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Abstract

In this paper we construct two-sided SLEg,3 and describe why if is a model of the
infinite self-avoiding polygon.

1 Introduction

The Schramm-Loewner evolution, SLE,, as introudced in [9], is a candidate for scaling limits
of random paths at criticality in two dimensions. Different values of k£ correpond to different
systems. One value of particular importance is k = 8/3, and the corresponding system is
conjectured to be the limit of the self-avoiding walk. Trying to understand this led to the
definition of the restriction property [6], and then the (nonrigorous) identification of the limit
for self-avoiding walks.

The scaling limit can be considered a probability measure on curves v : [0, 00) — C with
¥(0) = 0. The point 0 is special on the curve. If we look locally at any other point on
the curve, then locally we see two curves at that point (the “past” and the “future”). To
understand this, one might consider the limit as r — oo of the curves 7" (s) = y(s+7)—~(r).
Assuming this limit exists, we should have a limiting measure on curves v : (—oo,00) — C
with v(0) = 0. Equivalently, we can consider this as a measure on pairs of nonintersecting
(one-sided) curves.

In this paper, we complete the picture in [7] by describing the measure on two-sided
curves. We can think of a two-sided curve as a simple loop that goes through both the
origin and infinity. For this reason, we conjecture that this measure is the scaling limit for
self-avoiding polygons.

Let us outline this paper. We start by discussing the discrete model, the infinite self-
avoiding polygon (ISAP). While we do not know how to prove the scaling limit of ISAP exists,
we do use the heuristics from this model to derive the defintion of the two-sided SLEg/5. In
particular, our approach is to make precise the idea that two-sided radial SLFEy/3 is obtained
by taking two independent radial SLEg/3 and conditioning them not to intersect. This is
conditioning on an event of probability zero, so one must take a limit. Much of this paper
deals with the justifying this limit.

In Section 4, we consider the probability that two radial SLEs/s3 paths do not intersect,
one running to time oo and the other to time ¢. This tends to zero as t — oo, and we
give the asymptotic behavior. The calculation uses the restriction property which reduces
the problem to a derivative estimate for radial SLEg/;3. We do this calculation in detail
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although the argument is similar to arguments that have appeared in previous papers. After
doing this, we weight a path by a corresponding martingale to give a process that we call
one-side of radial two-sided SLEg;3. It is a radial analogue of the SLEg;3(x.p) processes as
introduced in [6].

This definition is not obviously symmetric in the two paths. In the next section, we
describe an alternate defintion that is obviously symmetric. This shows that the two-sided
radial SLEg/3 can be grown in any order, that is, we grow one side for a while and then the
other. The fact that the order does not make a difference is an example of commutation.
See [1] for a much more detailed discussion of commutation properties of SLE, paths. In
Section 6, we prove the restriction property for two-sided radial SLFs/s.

We then consider the chordal analogues of two-sided SLEg/5. This is an example of a
chordal SLE(k, p) process and is also an example of the kind of processes discussed in [1].

Our final section gives a proof that chordal SLE, is the limit of radial SLE, in the
following sense. Suppose that n : (0,00) — D is a simple curve with n(0+) € 9D\ {1} and
n(t) — 0 as t — oo. For every t < oo, we can consider radial SLE, from 1 to 0 in D\ n(0,].
As t — oo, this measure approaches that of chordal SLE, from 1 to 0 in D'\ (0, oc]. This
fact, which we prove for # < 4, is used in one of our constructions of two-sided radial SLEg/s.
We give a more preicse formulation of the limit in this section.

Except for the final section, we restrict our consideration to x = 8/3 for simplicity. The
ideas can be generalized to other k < 4, but in these cases the measure is not obtained by
“two SLE, paths conditioned not to intersect”.

We assume that the reader knows the basic facts about complex variables and confor-
mal transformations (Schwarz lemma, Schwarz reflection, Koebe-(1/4) lemma, Bieberbach
estimate, Beurling estimate). See [2] or [4] for references.

2 The infinite self-avoiding polygon

1.
I

In this section we will describe the discrete model whose limit we are trying to describe.
A two-sided self-avoiding walk (2-SAW) in Z* = Z+1Z of lengths j, k (centered at the origin)

is a nearest neighbor path

2
W= Wy W jgty e e s Whe1, Wk, wi € Z7,
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with wy = 0 and w; # wm, —) <1 < m < k. Let £, denote the set of such walks and write
just Ly for Log. Walks in Ly are called (one-sided) self-avoiding walks (SAW) of length k
(rooted at the origin). Note that there is a natural one-to-one correspondence between L,
and Ljyy. For any n > 7,m > k, there is a probability measure f; 5 ,m on L given by

[k (w):#{@Eﬁmm:[@_]‘,...,(bk]:w}
]’m F(Lor) -

It is conjectured but has not been proven that the limits

/,L;;(w) = n}l_I)I;O /«LO,k,O,m(w)v

tik(w) = Hm g nm(w),

n,m—+00

exist and the second limit is independent of the way that n,m go to infinity. Assuming this
conjecture, the measures {yf : 0 < k < oo} and {p;x : 0 < 5,k < oo} must be consistent.
Hence we get a probability measure p* on infinite (one-sided) SAWs

w=[wg =0,wy,wy,...]
and a probability measure p on infinite two-sided self-avoiding walks
w=[..,w_9,w_1,wp = 0,wy1,ws,...],

with projection measures pf, k. We call these measures the (whole plane) infinite self-
avoiding walk (ISAW) and (whole plane) infinite self-avoiding polygon (ISAP), respectively.
Assuming the conjecture, the measure ¢ must be stationary, i.e., if

Opw =[... ,Wn9 — Wny Wit — Wi, 0,Wn41 — Why Wha — Wny e |,

then for each integer n, 8,1 = . We can also consider p as a measure on one-sided infinite
self-avoiding walks, by looking at the projection

W [wo = 0,wq,ws,...].

We call this one side of ISAP. Note that this is not the same measure as the ISAW p*.
There are two important critical exponents for SAWs. While these are usually defined
in terms of uniform measures on L,,, they can also be defined in terms of the measure p.
The mean-square displacement exponent v is defined by saying that under the measure g,
the expected value of |w,|? grows like n* as n — oo. The intersection exponent ( (this is
the same as the exponent v — 1 as in [8]) is defined by saying that if two one-sided walks

= el ] = e,



are chosen independently using p*, then the probability that
{wi, ..., wibn{w), ... w2} =0

decays like n~¢. The existence of these exponents has not been proved but there is very strong
evidence for the values v = 3/4,( = 11/32 (see [8]). Combining these two conjectures, we can
say that the probability that two independent SAWs reach distance R without intersecting
decays like R=11/24,

We will consider continuum limits of these measures. Assuming that the exponent v
exists, we could expect that we can scale the walks by n™ to get a measure on continuous
curves. There are actually four measure on continuous curves:

e m™: the scaling limit of ¢* which gives a measure on simple curves v : [0, 00) — C with

(0) = 0.

e m: the scaling limit of y which gives a measure on simple curves v : (—oo,00) — C
with v(0) = 0. Equivalently, it can be considered as a measure on ordered pairs of
curves (v',4%) where 47 : [0, 00) — C with 47(0) = 0 and

71(0,00) N9*(0,00) = 0.

e The marginal measure on v! in the measure m.
e The conditional measure on ¥? given 4! in m.

The first and fourth of these measures were considered in [7] where it was shown that there
is only one possibility for the scaling limit assuming that the limit exists and is conformally
invariant. The fourth measure was considered first. Under the assumption of conformal
invariance, given ' we can map C\ 7'[0,00) to the upper half-plane H mapping 0 to 0
and oo to oo. Then the stationarity property of the ISAP implies that the measure on
v, appropriately parametrized, satisfies the conformal Markov property. From this it was
derived that the distribution must be that of chordal SLE, as introduced by Schramm [9].
The nature of the scaling limit also implied that the limit would satisfy a certain property
which was denoted the restriction property. In [6] it was shown that this implies that £ must
be 8/3. A similar argument established that the only possibility for m* is that of whole-plane
SLEg;3, which is really a version of radial SLFEgs.

