ̂(0;1) = ;g= g0s(B̂0)5=8 0 jgs(B̂0)�Bsj3=4:It is this latter view of Ms that leads us to de�ne one side of two-sided hordal SLE8=3as SLE8=3 weighted by Ms=M0. By making use of Girsanov's Theorem, this is the same assaying that one side of two-sided hordal SLE8=3 is the proess obtained from the hordalLoewner equation with driving term Xs, where Ws is a standard Brownian motion (withrespet to the probability measure indued by Ms=M0) anddXs = � 3=4X̂s �Xs ds + dWs; dX̂s = 3=4X̂s �Xs ds:Next we would like to de�ne the general two-sided hordal proess. As in the radial ase,we will do so by weighting two independent hordal SLE8=3 proesses by a two-parametermartingale Ns;r=N0;0: We de�neNs;r = limt!1 t3=8Pf(0; t℄\ ̂(0;1) = ; j Fs;rg:In the lemma below, we will show that this limit exits and that Ns;r is symmetri in s andr. First we introdue some notation. On the event Es;r := f(0; s℄\ ̂(0; r℄ = ;g, let vs;r bethe unique onformal transformation of H n ((0; s℄ [ ̂(0; r℄) suh that vs;r(z) � z ! 0 asz !1. Let Us;r = vs;r((s)) and Ûs;r = vs;r(̂(r)); and de�ne gs;r and ĝs;r by the relationsvs;r = gs;r Æ ĝr = ĝs;r Æ gs.Lemma 7.1. Ns;r = 0 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8 jÛs;r � Us;rj3=4:Proof. We �rst write Ns;r aslimt!1 t3=8 E [Pf(0; t℄\ ̂(0;1) = ; j Ft;rg j Fs;r℄:Then the restrition property implies thatPf(0; t℄\ ̂(0;1) = ; j Ft;rg = 1Et;r g0t;r(Û0;r)5=8;and limt!1 E[Et;r j Fs;r℄ = 1Es;r ĝ0s;r(Us;o)5=8:26



Therefore, Ns;r = 1Es;r ĝ0s;r(Us;o)5=8 limt!1 t3=8 E[g0t;r(Û0;r)5=8 j Fs;r; Et;r℄:On the event Et;r, we de�ne ut;s;r by gt;r = ut;s;r Æ gs;r, or equivalently by vt;r = ut;s;r Æ vs;r,and we set �(� ) = vs;r Æ (� + s) for � � 0. Notie thatE[u0t;s;r(Us;r)5=8 j Fs;r; Et;r℄= Pf a SLE8=3 started at Ûs;r avoids �(0; t� s℄ gby a third use of the restrition property. In order to use (16) to onlude thatlimt!1 t3=8 E[u0t;s;r(Us;r)5=8 j Fs;r; Et;r℄ = 0 jÛs;r � Us;rj3=4;we must have that limt!1 hap(�(0;t�s℄)3t=4 = 1. This, however, follows from the fat thathap(�(0; t�s℄) = hap((0; t℄[ ̂(0; r℄)�hap((0; s℄[ ̂(0; r℄) and limt!1 hap((0;t℄[̂(0;r℄)3t=4 =1. Thus we have established thatNs;r = 0 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8 jÛs;r � Us;rj3=4:De�nition. If x < x̂, then two-sided hordal SLE8=3 in H starting at (x; x̂) is the measureon ordered pairs of paths (; ̂) suh that for eah s; r <1, the distribution of(s0); 0 � s � s0; ̂(r0); 0 � r � r0is given by saying that the Radon-Nikodym derivative of this distribution with respet tothat of independent hordal SLE's starting at x; x̂ isNs;rN0;0 = 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8  Ûs;r � Us;rx̂� x !3=4 :Notie that as in the radial ase,Ns;rN0;0 = Ns;0N0;0 Ns;rNs;0 = N0;rN0;0 Ns;rN0:r ;whih implies that we an grow some of the �rst urve and then some of the seond, orvie versa. Again we an make sense of what this means using Girsanov's Theorem. SineMs=M0 = Ns;0=N0;0, we an obtain part of the �rst urve by running the Loewner equationwith driving term Xt until time s, where X0 = x; X̂0 = x̂, anddXt = � 3=4X̂t �Xt dt+ dWt; dX̂t = 3=4X̂t �Xt dt: (17)27