At the moment there is no proof of the existence of the scaling limit or of its conformal
invariance. However, there is strong numerical evidence [3] that the limit of SAWs is given
by SLEs/3. Moreover, the analogues of the exponents v = 4/3,( = 11/32 can be computed
for SLEg/s which gives very strong evidence for their correctness.

In this paper we will complete the picture by considering the other two measures. This
requires considering two SLFEg/3 at one time. In summary the conjectured scaling limits of
the four measures above are



¢ whole-plane SLEgs, in other words, the distribution of y[t,c0) given 7[0,1] is radial
SLE8/3.

o two-sided whole-plane SLEg/3, in other words, the distribution of v(—o00,00) given
v[—s,t] is two-sided radial SLEg)s3.

e one side of two-sided whole-plane SLEg/s,
e chordal SLEg/s.

3 Radial SLEg;; and restriction

In this section, we remind the reader of the definition of radial SLE, and the restriction
property, which SLEg/3 satisfies. The restriction property will be crucial in our development
of two-sided SLEg/3. See [4] for more details.

Let B, be a standard Brownian motion. Then radial SLFE, is the solution to the Loewner
equation with driving function \/kB;. That is to say, it is the family of conformal maps ¢,
solving the initial value problem

N LeVEBe L gy N
8.u(=) = g()I—_zE; Gol2) = 2,

for z € D. These maps satisfy the normalization that ¢'(0) = ¢'. It will be convenient for us
to change this parametrization by a factor of 1/x. This is equivalent to considering solutions
to the initial value problem

(2) = 5 () S (o) = = )

for € D, where a = 2/x. Here the conformal maps g; are normalized so that ¢'(0) = e*/2.

Although this change may make some of the exponents in our computations a little less
friendly, we prefer to work with a standard Brownian motion rather one multiplied by /k.

If k < 4, then radial SLE, gives a measure on simple curves. The radial SLE, path
is the function v : [0,00) — D with the following properties: ~(0) = e, 4(0,00) C
D\ {0}, im0 y(t) = 0, and ¢; is the unique conformal transformation of D\ v[0, ¢] onto D
with ¢;(0) = 0 and ¢;(0) > 0. We will often refer to this path as radial SLEg/; (starting at
¢'B0) rather than the family of maps g;.

Simply stated, the restriction property says that SLEs/s in a subdomain of D is SLEg/5
in D conditioned to stay in the subdomain. To describe this more fully, let A denote the set
of A € D such that D\ A is a simply connected domain containing the origin. If € R, let
A(z) = A, = {A € A:dist(e®,A) > 0}. For Ac A/ let Dy =D\ Aandlet ¥y: Dy =D
be the unique conformal transformation with ¥4(0) = 0 and ¥/,(0) > 0. If A € A4,, then
U, has an analytic extension in a neighborhood of €@, and hence ¥, (e'*) is well defined.
Suppose A € A, and 7 is radial SLEg,;3 started at €. On the event {7(0,00) N A = 0} let
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n(t) = ¥4 0~(t). Then the restriction property states that the conditional distribution of n
given {7(0,00) N A = P} is the same (modulo time reparametrization) as radial SLE from
T 4(€) to 0 in D.

The following computation is at the heart of the restriction property:
P{7[0,00) N A =0} = [T/, ()] W), (0)”/*, (2)

and we will often refer to this simply as the restriction property. To establish (2), one must
show that M;, as defined below, is a bounded martingale with lim; . M; = 1{7(0,00)N A =
0}. This will allow us to conclude that M; = P[y(0,00) N A = 0|F;], since the latter is also
a bounded martingale with the same limit at infinity. We define

M, = 1{7(0,4] N A = G}, (B [/2 T, (0)>/*%,

where 4; = g;(A)ND. Notice that My = [¥’,(¢'°)[>/5 &', (0)>/*%. For the details, see Section
6.5 of [4]. In Section 5, we will prove the restriction property for two-sided radial SLEg/s,
and the proof of this will follow the same general argument.

Whole-plane SLE,

If D is a simply connected domain, z € dD,w € D, then radial SLE, from z to w in D is
the conformal image of radial SLE, in D from 1 to 0 by the conformal transformation of
D onto D mapping 1 to z and 0 to w. This is considered a measure on paths modulo time
reparametrization.

Whole plane SLE,, 0 < k < 4, is the measure on simple curves v : [0,00) — C with
v(0) = 0 that has the property that given [0, ¢] the conditional distribution of (¢, 00) is
that of radial SLE, from v(t) to oo in C\ v[0,¢]. Standard results about conformal maps
can be used to see that this is well defined; see, e.g., [4, Section 6.6].

4 One side of two-sided radial SLEg;

The measure on two-sided SAWs of lengths n,n is exactly the same as the measure of two
independent (one-sided) SAWs of length n conditioned not to intersect. Hence, we can think
of the infinite ISAP as the measure on two independent ISAWs given by condtioning that
they do not intersect. This description does not make precise sense since this is conditioning
on an event of probability zero. However, we could hope to make rigorous sense by a limiting
argument.

Using this as an analogy, we will try to build up two-sided radial SLEg/3 by taking
two (one-sided) radial SLEg,; paths and conditioning them not to intersect. Again, this is
conditioning on an event of probability zero so we must take a limiting argument. We begin
our study of two-sided radial SLFg/3 by using the restriction property to understand the
probability that a SLEs/s path will avoid the beginning of another, independent SLEy/s
path. We will obtain a particular martingale M, and then then we will define one side of
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two-sided SLEg/3 by weighting a SLEg;3 path by M,/M,. The process so obtained is also
referred to as “SLFg/3 conditioned to avoid another SLEg/3.” We conclude the section by
discussing an alternate definition of the process, derived using Girsanov’s Theorem.

Let B; and Bt be independent standard Brownian motions with z := ¢'Po +* etBo .=
z, and let v and 4 denote the SLEg/; paths generated by these Brownian motions (with
corresponding functions ¢; and §:) by solving (1) (with « = 3/8). The restriction property
tells us that
5/8

P{~[0.#]N 40, 00) = 0 | 7[0, 1]} = €™M |4;(2)

(Recall that ¢/(0) = /% and hence /128 = ¢/(0)>/4%.) Hence,

P{~[0,]N410,00) = 0} = */* E[|g;(2)|"], (3)

where the expectation is over the first Brownian motion B;. As we wish to understand what
happens with (3) as t approaches infinity, we must examine E[|g](2)[*/%].

Our first step is to introduce h;(z) = —ilog g;(¢'*). Here the branch of the logarithm is
chosen so that —iloge'®o = By. For fixed t < oo, this is well defined in a neighborhood
of v[0,t]. Note that |g;(2)| = h;(BO), allowing us to study &(t,x) = E[h}(x)*/®) instead.
Equation (1) implies that

h(z) = g cot <f>  ho(z) == (4)

Differentiating this gives

) o {2 [t (=2 )

If we let ¢ = By and V; = hi(x) — By, then V; satisfies

3 v
AV, = < cot (é) dt — dB;,

¢
hy(x) = exp {—%/ csc? (%) ds} .
0

We will assume for ease that By = 0. Let F; denote the filtration generated by {B; : 0 <
s <t}. Then if s < t,

and

Elh; («)* | F) = Hy(e) o(t — 5, V5).

Since this is a martingale, It6’s formula implies that

1, 3 AN 15
—dlta) 50" (hw) + S cot () ¢lta) - o

153 csc? <§> o(t,x) = 0. (5)



We could also have obtained the differential equation for ¢(t, x) by appealing to the Feynman-
Kac formula.
Let L be the differential operator described by (5), that is

.1 3 x 15 x
e b b (3) - (3) 1
(f)i==f+5f+geot(5) =g (5)
To solve a differential equation like L(f) = 0, one often attempts to find a solution of the
form e P F(x), by solving an ordinary differential equation for F. In our case, we would
need to solve

%F”(l’) + % cot <§> F'(z) + {ﬁ - % csc” <§>] Fla)=0. ©)

We notice that
F(z) = ¢ sin®*(2/2),

is a solution when 3 = 27/128.

Although we now know ¢, e=2/1285in3/%(2/2), is a solution to L(f) = 0, this cannot be
equal ¢(t,x) since they do not have the same initial conditions. In particular, ¢(0,z) = 1.
We wish to compare ¢(¢, x) to this solution, however, and we will be especially interested in
the behavior of these two functions as t goes to infinity. Although the choice seems arbitrary
at this point, we will take

f% sin®/*(x/2) da

0

fOZﬂ sin®(z/2) dx

.« =

In the subsection below, we explain how we obtained the constant ¢.. However, the exact
value of this constant will not matter for our development of two-sided SLEg/s.

To show that ¢(t,z) ~ e, e 27/ 2sin34(£/2) as t — oo, we construct functions F.(t,z)
and G.(t,x) as follows. To begin, for € > 0 set

F.(t,z) = c. e~ 2Tt/128 sin3/4(:1;/2) 4 emat/128 (1 — ¢, sin3/4(:1;/2)) +e— o(t, ),

where a > 27. Then

—at
6128 (a —15csc®(x/2) — (a — 27)c. sin3/4(:1;/2)) - % csc?(x/2),

L(F(2,t)) =

which is negative for an appropriate choice of a, such as @ = 54. Looking at the boundary
conditions, note that F.(0,2) = € > 0, and F.(¢,0) = F.(t,27) > 0. Suppose that F.(¢,2) < 0
for some (t,2) € [0,00) X [0,27]. Then there is some point (tg,x¢) € [0,00) x [0,27] with
F.(to,x0) = 0 and with F.(t,z) — ¢(¢t,x) > 0 for all ¢+ < ¢o. It follows that we must
have Fﬁ(to,xo) < 0, Fl/(to,x0) = 0, and F/(tg,x9) > 0. This, however, contradicts the



fact that L(F.(to,x0)) < 0. Therefore, F. > 0, and by letting € go to zero, we have that
€ €7 i34 (2 /2) 4 c e /128 > (¢, x). In particular, notice that we have

lim 627t/128¢(t,x) < e, sin3/4(:1;/2).

t—oc0

We also wish to obtain the opposite inequality. We can accomplish this with a similar
argument in which we utilize

Gi(t, l‘) —c, 6_27t/128 sin3/4(:1;/2) (1 4 6_(a1_27)t/128) — 2c, €_a2t/128 e — qb(t, J}),
with ay > ay > 27 appropriately chosen so that L(G.) > 0. In this way, we obtain

lim e2™128¢(t, x) = ¢, sin®*(x/2) = 273 4¢, | — 1P/1 (7)

t—00
We have now established the following proposition.

Proposition 4.1. Suppose v, ¥ are independent radial SLEg/; curves started at z, 2 respec-
tively. Then,

lim e/ P{4[0,1] N 4[0,00) = 0} = C, |z — 24,

t—oc0

where

3/4 fOZﬂ sin?/*(x/2) da

C. =27, =273/420 :
Jo T sin®(2/2) da

Proof. Assume without loss of generality that z = 1,2 = ¢'*, and as before, let ¢(¢,7) =

B[R/ (2)°/%]. Then,
P{~[0,4]N4[0,00) = B} = /128 (¢, ).

The proposition then follows from (7).
0

We continue to use the notation z = Bg and V; = hs(x) — B,, and now we wish to
consider

M, = C. 6275/128 |g;(€ix)|5/8|€iBs . gs(eix)|3/4 — 6275/128 h;($)5/8F(‘/;),

where F(z) = ¢, sin®*(z/2) satisfies (6) with 3 = 27/128. Using this, we can compute that

dM, = —§ cot E M, dX,,
8 2

where X, = B,. Therefore M, is a martingale with |M,| < ¢/ 275/128,
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We claim that

M, = lim e P{[0,#]0 4[0,00) = 0 | F.}.
— 00
By using the restriction property, we have

P{~[0,2] NA[0,00) =0 | F.}
=P{~[0,5]N4[0,00) = 0 and g, o y[s,t] N g, 0 §[0,00) =0 | F,}
= /18 1! (2)*5P{g, 0 y[s, 1] N gs 0 H[0,00) = 0 | F,}

Proposition 4.1 implies that

lim "=/ P g, 0 905,41 N g, 0 5[0, 00) = 0 | F} = Cle = g,(e™)],
which proves the claim.

This second view of M, leads us to define one side of two-sided 5L Fg/3, otherwise called
SLEg3 conditioned to avoid another SLEg;3, by weighting a SLEg;; path by M,/M,. In
particular, let Q denote the probability measure on paths induced by this positive martingale,
and let Q, denote this measure restricted to X;,0 < t < s. Then dQ,/dP = M,/M,.

By making use of Girsanov’s Theorem, we obtain an alternate viewpoint of this object:
we can consider one side of two-sided SLFg/3 to be the solution to the Loewner equation
where the driving term has an appropriate drift. Girsanov’s Theorem states that with respect

3 [° Vi
=X, + = t | — | dt,
W —|—8/Oco <2>

is a standard Brownian motion, or in other words,

to the measure Q,

dX, = —g cot (%) ds + dWs.

Thus one side of two-sided SLEy/5 is the process generated by the Loewner equation with
driving term X, where W is a Brownian motion,

Xs - Xs
dX, = —g cot (T) ds + dW,,

and

d)A(szicot u ds.
8 2

Note that we have replaced hs(x) by X, in anticipation of the notation we will use in the next
section, which will reflect the fact that the two sides of two-sided SLEy/3 are symmetric.
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The constant c,

In this subsection, we briefly describe how we obtained the constant ¢, found in our previous
calculations. It arises naturally when finding a certain invariant density. The basic ideas
used here are discussed in Section 1.11 of [4].

Recall that
dV, = § cot <E> dt — dBy,
8 2
and
hi(2)%® = exp _1 /t csc?(V,/2) ds
¢ 128 /, ° '

Let p(t,z,y) denote the transition probability density defined by

B [£(Vi) b (r)"/%) = / " p(tey) £y) d.

and notice that for ¢(t,z) = E*[hl(x)*/®], we have that

ot x) = / () dy.

There are two differential equations that p(¢,x,y) must satisfy, one for when y is fixed
and the other for x fixed. If we had started in a simpler situation and were interested in
the transition probability density for E*[f(V;)], we could easily obtain the two differential
equations from Kolmogorov’s backward and forward equations. Although our situation is
slightly more complicated, it is not difficult to find the desired equations. We have already
seen that ¢(¢, x) satisfies the differential equation (5), and one can show that p must satisfy
this as well. That is,

1 3 15 x

p= §pm + 3 cot(x/2) pr — @csc2(§)p.

By considering the adjoint, we can find our second differential equation for p:

1

3 15
g Pw — 0y [g cot(y/2) p] — o8 csc(y/2) p.

See section 1.11 of [4] for further details.
As we did for ¢, we can solve these differential equations to understand the behavior of

p=

p as t approaches infinity. In particular, we will find positive functions ©; and 1, satisfying
the ordinary differential equations

3 V() 3 cot(e/2) ) + [ — ok escH(e/2)] ) =0,
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S V) = 0y 5 cot(y/2) valy)] + [8 = E s (u/2)]daly) =0,

so that p(t,z,y) ~ ce P () Py(y) as t — oo. The desired solutions are
Yi(w) = sin®Y(2/2),  daly) = sin®(y/2),
with 8 = 27/128. We therefore get
p(t,x,y) ~ ¢ e~ 2Tt/128 sin3/4(:1;/2) sin9/4(y/2), t — o0. (8)

We will now compute the constant ¢; as well as our previous constant ¢,.. The function
sin®/*(y/2) can be considered an invariant density in the sense that

2T
s e 2) bt ) do = I oy 2),
0

Plugging in (8) gives

-1

¢ = { /0 " sin®(2/2) d:z;]

Using (8) with

2m
o) =B (e = [ pltoay) d
0
gives again that
o(t,x) ~ c. e~ 2Tt/128 sin3/4(:1;/2),

and here it is clear that

fOZﬂ sin®/*(x/2) da
fOZﬂ sin®(z/2) dx

Cy =

5 Two-sided radial SLEg;

In this section we will define two-sided radial SLFg/3 by weighting two independent SLEy/s
paths by a two-parameter martingale N ,/Ngo. We will show that N,, is symmetric in s
and r, and this will give commutation, meaning that we can “grow” the two curves in either
order.