To obtain a piee of the seond urve, we map the �rst urve down by gs and then proeedas before, swithing the roles of Xt and X̂tAlternately, we ould reate the two-sided hordal SLE8=3 proess in two steps. Firstgrow one omplete urve  as above by using the Loewner equation with driving term Xtdesribed by (17). Then the seond urve ̂ is hordal SLE8=3 from x̂ to in�nity in thesmaller domain D, where D is the simply onneted omponent of H n (0;1) that has x̂on the boundary. This is a onsequene of the fat thatlims!1 Ns;rN0:r = 1E1;r ~�0r(X̂r)5=8;where ~�r is the onformal perturbation of a SLE8=3 Loewner hain with ~�0 a onformalmap from D onto H . Weighting a hordal SLE8=3 by 1E1;r ~�0r(X̂r)5=8 gives SLE8=3 in thedomain D .Restrition property for two-sided hordal SLE8=3Two-sided hordal SLE8=3 satis�es the restrition property: if (; ̂) is two-sided hordalSLE8=3 starting at (x; x̂), then the onditional distribution of �A(; ̂) given f(; ̂)\A = ;gis the same as two-sided hordal SLE8=3 starting at (	A(x);	A(x̂)). Here A is a ompat setin H suh that H nA is simply onneted and dist(fx; x̂g; A) > 0, and �A denotes a onformalmap from H nA onto H with �A(z) � z for z near in�nity. The restrition property followsfrom the following theorem.Theorem 2. If (; ̂) denotes two-sided hordal SLE8=3 starting at (x; x̂), thenPf(; ̂) \A = ;g = �0A(x)5=8�0A(x̂)5=8��A(x̂)� �A(x)x̂� x �3=4 :If x = x̂, this is to be interpreted as �A(x)2:This theorem is proved in the same manner as Theorem 1. We use our third methodof obtaining a two-sided hordal SLE8=3:  is generated by the Loewner equation withdriving term Xt, where Xt satis�es (17), and ̂ is hordal SLE8=3 in D . Let Ft denote the�ltration generated by Xt, and let �t be the onformal perturbation of this Loewner hainwith �0 = �A. Then, one must show that the martingale~Mt := E[1f\A=;gPf̂ \A = ; j g j Ft℄is equal to the \martingale andidate"Mt := 1f(0;t℄\A=;g�0t(Xt)5=8�0t(X̂t)5=8 �t(X̂t)��t(Xt)X̂t �Xt !3=4 :28



This is done by showing that Mt is a bounded martingale and that ~Mt and Mt have thesame limit at in�nity. We omit the details.We end by noting a onnetion between two-sided hordal SLE8=3 and the SLE(�; �)proesses. The latter proesses an be de�ned as solutions to the Loewner equation drivenby a random funtion having the appropriate drift. In partiular, if (Ot; Ut) are a pair ofproesses satisfyingdOt = aOt � Ut dt; dUt = �vOt � Ut + dBt; O0 = U0 = 0;then the solution to the Loewner equation with driving term Ut is the SLE(2=a; 2v=a)proess. See Setion 9.3 of [4℄ for a brief introdution. Therefore, one side of two-sidedhordal SLE started from (0; 0) is the same as SLE(8=3; 2): This also follows from therestrition exponent, sine both proesses satisfy the restrition property with exponent 2.8 Chordal SLE as the limit of radial SLEIn the onstrution of two-sided SLE8=3 we used the fat that hordal SLE an be obtainedas a limit of radial SLE. We will be more preise about this here. Sine it is no morediÆult, we will disuss � � 4 and as before we let a = 2=�.
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1 1Figure 2: A omparison of radial and hordal SLE.Suppose ~� : (0;1)! D n f0g is a simple urve with ~�(0+) 2 �D n f1g and ~�(t)! 0 ast!1. De�ne the following measures on paths (modulo reparametrization) ~ : [0;1)! D :� �t: Radial SLE� in D n ~�(0; t℄ from 1 to 0;� �1: Chordal SLE� in D n ~�(0;1) from 1 to 0.In this setion, we will give a preise version of the result that as t!1, �t approahes �1.By onsidering (t) = �i log ~(t), we an an onsider �t; �1 as measures on paths (moduloreparametrization)  : (0;1)! H with (0+) = 0. We hoose the parametrization to be the29