We begin by establishing the notation we will use. Let v and 4 be independent radial
SLEg3 paths starting at z and Z with corresponding conformal maps g; and g;. Let F,
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denote the o-algebra generated by {B; : 0 <t < s} U{B, : 0 < t < r}, let E,, denote the
event

Etﬂ“ = {7[07t] N ’A)/[Ovr] = @},
and let £y = E; . In Proposition 4.1 we showed that

lim '/ P(E,) = C, |z — 2>/

t—oc0

On the event E,,, we let vy, denote the unique conformal transformation of D\ (v(0,s] U
4(0,7]) onto D with v,,(0) = 0 and v, (0) > 0. Note that g, = v, and g, = vo,. For U, :=
Vs (7(s)) and (A]M := vy, (%(r)), we observe that U, = e'B:, (7570 = g5(2), Up, = gr(2), and
Uo,r — ¢iBr, Finally, define g,, and g,, by the relations v,, = g5, 0 G = Gsr © G-

0,0

N
Usr Usr

Figure 1: The maps vy, gs . §sr- Note that g, = ¢, 0 = v, and similarly ¢, = go, = vo,r-

Suppose 0 < s <t,0 <r < oo, and let
N, = tlim 61”/64]P’(Et | For)
— 00

Although it is not immediately obvious that the limit exists and that the definition of N, is
symmetric, that is, it does not depend the way we order the two SLFy/3’s, the next lemma
establishes these facts.
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Lemma 5.1.

N, = C.lg,, g,.(0)/ g, ,(Uo,) P 4, (0", (Us0) [P/
. |U” . UST|3/4 ! (0)11/24‘
In particular, Ny, is a two-parameter martingale in the sense that if s < s" and r </,

E[Ns’,r’ | Fs,r] — Ns,r- (9)

Moreover, there is a ¢ such that for all s and r, N,, < ce!lrFs)/64,

Proof. We first write

N,, = lim " E[P(E, | Fi.) | For]

t—oc0

The restriction property implies that
P[E: | i) = 15, 91,(0)7* |g; (Do, )P,
and hence,

Ny, = lim """ Ellg,, g;,(0)* |g;, (Vo )[** | Fo]

t—oc0

— lim PIE,, | F.,] "V Elg,, (00 gl (0o, ) | Foy. By
Another application of the restriction property gives

Lim PE,, | oyl = PlEx, | Forl = 15., §0,(0)7*
— 00 ’

e Uso) 5.

On the event Ey,, let w5, = vy, 0 Uiy s

so that ¢;, = uy s, 0 gs,. Therefore,

Now =g, 9,,.(0)* 1., (Uso)*® 4., (0" ** g, . (To,.)*/®
) hm ellt/64 E[u;,s,r(0)5/48 |u;,s,r(0577°)|5/8 | FSJ? Etﬂ“]‘

t—oc0

Using the restriction property a third time, we can rewrite the above expectation as
P{a SLEg/; path from Uw to 0 avoids v, o ¥[s,t]}.

If we reparametrize the curve v, o y[s, 7] so that v/, (0) = ¢>7/%, we will be able to apply

T,8,F

Proposition 4.1 to obtain

lim 6117/64]?{& SLEg3 path from (A]M to 0 avoids v,, o v[s, 7]} = Ci |Us, — US7T|3/4.

T—0

14



Thus,

hm ellt/64 E[ ,s,r(0)5/48 |u;,s,r(U57T)|5/8 | FSJ”? Etﬂ”]

t—oc0

- C* |Us,r - Usr|3/4 lim ellt/64 (u;,r,s(o))_ll/%l

t—o0

— C* |Us,r _ |3/4 sr(0)11/247

since uy , (0) = v;,(0)/v; . (0) and v; (0) ~ g;(0) = ¢3/% as t approaches infinity with r fixed.
The exponent 11/24 results from (11/64)/(3/8). We have now shown that N;, has the form
we claimed.

From the restriction property, we can see that

9,0 (0)1*% 12, (o) P#] (4], (0)°/*

since the terms in brackets each represent probabilities of events. Also v (0) < cePrte)/8,
implying that |N,,| < ce'''+5)/64 The relation (9) is immediate.

9. (U0)P® < 1,

O
Notice that if r =0, vs0 = gs0 = g5 and g, 1s the identity. Hence,

Nso = C, 6275/128| ( )

P — g,(2)

which is equal to the martingale M, that we considered in the previous section.

With Lemma 5.1 behind us, we will now define two-sided radial SLFs/s:

Definition. If z,2 € JD are distinct points, then two-sided radial SLEg/3 in D starting
at (z,2) is the measure on ordered pairs of paths (v,%) such that for each s,r < oo, the
distribution of

(), 0<s <’ A0),0<r <

is given by saying that the Radon-Nikodym derivative of this distribution with respect to
that of independent radial SLE’s starting at z, 2 is Ny, /Ny, which is equal to

|3/4

A |Usr_ Asr
L (Uso)P

1E377’ g;7T(0)5/48 |g;,r( )|5/8 gs r(0)5/48 g |Z . (0)11/24.

ERS

Note that we can write

Ns,r . Ns,O Ns,r . NO,T Ns,r
NO,O B NO,O Ns,O B NO,O NO.T‘

(10)

In other words we can grow the first path and then the second or the second path then the
first and we get the same distribution. Since

3/4
2

Nso— M, = C. 6275/128| ( )

P — g,(2)

15



growing one of the paths corresponds to growing one side of two-sided SLFEy/s, which was the
topic of the previous section. Again, we can describe this in terms of the Loewner equation.

Let Usp = ¢ X UsO — X If X, and X satisty

3 Xs —XS i 3 Xs _Xs
dX, =~ cot (T) ds+dB,, dX, = cot (T) ds, (11)

then the Loewner chain driven by X, gives the two-sided SLEg/; up to time (s,0). To get
the second path we map down by ¢, and then proceed similarly, interchanging the roles of
the two paths. In this case we need to go until a time that depends on the path ~.

We will use the notation (7,%) to denote two-sided SLEjg/3 starting at (z,2). By a slight
abuse of notation, we will write just v for v[0, oo] and (v, %) for v[0, oco] U 4[0, oc]. Note that
these curves are defined modulo reparametrization.

Conditional distribution of 4 given 7y

Suppose that ¢ is large and we have generated ~[0,¢] according to the distribution of one
side of two-sided radial SLEs/3. What is the conditional distribution of 4[0,1] given this?
By (10), we can see that the Radon-Nikodym derivative of this conditional measure with
respect to that of radial SLEs/s run until time 1 is Nii/Nio, ie.,

L 90 gl (Coa)[P7® 31.4(0)*% g4, (Uro) P/ Ui [ vy, (0)172
Eyq e271/128 |g ( ) |€th _ gt(é)
Given v, we can consider three distributions of 4]0, 1]:

e radial SLEg/; in D weighted by Ny 1/N;o;

(12)

e radial SLEg; in D\ ~[0,¢] from 2 to 0;
e chordal SLEg/3 in D\ v[0,00) U {0} from 2 to {0}.

What we would like to show is that as ¢t — oo these three distributions on 4[0,1] are
asymptotically the same.

Let us first consider the second distribution. The restriction property states that the
distribution of radial SLEg/3; in D\ 7[0,#] from £ to 0 is exactly the same as that of radial
SLEg; in D from £ to 0 conditoned on the event £ = {7[0,#] N 4[0,00) = @}. From this
we see that the Radon-Nikodym derivative of the second distribution with respect to that of
radial SLEs/5 in D from 2 to 0 is given by

1{4[0,1] N v[0,#] = 0} P{3[1, 00) N ~[0,#] = 0 [ 5[0, 1]}
P{~[0.#]N 4[0,00) = 0}
which equals
L (0 19;.4(To,)P/® 11 (04 g, | (To 1)/
Et 1 A - Et 1 ~
’ 92,0(0)5/48 |9£,0( ) 7 e5t/128 |9£,0(Z)
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If we recall that v;,(0) = g;,(0)g;,(0) = e3t/8§£71(0), we can see that the quantity in (12)
equals this times

Ui = Ui

Al 27/48
9:.1(0 . .
1.1(0) Uyo— Crof

91(Ueo)**

Lemma 5.2. For every € > 0, there exists an r > 0 such that the following holds. Suppose
v :(0,1] - D4 : (0,1] — D are two simple curves with v(04),4(04) € 9D and ~v(0,1] N
4(0,1] = . Suppose |[§(¢)| > 1/4 for all t; 0 & v(0,1] and |y(1)| < r. Let g denote the unique
conformal transformation of D\ (0, 1] onto D with ¢(0) = 0,¢'(0) > 0. Let A = ¢(%(0, 1]).
Let h denote the unique conformal transformation of D\ A onto D with 2(0) = 0,4(0) > 0.

Let = = g(7(1)),w = g(3(0)), =* = h(z),w" = h(g(3(1))). Then,

L<H(0)<1+4e [M(z)]-1]<¢

|2 — w]

—1| <e.
|2 — w|

We will not give the details of this proof, but the key estimate is the Beurling estimate
(see, e.g., [4, Section 3.8]) which can be used to show that there is a ¢ such that

diam(A4) < cr'/? dist(z, A).

A similar argument with more details is given in Section 8.
The asymptotic equivalence of the second and third distributions will be discussed in
Section 8

6 Restriction property for two-sided radial SLEg/;

As one might expect, two-sided radial 5L Eg/3 satisfies the restriction property, which means
that two-sided radial SLEg/3 conditioned to stay in a subdomain of D is two-sided radial
SLEg3 in that subdomain. More precisely, the restriction property states that the condi-
tional distribution of W4(v,%) given {(v,%) N A = 0} is the same as two-sided SLEg/3 from
(Ta(e™), Ta(e)) to 0 in D, where (7,%) is a two-sided SLEg/; started at (¢'*,e') and
A e A(x)NA(2). Here we have continued to use our notation from the second section, that
is, A(x) denotes the set of A € D such that D\ A is a simply connected domain containing
the origin with dist(¢'®, A) > 0, D4 denotes D\ A, and ¥4 : D4 — D is the unique conformal
transformation with ¥ 4(0) = 0, and ¥/,(0) > 0.

In this section we prove the restriction property for two-sided radial SLEg/5. The proof
follows the same general outline as in the case of one-sided radial or chordal SLEg/3. The
main difference is that the martingale we will consider is more complicated, and hence our
calculations using It6 calculus will be more involved. The following theorem contains the
essential result for the restriction property.
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Theorem 1. Suppose z,& € R and A € A(x) N A(z). If (v,%) denotes two-sided radial
SLEg)s from (', e%) to 0, then

i@ iy [3/4
|5/8 Pale™) — Wale™)
cid _ eix :

P{(7.5) N A= 0} = W, (0)" [W)y(e") Wy ()

If x = &, this is to be interpreted as
T (0)72 [y ()2

We first discuss how this implies the restriction property. To specify the distribution
of a pair of simple, non-intersecting paths (n;,72) from (e*,e*) to 0, it suffices to give
P{(n1,n2) N K = 0} for each K € A(z1) N A(xq). Thus, to prove the restriction property
from the previous theorem, we need to show that for A € A(x1) N A(xz), then Py :=
PLUA(1,4) N K = 0] (3,5) N A = 0} is

3/4

) (13)

5/8

\II/K(O)ZB |\II/B(Z) \Iﬂlx(é)

\I/K(éz — \I/K(Z)

z

where z = U 4(¢'®) and 2 = U 4(c'?). We first note that Py is equal to

P{(v.5) N (AU T (K)) = 0}
P{(v,%) N A =0}

Since \I/AU\I,;(K) = Uk o ¥y, we obtain (13) from another application of Theorem 1.
In order to prove Theorem 1, we start with a simple lemma.

Lemma 6.1. There is a ¢ < oo such that if A, z, %, and ¥4 are as in the theorem, then

3/4
<er'l?,

|5/8 \I/A(ei””) - \I/A(eij)

el il

(02 1y [ ()

where r = inrad(D \ A4) = dist(0, A).

Proof. It f : D — f(D) is a conformal transformation with f(0) = 0, the Koebe (1/4)-
theorem and the Schwarz lemma imply that 1 < f/(0)/dist[0,9f(D)] < 4. Applying this to
f=07" gives

1
o S Wa(0) <

e

Suppose I C D and let h(A; I) denote the harmonic measure of I in D\ A from 0; in other
words, h(A; ) is the probability that a Brownian motion starting at the origin leaves D at
I. The Beurling estimate implies that there is a ¢ such that the probability that a Brownian
motion starting at 0 reaches {|z| = 1/2} without leaving D is at most ¢r'/2. The probability

18



that a Brownian motio starting at {|z| = 1/2} leaves D at I is bounded by c¢l(I) where [
denotes length. Therefore

h(A;T) < cr'/? I(I)

which implies

Z— W

‘\I/A(Z) — Wa(w) ‘ < epll2

and |0/, (2)| < cr'/2, O

The proof continues as in the one-sided case. The basic idea is to show the equality of
two random variables: the first is a martingale M, that is equal to P{(v,5) N A = 0} when
t = 0, and the second is our “martingale candidate” M;, which has initial value

3/4

|5/8 \I/A(eij) - \I/A(e”)

et — ptm

W (071 Wy (e7) Wy ()

(14)

We will think of generating (v, %) in two steps. First we obtain 4 by solving the Loewner
equation with the driving term X;, where X; is described by (11). Then we take 4 to be
chordal SLEg;3 in D\ 4. Let F; denote the filtration generated by X, and set

Mt =K [1{70A:@} ]P’{’A}/m A= @ | ’)/} | .7:,5] .
Note that My = P{(y,5)NA = @} and M, is a continuous, bounded martingale. Additionally,

lim Mt = 1{70A:@}]P’{’A}/ﬂ A=10 | ’)/}.

t—oc0

In what follows, we will define our “martingale candidate” M, which will satisfy My equal
to (14), and we will show that M, is also a continuous, bounded martingale with the same
limit at infinity as M,. This will imply that M, = M,, completing the proof. The most
tedious part of the work, which is contained in the subsection below, is the calculation to
show that M, actually is a martingale.

The martingale calculation

As usual, we begin by establishing the notation we will use. Set X, = €'® and Xo = e'®, and
let X; and X, satisfy

3 ; 3
dXt — —g I(t dt —|— dBt, dXt — g I(t dt,

where we write

X, - X
K; = cot lit t] .

2
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Recall that the Loewner equation with driving term X; generates one side of two-sided
SLEg3, and we will refer to this curve as 4. Let g, be the conformal maps associated with
this Loewner chain. That is,

o) = Sale) S,

As before, we let hy(z) = —ilog g:(e**). Then, as is discussed in Section 4.6 of [4], on the
event {7[0,t]N A = 0} we take ¥U; and @, to be conformal perturbations of the Loewner
chains with Uy = W 4. More specifically, if g; is the the conformal map from D\ ¥4 o 40, ¢]
onto I with ¢ (0) = 0 and (g;)'(0) > 0, then ¥, = gF o ¥4 0 g;' and ®;(z) = —ilog ¥;(e'?).
Finally, let )A(t* = @t(Xt) and X; = ®,(X;), and take

We will make use of the following five equations from Section 4.6 of [4]:

bl t .

2

. Gy = csc? l

. 9
Py (X:) = _gq):f/(Xt)v

. 3 . L
d(%) = < [@Q(Xt)zfxt . @;(Xt)fxt] ,

Pj(X0) = £ DYXY) [q)g(Xt)z 401(X0) 1—<I>;(Xt>2},

20)(X,)2  3®L(X,) 6
- 3T 1 . 1
(%) = § |5 N0 B0 6] - B K+ B0 6

F(0) = S, ~ 1) B(0).