half-plane parametrization. To be more preise, if gt denotes the onformal transformationof H n (0; t℄ onto H with gt(z)� z = o(1) as z !1, then gt has expansiongt(z) = z + atz +O(jzj�2); z !1:In this ase, gt satis�es the hordal Loewner equation_gs(z) = ags(z)� Us ; g0(z) = z; (18)with \driving funtion" Us = gs((s)). For �xed r <1, let �t;r; �1;r denote these measureson paths stopped at time r. We write �(t) = �i log ~�(t) where the branh of the logarithmis hosen so that �2� < �(0+) < 0.Proposition 8.1. Suppose � � 4, � is a urve as in the previous paragraph, and 0 < r <1.Let �t;r; �1;r be �t; �1 restrited to urves up to time r, (s); 0 � s � r. There exists aT = T (�; r) suh that for t � T , �t;r and �1;r are mutually absolutely ontinuous withrespet to eah other. Moreover, with probability one with respet to �1;r, the Radon-Nikodym derivative has a limit of 1 as t approahes in�nity, i.e.limt!1 d�t;rd�1;r = 1:We start by giving the basi idea for the proof. Without loss of generality we will assumethat r = 1; other values of r an be handled by saling. Let gs denote the onformaltransformation of H n(0; s℄ onto H satisfying gs(z)� z = o(1) as z!1. To give a measureon the maps gs (or, equivalently, on the urve ) we give a measure on the driving funtionUs. As we will see, this measure �1;r an be obtained by solving (18) where the drivingfuntion Us satis�es a stohasti di�erential equationdUs = Rs ds+ dBs: (19)The drift term Rs depends on � and is adapted to the Brownian motion. Similarly, the mea-sure �t an be obtained from the Loewner equation using the driving funtion Us;t satisfyingdUs;t = Rs;t ds+ dBs = [Rs;t �Rs℄ ds+ dUs: (20)Let W denote the standard Wiener measure, i.e., the measure on paths Bs; 0 � s � 1 thatgives the standard Brownian motion. Then the Girsanov transformation tells us that themeasure on paths whose Radon-Nikodym deriviative with respet to W isexp�Z 10 Rs dBs � 12 Z 10 R2s ds� ;is the same as paths satisfying the di�erential equation (19). Similarly, if we hoose Radon-Nikodym derivative exp�Z 10 Rs;t dBs � 12 Z 10 R2s;t ds� ;30



the paths satisfy (20). In other words, we an de�ne the paths on the same probability spaeso that vt = exp�Z 10 (Rs;t �Rs) dBs � 12 Z 10 [R2s;t �R2s℄ ds� :We will let T = T (�; 1) = �4pa where �r = supft : Im[�(t)℄ � rg. By properties ofhalf-plane apaity, (0; 1℄ is ontained in fz : Im(z) � 2pag. For T (�; 1) � t � 1, �1;t issupported on those paths  with (0; 1℄ \ �(0;1) = ; and ((0; 1℄ \ �(0;1) + 2�) = ;; thisshows the mutual absolute ontinuity. Therefore, to prove the proposition it suÆes to showthat with �1;1 probability one, limt!1 sup0�s�1 jRs;t �Rsj = 0: (21)Chordal and radial SLE in subdomains of HChordal SLE� from 0 to 1 in H is de�ned by solving the Loewner equation (18) wherethe driving funtion is Brownian motion. Radial SLE� in D is de�ned by solving the radialequation. Chordal and radial SLE� in simply onneted subdomains is de�ned by onformaltransformation. In this setion we desribe a di�erent way of obtaining radial SLE� in Dand hordal and radial SLE� in subdomains by solving the Loewner equation (18) with adriving funtion with appropriate drift.For this setion we let � � 4 and set a = 2=�, b = (3a � 1)=2. Suppose D � H is adomain ontaning fz 2 H : jzj < �g for some � and suppose w 2 �D n f0g. Chordal SLE�from 0 to w in D is de�ned (modulo time reparametrization) to be the image of SLE� in Hfrom 0 to in�nity under a onformal map taking 0 to 0 and 1 to w. We an onstrut thismeasure in a di�erent way.If  : (0; t℄ ! H is a simple urve with (0+) = 0, let gt denote the onformal trans-formation of H n (0; t℄ onto H satisfying gt(z) � z = o(1) as z ! 1. If (0; t℄ � D, letDt = gt(D n (0; t℄), Ut = gt((t)); wt = gt(w). Let Ft denote a onformal transformation ofH onto Dt with Ft(1) = wt; Ft(0) = Ut. Let �t = F�1t , whih is a onformal transformationof Dt onto H . Then (see, e.g., [5℄) hordal SLE� in D an be given by solving the hordalLoewner equation (18) with driving funtion Ut satisfying the SDEdUt = b �00t (Ut)�0t(Ut) dt+ dBt;where Bt is a standard Brownian motion.A similar onstrution an be given for radial SLE. Suppose ~(t) denotes radial SLE�in D and ~gt denotes the unique onformal transformation of D n ~(0; t℄ onto D with ~gt(0) =0; ~g0t(0) > 0. Then (under a suitable parametrization), the maps ht := �i log ~gt satisfy_ht(z) = a2 ot�ht(z)�Bt2 � ;31
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Figure 3: The domain Dt and the maps Ft;�t.whereBt is a standard Brownian motion. Let  = �i log ~(t) where a branh of the logarithmis hosen with log 1 = 0. Note that for t very small,  grows almost like hordal SLE� (attime 0 it is growing exatly like this).To see the di�erene between radial and hordal, suppose that the path has produed(0; t℄. For radial SLE, the path has also produed all the 2� translates of (0; t℄. Therefore,loally the path is now growing like hordal SLE from (t) to 1 in the domainD̂t := H n " 1[k=�1(2�k + (0; t℄)# :Let Dt = gt(D̂t); Ut = gt((t)). Although D̂t is periodi, the domain Dt is not periodi. Byonformal invariane, radial SLE� is the proess that ats loally like hordal SLE� fromUt to 1 in the domain Dt. Let 	t denote a onformal transformation of Dt onto H with	t(1) = 1. This transformation is not unique, but if ~	t is another suh transformation,then ~	t = 	t + x for some  > 0; x 2 R. If we parametrize the urve  so that gt(z) =z + (at=z) +O(jzj�2) as z !1, then the maps gt satisfy (18) where Ut satis�es the SDEdUt = b 	00t (Ut)	0t(Ut) dt+ dBt;and Bt is a standard Brownian motion. Note that 	00=	0 is independent of the hoie of 	.Now suppose that A � D is a losed set not ontaining 0 or 1 suh that D nA is simplyonneted. Let DA = �i log(D nA) whih is the upper half plane with a peridoi set removed.Suppose � = �A is a onformal transformation of D onto D n A with �(0) = 0;�(1) = 132
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In both ases, the measures an be obtained by solving (18) with a driving funtion Ut; thedi�erene omes in the SDE that Ut satis�es. Let Dt = gt(D) and D(s)t = gt(D(s)). Let�t be a onformal transformation of Dt onto H �xing in�nity and let �t;s be a onformaltransformation of D(s)t onto H �xing in�nity. Then the driving proesses, Ut; Ut;s satisfydUt = b �00t (Ut)�0t(Ut) dt + dBt; dUt;s = b �00t;s(Ut;s)�0t;s(Ut;s) dt+ dBt;Let Ir be the open interval (b1+ri; b2+2�+ri) where b1 = maxfx : x+ri 2 �(0; �r℄g; b2 =minfx : x+ ri 2 �(0; tr℄g. Let Dr denote the Jordan domain bounded by Ir; (�(0+); �(0+)+2�); �(0; t1℄; 2�+ �(0; t2) where �(t1) = b1+ ri; �(t2) = b2+ ri. Note that if s � �r, then anyurve from 0 to D(s) nD in D(s) must go through Ir.
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π2η     (0+) π2+0Figure 5: The domain D(s) is H with the solid urves removed. The domain D is theonneted omponent of H n (�(0;1) [ [2� + �(0;1)℄) with 0 2 �D.We will restrit to 0 � t � 1. From (18) we an see that if jzj � 2pa and t � 1, thenjgt(z) � zj � 2a=jzj. In partiular, if r � 2pa, then gt(Ir) � fIm(z) � r � pag. Notethat any urve from Ut to gt(D(s)) in g(D(s)) must go through gt(Ir). We list some otherproperties here.� There exists an � > 0 suh that for all 0 � t � 1,fz 2 H : jz � Utj < �g � gt(Dr):� There exists a  <1 suh that the probability that a Brownian motion starting at Utreeted o� the real axis into H reahes gt(Ir) before leaving gt(Dr) is bounded aboveby  e�r=2. This follows from the Beurling estimate (see, e.g., [4, Setion 3.8℄) and thefat that gt(Ir) � fIm(z) � r �pag. 34