Note that these differ from the results in [4] by a factor of 3/8 because of our choice of
parametrization for ~.
We can now state our martingale candidate:

e F(Xr — X7)
M, =1 oy 5(0)23 &) (XS @y (X, o
t {~[0,]lnA=0} t( ) t( t) t( t) F(Xt_Xt)

where F(z) = sin®*(2/2). Equiped with the tools of Ité calculus, we wish to show that M,
is a continuous martingale.
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We begin by considering the three derivative terms in M;. We first compute that

AW(07F] = W0 (B)(X) — 1) dt

Using the standard chain rule for functions of two variables, we obtain next that

VWY "oy Y
A2, = by AL ST

and so,

o} (X,)
. 3b 3b
_ @) [—E B(X) 67+ Gt} .
d[®(X,)*/%] = ®1(X,)%/® L (X)) G + B ala
t ¢ 128 ¢ 128

For the X; term we need to use It6’s formula, which tells us that

1

Hence,

d[®;(X,)] = [% (I:If;(())((tt)) + %(I);(Xt) [1— ®(X;)?] — %Kt (I)Q’(Xt)} dt

+3/(X,) dB,.

From another use of 1t0’s formula, we obtain

a1 = ) { | 2o - aion - K g

- () - K

8 Oy(Xy)

"
5 Y (Xy) dBt}.

Combining all of this gives that

d[T}(0)%7° ®)(X,)*/% 8 (X))

is W(0)2/3 ®(X,)%/® ®(X,)%/® times

o7 o 15 X)) 15, o, 15
_@(1 — @t(Xt) ) — 6—4_[&,5 @;(Xt) — @@t(Xt) Gt + @Gt dt
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5 @/(Xy)

8 &(Xy)

dB;.
We now turn our attention to the terms involving F(z) = sin®*(x/2). Note that

F'(z) = g cot(z/2) F(z), F"(z)= {_634 csc?(x)2) — 634} F(x).

If f(z) =1/F(z) = sin=**(z/2), then

21 9

6—46862(:1;/2) — 6_4} flx).

3
) = =2 cottafD) f(a), )= |
Let Z, = X, — X, and Z; = X; — X;. Then,

3
dZt — Z_[(t dt - dBt,

and we have

AF(2) = F(Z)dZ0 + ' (Z)

15 27 3.

where we have made use of the trig identity 1 + Ktz = ;.
_The last term we need to compute is d[F(Z;)], and to do this, we must first compute
dX* and dX*:
L . .3 .

1
AX7 = (o) dt + (X)X, + 5P (X0) df

5 3
_ |:_§ (I);/(Xt) _ g K (I);(Xt):| dt + (I);(Xt) dB;.

Therefore,

3 5 3
dzZ; = {g@;(xt)z Kj+ 2 81X + S K, (I)Q(Xt)} dt — ®)(X,) dB,,

and so,
1
d[F(Z}) = F'(Z;)dZ; + §F”(Zt*) I(X;)? dt.
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Using that 1 4 (K)? = G}, this simplifies to give

) (15 . 27 15
(27 = F(Z7) { | o G w00 = 2007 + 5 K7 3%

128
9 e e 7 3 e 7
—|—6—4 _[Xt ‘[&t @t(Xt) dt — g ‘[&t @t(Xt) dBt .

Now that we have computed d[¥}(0)2/3 &}(X,)5/8 &,(X,)*/®], d[f(Z,)], and d[F(Z;)], we
are ready to compute the drift of M; on the event that {7[0,¢] N A = 0}. We find that this
is equal to zero, as desired.

To show that M; is a continuous martingale, one must also check that the limit of M, as
t approaches t4 from below is zero, where ¢4 is the first time that v[0,¢] N A # (). We leave
this to the reader. Note that Lemma 6.1 implies that M, is bounded.

The behavior of the martingale at infinity

To finish our proof of the restriction property for two-sided radial SLFEg/3, we must show
that M, approaches 1 na=pyP{3N A =0|~} as t — co. We first note that when ¢ is large,
A has small harmonic measure as viewed from zero in the domain D\ (y[0,¢]U A), and this
implies that the harmonic measure of g;(A4) in D\ ¢:(A) is also small. Therefore, away from
g:(A), the maps ¥; and &, will be close to the identity, and so ¥/(0)%? and ®}(X,)*/® will
be close to 1. Since et will be near to g:(A), we do not have immediate control over the
derivative of @, at X;. However, the small harmonic measure of ¢;(A) does imply that &,

cannot move X; much, which gives that F(Z]) f(Z;) = %

The last step is to show that the remaining term, @;()A(t)ws, approaches P{ANA =10~}
as t — 0o. The underlying idea here is that if we take ¢ to be large and just look at the part

1s also close to 1.

of the boundary of the disk near g;(A) and ein, then our picture will look roughly like the
upper halfplane, and in this setting ®,(X;)® gives the probability that a chordal SLEg;;3

started at X; avoids g:(A). To make things more precise, we will use our result frpm Section
8 that tells us that the limit as ¢ — oo of radial SLEg/; in D\ 7[0,¢] from ¢'*° to 0 is a
chordal SLEg/s3 from ¢ to 0 in D\ 7. Note that
P{a radial SLEg/3 in D\ 4[0,1] from X £0 0 avoids A | v[0, ]}
= P{aradial SLEg/; in D from ¢X to 0 avoids g(A)}
= T;(0)°/45,(X,)/".

Since ¥i(0) is approaching 1 and 4 is precisely a chordal SLEg/3 in D\ v from %o to 0, we
have that

lim (X)) =P{ANA=0]~},
— 00

as desired.
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A connection to Brownian motion

We end our discussion by mentioning an alternate way to view two-sided radial SLEg/s
started at (1,1). We can obtain this process by taking the outer boundary of two independent
Brownian motions from 0 to 1 in I that are conditioned not to disconnect 0 from JD.

7 Two-sided chordal SLEg;

Although we have previously concerned ourselves only with the radial case, one can also
define two-sided chordal SLEg/3 and two-sided whole plane SLFEg/3. The chordal version
of this process is actually one of the SLE(8/3,p) processes, which were introduced in [6].
We will describe this connection after constructing the process and discussing the restriction
property that it satisfies. Here we follow the same general outline as our discussion of the
radial case: Given 7 and ¥, two independent chordal SLEg/3 processes, we first wish to
understand P{v(0,¢]N v(0,00) = P} as ¢t — oo. From this we obtain a martingale, M, and
weighting an SLEg;3 by M,/Mj gives one side of the two-sided chordal process. Girsanov’s
Theorem allows us to describe this process via Loewner’s equation. We finish with the
definition of the two-sided process.

Let B, and B, be two independent standard Brownian motions with By < By. Let VoA, Gt
and g; be the corresponding SLFEg/3. In other words, g; is the conformal transformation of
H\ v(0,¢] onto H such that ¢;(z) — z — 0 as z — oo. It satisfies the Loewner equation

3/4
9i(2) — B’
Here v has been parametrized so that hcap(y(0,¢]) = 3t/4, instead of 2¢. All the same holds

of 4 and ;.
By the restriction property for chordal SLEs/3, we know that

a(z) = go(2) = z. (15)

P{+(0,4]N4(0,00) = 0| 4[0. ]} = g;(Bo)*",
and therefore,
P{7(0,#]N4(0, 00) = 0} = Elg;(&)*/"].

By differentiating (15), we see that

. 15 [t ds
5/8 _
g;(BO) - eXp {_32 /0 1/;2 } 9
where Y, = gt(Bo) — B, satisfies

4
dY, = %dt — dDB;.
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We assume for ease that By = 0, and we let ¢(t,2) = E[g/(2)*/?] for > 0. Since

15 (' ds
T—-1tY, - — <t<T
or-rven{-g [ 0<is

is a martingale, It0’s formula shows that ¢ must satisfy

15
32 22

1 3
qb(tv l’) = §¢”(t7 l’) + E qb/(tv l’)

o(t, x).

One could also obtain this differential equation from the Feynman-Kac formula. If ¢ (x) =

#(1,x), then scaling implies that ¢(t,z) = ¢ (x/Vt). Letting y = x//t, we see that

15
16 y?

W(y) + (y s %) () () = 0.

We must have boundary conditions ¢(co) = 1 and (0) = 0. The solution to this initial

value problem, discussed in Appendix B.2 of [4], is ¥ (x) = 234 f(z), where

g2 2F(13/8) L2
fla)y=e"/ W@(B/&Q,x /2)

and ® denotes the confluent hypergeometric function (of the first kind). The actual expres-
sion for f is unneeded, as all we will use is that ¢o = f(0) is well-defined and non-zero. We
have now established that

Elg,(Bo)™*] = By '+~ £(Bo/ V1),
and therefore

lim #3/* P{~(0,#] N 4(0, 00) = B} = ¢o (Bo — By)*/*. (16)

t—oc0

Now we define
M, = co g\(Bo)** Y,
and a simple calculation show us that

3/4

dM, = —
Y,

M, dB;.

Equation (16) allows us to conclude that

M, = lim 3B PL{y(0,1] N 4(0,00) = 0 | F,},
— 00
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since
Lm S P{5(0,4]n 9(0, 00) = 0 | 7}
— 00
= ,(Bo)*® lim (t — )" P{gs 0 7(s,#] N gs 0 (0, 00) = 0}
= g4(Bo)** o |gs( Bo) — Ba[*!".
It is this latter view of M, that leads us to define one side of two-sided chordal SLFEg/3
as SLEg/3 weighted by M,/M,. By making use of Girsanov’s Theorem, this is the same as
saying that one side of two-sided chordal SLEy/s is the process obtained from the chordal

Loewner equation with driving term X,, where W, is a standard Brownian motion (with
respect to the probability measure induced by M;/M,) and

4 . 4
ax, = -3 g AW, X, 3/

= ———ds.
XS—XS XS_XS

Next we would like to define the general two-sided chordal process. As in the radial case,
we will do so by weighting two independent chordal SLFEg/3 processes by a two-parameter

martingale N, /Nyo. We define

Ny, = lim 3EP{1(0,4]N5(0,00) = B | Fur}.
— 00

In the lemma below, we will show that this limit exits and that N, is symmetricin s and
r.

First we introduce some notation. On the event Es, := {~(0,s]N%(0,r] = 0}, let vy, be
the unique conformal transformation of H \ (v(0,s] U 4(0,r]) such that vs,(z) — 2z — 0 as
z — 00. Let Us, = vs,(7(s)) and Uy, = v,,(3(r)), and define g,, and g, by the relations

sy = Gsr © Gr = Js,r © Js-
Lemma 7.1.

Nsy =colg,, g;,r(UO,T)5/8g;,r(US,0)5/8 Uy — Uy P4
Proof. We first write Ny, as

lim t3* B[P {~v(0,#]N4(0,00) = 0 | Fi..} | Fourl.

t—oc0

Then the restriction property implies that
P{V(Ovt] N :7(07 OO) =0 | FtJ} = 1Et,r 92770([)'0770)5/87
and

lim ]E[Et,r | Fs,r] = 1Es,r g;,r(U570)5/8'

t—oc0
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Therefore,
NSJ“ 1Es r QA; 7’([ 570)5/ tlilll t3/ E[Q; T(LAO,T)5/ | ‘: 5,79 Etﬂ’]‘
’ ’ — 00 ’

On the event E;,, we define wi s, by g1 = g sy © g5, Or equivalently by vy, = U, © Vs,
and we set n(7) = v, o y(7 + s) for 7 > 0. Notice that

E[u;,s,r(USJ)E)/S | Fs,ra Et,r]
=P{a SLEg; started at U, avoids n(0,t — s] }

by a third use of the restriction property. In order to use (16) to conclude that
lim 5 Eug , , (Us )™ | Fors Bry] = co|Usy = U, P14,

t—oc0

we must have that lim;_ .. %ﬁfﬂ]) = 1. This, however, follows from the fact that

heap(n(0,t — s]) = heap(7(0, f1UF(0, 11) —heap(4(0, 5]U(0, ]) and Tim . e2p00bs0e])
1. Thus we have established that

Noy = colp,, 9o, (Uos)*5, (Uso)** Uy — Usy PP
U

Definition. If 2 < &, then two-sided chordal SLEg; in H starting at (z,2) is the measure
on ordered pairs of paths (v, %) such that for each s,r < oo, the distribution of

YsD0<s <8 AE),0<r <

is given by saying that the Radon-Nikodym derivative of this distribution with respect to
that of independent chordal SLE’s starting at x, T is

N 3/4
Ns r & ~ Us,r - Us,r
= =1p,, 6., (Uor)*%3 . (Uso)** <7> -

N070 r—

Notice that as in the radial case,

Ns,r o Ns,O Ns,r o NO,T Ns,r
- - ’
NO,O NO,O Ns,O NO,O NO.T

which implies that we can grow some of the first curve and then some of the second, or
vice versa. Again we can make sense of what this means using Girsanov’s Theorem. Since
M;/My = N,o/Noo, we can obtain part of the first curve by running the Loewner equation
with driving term X; until time s, where Xy = =, Xy = &, and

3/4

Xt — Xt Xt - Xt
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To obtain a piece of the second curve, we map the first curve down by ¢, and then proceed
as before, switching the roles of X; and Xt

Alternately, we could create the two-sided chordal SLFEs/s process in two steps. First
grow one complete curve v as above by using the Loewner equation with driving term X,
described by (17). Then the second curve 4 is chordal SLEg3 from # to infinity in the
smaller domain D.,, where D, is the simply connected component of H \ (0, o) that has &
on the boundary. This is a consequence of the fact that

Nsr s O
lim =20 =1p,, ®(X,)%5,

0,7 T
5§— 00 O.r

where @, is the conformal perturbation of a SLFEg/3 Loewner chain with ®y a conformal
map from D, onto H. Weighting a chordal SLEg;3 by 1g,, (i);(f(r)5/8 gives SLEg/3 in the

domain D.,,.

Restriction property for two-sided chordal SLEg;

Two-sided chordal SLEg/; satisfies the restriction property: if (v,%) is two-sided chordal
SLEg;; starting at (2, ), then the conditional distribution of ® 4(v,%) given {(y,9)NA = 0}
is the same as two-sided chordal SLEg; starting at (¥ 4(z), ¥ 4(2)). Here A is a compact set
in H such that H\ A is simply connected and dist({xz, 2}, A) > 0, and ® 4 denotes a conformal
map from H \ A onto H with ®4(z) ~ z for z near infinity. The restriction property follows
from the following theorem.

Theorem 2. If (v, %) denotes two-sided chordal SLEg/s starting at (z, 1), then

(I>A(:1;)>3/4‘

X

P 4(a

?_

P{(v,9) NA=0}= (I)’A(g;)5/8 Q)/A(i,)f)/S (

If x = #, this is to be interpreted as ®4(x)?.

This theorem is proved in the same manner as Theorem 1. We use our third method
of obtaining a two-sided chordal SLEg/3: 7 is generated by the Loewner equation with
driving term X;, where X; satisfies (17), and ¥ is chordal SLEg;3 in D,. Let F; denote the
filtration generated by X;, and let ®; be the conformal perturbation of this Loewner chain
with &, = ® 4. Then, one must show that the martingale

Mt = E[l{ymA:@}P{’AYm A=0~}|F]

is equal to the “martingale candidate”

. 3/4

5 O (Xy) — (X,

M, = 1{7(0,t]ﬂA:@}(I);(Xt)5/8 (I);(Xt)E)/S t( f) t( t) )
X — X,
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This is done by showing that M; is a bounded martingale and that M, and M, have the
same limit at infinity. We omit the details.

We end by noting a connection between two-sided chordal SLEg3 and the SLE(x,p)
processes. The latter processes can be defined as solutions to the Loewner equation driven
by a random function having the appropriate drift. In particular, if (O, U;) are a pair of
processes satisfying

a —v

dt dUt — —|— dBt, Oo — Uo — 0,

dO; =
! Ot—Ut ’ Ot—Ut

then the solution to the Loewner equation with driving term U, is the SLE(2/a,2v/a)
process. See Section 9.3 of [4] for a brief introduction. Therefore, one side of two-sided
chordal SLE started from (0,0) is the same as SLE(8/3,2). This also follows from the

restriction exponent, since both processes satisfy the restriction property with exponent 2.