We point out that the onstant  in the seond statement depends only on a while the � inthe �rst statement depends on  and �.To prove (21) it suÆes to establish an estimate on onformal maps. We do this in thenext subsetion. From (22), we an onlude that ifs � supfs0 : Im(�(s0)) � rg;then jRs;t �Rtj �  ��1 e�r=2:This implies (21).Lemmas about onformal mapsHere we will disuss some of the neessary estimates about onformal maps. We start withsome setup.Suppose 1; 2 : (0; 1℄! H are simple urves satisfy� x1 = 1(0+) < 0 < 2(0+) = x2� 1(0; 1℄ \ 2(0; 1℄ = ;.� If I = (1(1); 2(1)) denote the open line segment onneting the endpoints, thenI \ (1(0; 1℄ [ 2(0; 1℄) = ;:Let D̂ denote the Jordan domain bounded by the urves 1(0; 1℄; 2(0; 1℄; I, and [x1; x2℄. LetD̂� = D [ (x1; x2) [ fz : z 2 Dg;be the extension of D̂ by Shwarz reetion. Finally, let q = q(1; 2) denote the harmonimeasure of I [ I� in D̂� from 0. Equivalently, q is the probability that a Brownian motionstarting at 0 leaves D̂� at I or I�. By symmetry, the probability of leaving at I is q=2.Lemma 8.2. There is a  < 1 suh that the following holds. Assume 1; 2 are given asabove. Suppose D is a simply onneted domain withD̂ [ I � D � H n (1(0; 1℄ [ 2(0; 1℄):Let F : D! D̂ be the unique onformal transformation with F (x1) = x1; F (0) = 0; F (x2) =x2. Suppose D̂� ontains the open ball of radius � about 0. Then,jF 0(0)� 1j � q; jF 00(0)j �  ��1 q:35



D̂

γ )(11
γ2(1)

D\D̂

I

1 x
20 0x

fProof. By saling we may assume that � = 1. The Koebe-1=4 and the Bieberbah estimategive 1=4 � F 0(0) � 4; jF 00(0)j � 2F 0(0); so it suÆes to prove the result for q suÆientlysmall.The Riemann mapping theorem states that there is a unique onformal transformationf : D \ H ! D with f(�1) = x1; f(0) = 0; f(1) = x2. By Shwarz reetion, this an beextended to a onformal transformation f : D ! D� whereD� = D[(�x1; x2)[fz : z 2 Dg.Let U = f�1(D̂�). Then U is a simply onneted subdomain of D with the propertythat the probability that a Brownian motion starting at the origin leaves U before leaving Dequals q. Sine U is simply onneted (and, hene, �U is onneted), we an see that thereis a  suh that (1 �  q) D � U:We will assume that q is suÆient small so that q < 1=2 and write Æ = q.Let h : D ! U be the unique onformal transformation with h(0) = 0; h0(0) > 0. TheShwarz lemma tells us that (1 � Æ) � h0(0) � 1. We will show that jh00(0)j �  Æ. Letg(z) = log(h(z)=z) whih is a well-de�ned analyti funtion sine h0(0) > 0 and h(z) 6= 0 forz 6= 0. The maximum priniple implies thatjRe g(z)j � supfjRe g(z)j : jzj = 1g � j log(1� Æ)j �  Æ:Sine Re g is a harmoni funtion, this implies that the partial derivatives of Re g(z) areO(Æ) for jzj � 1=4. Hene, by the Cauhy-Riemann equations, jg0(z)j = O(Æ) for jzj � 1=4.Sine g(0) = log h0(0) = O(Æ), we onlude that jg(z)j �  Æ for jzj � 1=4, and henejh(z)� zj � Æ:From this we onlude that jh00(0)j = j(h� z)00(0)j �  Æ.Sine h is unique, we an see that h = f�1 Æ F Æ f . The hain rule givesF 0(0) = h0(0);F 00(0) = 1f 0(0) �h00(0)� h0(0) [h0(0)� 1℄ f 00(0)f 0(0) � :36



The Koebe-1=4 and the Bieberbah estimate give jf 0(0)j � 1=4; jf 00(0)j � 2 f 0(0): Therefore,F 0(0) � 1 = h0(0) � 1; jF 00(0)j � 8 [jh00(0)j + jh0(0)j jh0(0)� 1j℄:However we have seen that jh0(0) � 1j; jh00(0)j �  q;at least if q is suÆiently small.Lemma 8.3. Suppose D̂ is as above and D; ~D are two domains satisfying the onditions(on D) of the previous lemma and let q; � be as in that lemma. Let � : D �! H denote theunique onformal transformation with �(0) = 0;�(1) =1;�0(0) = 1; and let ~� denote theorresponding transformation for ~D. Thenj�00(0) � ~�00(0)j �  q ��1: (22)Proof. Let F be the unique onformal transformation of D onto ~D with F (x1) = x1; F (0) =0; F (x2) = x2. By applying the previous lemma we am see thatjF 0(0) � 1j �  q; jF 00(0)j �  ��1 q:Let 	(z) = ~� Æ F (z)F 0(0) :Then 	 is a onformal transformation of D onto H with 	(0) = 0;	0(0) = 1. Also,	00(0) = ~�00(0)F 0(0) + F 00(0)F 0(0) :The transformation 	 might not equal � sine 	(1) might not equal 1. However, it iseasy to hek that �(z) = 	(1)	(z)	(1)�	(z) ;where 	(1)=[	(1) � 	(z)℄ is interpreted to equal 1 if 	(1) = 1. Note that �0(0) = 1and �00(0) = 	00(0) + 2	(1) = ~�00(0)F 0(0) + F 00(0)F 0(0) + 2	(1):Therefore, j�00(0) � ~�00(0)℄ � j~�00(0)j jF 0(0)� 1j+ ����F 00(0)F 0(0) ����+ 2j	(1)j :37



ooΨ( )

(I)Ψ

I

Ψ

00Applying the Bieberbah estimate to (the Shwarz reetion extension of) z 7! ~�(�z)=�gives j~�00(0)j � 2=�. We have already bounded jF 0(0) � 1j and jF 00(0)j. We now need toestimate j	(1)j. Note that 	(I) is a urve in H onneting the negative real axis to thepositive real axis. Let d be the distane of this urve from the origin. Using the gambler'sruin estimate, it is not diÆult to show that the probability that a Brownian motion startingat Æi hits this image before leaving H is bounded below by  Æ=d. [In fat, if Æ < d=2, andz 2 H with jzj � 2d; Bt is a Brownian motion starting at iÆ; and T denotes the �rst t withBt 2 R, then with probability at least O(Æ=d) the point z will be in a bounded omponentof H n (B[0; T ℄ [ [0; Æi℄). In this ase we must have B(0; T ) interseting the image urve.℄Note that 	(1) lies outside this urve so j	(1)j � d. The probability starting at Æi thata Brownian motion leaves D at I is bounded above by  (Æ=�) q: [Here,  Æ=� bounds theprobability to reah the sphere of radius �=2 and the Harnak inequality implies that theprobability of reahing I given this is bounded by  q.℄ Hene, sine 	0(0) = 1, we get thatj	(1)j �  � q�1:This establishes (22).Referenes[1℄ J. Dub�edat, Some remarks on ommuation relations for SLE, preprint.[2℄ P. Duren (1983). Univalent Funtions, Springer-Verlag.[3℄ T. Kennedy (2003), Monte Carlo tests of SLE preditions for 2D self-avoiding walks,Phys. Rev. Lett. 88, 130601.[4℄ G. Lawler (2005). Conformally Invariant Proesses in the Plane, Amer. Math. So.[5℄ G. Lawler, The Laplaian-b walk and the Shramm-Loewner evolution, to appear inIllinois J. Math. 38
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