8 Chordal SLE as the limit of radial SLE

In the construction of two-sided SLEg/3 we used the fact that chordal SLE can be obtained
as a limit of radial SLE. We will be more precise about this here. Since it is no more
difficult, we will discuss k£ < 4 and as before we let a = 2/k.

Figure 2: A comparison of radial and chordal SLE.

Suppose 77 : (0,00) — D\ {0} is a simple curve with 7(0+) € dD \ {1} and 7(¢) — 0 as
t — oo. Define the following measures on paths (modulo reparametrization) 4 : [0, 00) — D

e 1;: Radial SLE, in D\ 7(0,¢] from 1 to 0;
e vy: Chordal SLE, in D\ (0, 00) from 1 to 0.

In this section, we will give a precise version of the result that as t — oo, vy approaches v..
By considering v(t) = —ilog¥(¢), we can can consider 14, v, as measures on paths (modulo
reparametrization) v : (0, 00) — H with v(04+) = 0. We choose the parametrization to be the
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half-plane parametrization. To be more precise, if ¢; denotes the conformal transformation
of H\ ~(0,¢] onto H with ¢:(z) — z = o(1) as z — oo, then ¢; has expansion

t
a(z) =2+ = +0(:[?), o

In this case, ¢; satisfies the chordal Loewner equation

a

9s(2) = PR A go(2) = 2, (18)

with “driving function” Us = gs(y(s)). For fixed r < oo, let 14, Voo denote these measures
on paths stopped at time r. We write n(t) = —ilog7j(t) where the branch of the logarithm
is chosen so that —27 < n(0+) < 0.

Proposition 8.1. Suppose « < 4, 1 is a curve as in the previous paragraph, and 0 < r < oo.
Let 14, Voor be 14, Vs restricted to curves up to time r, v(s),0 < s < r. There exists a
T = T(n,r) such that for t > T, 14, and v, are mutually absolutely continuous with
respect to each other. Moreover, with probability one with respect to v ,, the Radon-
Nikodym derivative has a limit of 1 as ¢ approaches infinity, i.e.

dl/tﬂo —1

lim
t—o0 Voo,r

We start by giving the basic idea for the proof. Without loss of generality we will assume
that » = 1; other values of r can be handled by scaling. Let g, denote the conformal
transformation of H\ v(0, s] onto H satisfying ¢gs(z) —z = o(1) as z — oo. To give a measure
on the maps g, (or, equivalently, on the curve v) we give a measure on the driving function
Us. As we will see, this measure fio, can be obtained by solving (18) where the driving
function U, satisfies a stochastic differential equation

dU, = R, ds + dB,. (19)

The drift term R, depends on 7 and is adapted to the Brownian motion. Similarly, the mea-
sure 14 can be obtained from the Loewner equation using the driving function Uy, satisfying

dUsy = Rs1ds + dBs = [Rsy — Rs] ds + dUs. (20)

Let W denote the standard Wiener measure, i.e., the measure on paths B,,0 < s <1 that
gives the standard Brownian motion. Then the Girsanov transformation tells us that the
measure on paths whose Radon-Nikodym deriviative with respect to W is

1 1 1
exp{/ deBs—§/ R?ds},
0 0

is the same as paths satisfying the differential equation (19). Similarly, if we choose Radon-

1 1 1
exp {/ R, dB, — 5/ th ds} ,
0 0
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the paths satisfy (20). In other words, we can define the paths on the same probability space

so that
1 1 1
vy = exp {/ (Rst — Rs)dBs — 5/ [th — Rz] dS} .
0 0

We will let T = T(n,1) = 045 where o, = sup{t : Im[n(¢)] < r}. By properties of
half-plane capacity, v(0,1] is contained in {z : Im(z) < 2y/a}. For T'(n,1) <t < oo, 144 is
supported on those paths v with v(0,1] N (0, 00) = 0 and (7(0,1] N 7(0,00) 4+ 27) = P; this
shows the mutual absolute continuity. Therefore, to prove the proposition it suffices to show
that with v ; probability one,

lim sup |Rs: — Rs| = 0. (21)

t—oc0 05551

Chordal and radial SLE in subdomains of H

Chordal SLE, from 0 to oo in H is defined by solving the Loewner equation (18) where
the driving function is Brownian motion. Radial SLE, in D is defined by solving the radial
equation. Chordal and radial SLE, in simply connected subdomains is defined by conformal
transformation. In this section we describe a different way of obtaining radial SLE, in D
and chordal and radial SLE, in subdomains by solving the Loewner equation (18) with a
driving function with appropriate drift.

For this section we let x < 4 and set « = 2/k, b = (3a — 1)/2. Suppose D C H is a
domain contaning {z € H : |z| < €} for some € and suppose w € 9D \ {0}. Chordal SLE,
from 0 to w in D is defined (modulo time reparametrization) to be the image of SLE, in H
from 0 to infinity under a conformal map taking 0 to 0 and oo to w. We can construct this
measure in a different way.

If v:(0,t] — H is a simple curve with v(04) = 0, let ¢; denote the conformal trans-
formation of H \ v(0,¢] onto H satisfying ¢:(z) — z = o(1) as z — oo. If v(0,¢] C D, let
Dy = g:(D\ v(0,¢]), Uy = g:(7(t)), ws = g¢(w). Let Fy denote a conformal transformation of
H onto D; with Fy(co) = wy, Fy(0) = U;. Let ®; = F, !, which is a conformal transformation
of Dy onto H. Then (see, e.g., [5]) chordal SLE, in D can be given by solving the chordal
Loewner equation (18) with driving function U; satisfying the SDE

/(Uh)
(UL)

dUt :b dt—|—dBt,

where By is a standard Brownian motion.

A similar construction can be given for radial SLE. Suppose §(t) denotes radial SLE,
in D and §: denotes the unique conformal transformation of D\ 4(0,¢] onto D with §,(0) =
0,9;(0) > 0. Then (under a suitable parametrization), the maps h; := —ilog g; satisfy

hu(z) = 5 cot <W%B> |
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Figure 3: The domain D; and the maps F}, ®;.

where B, is a standard Brownian motion. Let v = —ilog4(¢) where a branch of the logarithm
is chosen with log1 = 0. Note that for ¢ very small, v grows almost like chordal SLE, (at
time 0 it is growing exactly like this).

To see the difference between radial and chordal, suppose that the path has produced
v(0,t]. For radial SLE, the path has also produced all the 27 translates of v(0, ¢]. Therefore,
locally the path is now growing like chordal SLE from «(t) to oo in the domain

Dt :H\

| @k + (0, t])] :

k=—occ0

Let D, = gt(Dt), Ui = g:(7(1)). Although D, is periodic, the domain D, is not periodic. By
conformal invariance, radial SLE, is the process that acts locally like chordal SLE, from
U; to oo in the domain D;. Let ¥, denote a conformal transformation of D; onto H with
U,(o0) = oo. This transformation is not unique, but if T, is another such transformation,
then U, = ¢, + z for some ¢ > 0,z € R. If we parametrize the curve v so that g(z) =
z+ (at/z) + O(|z|7?) as z — oo, then the maps ¢, satisfy (18) where U, satisfies the SDE

dU, = b ()

= dt + dB
Ty,

and By is a standard Brownian motion. Note that ¥”/U’ is independent of the choice of U.
Now suppose that A C D is a closed set not containing 0 or 1 such that D\ A is simply

connected. Let Dy = —ilog(D\ A) which is the upper half plane with a peridoic set removed.
Suppose © = 0O4 is a conformal transformation of D onto D\ A with ©(0) = 0,0(1) =1
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Figure 4: The domains bt and D, for radial SLE.

and let §(z) = —ilog ©(e'*) which is a conformal transformation of H onto D4. The image
of radial SLE, from 1 to 0 under O is radial SLE, in D\ A from 1 to 0. Therefore radial
SLE, in D4 can be obtained as the image under € of the measure described in the previous
paragraph. By combining, we see that (the image under the logarithm map of) radial SLE,
in D\ A looks locally like chordal SLE in Dy. Let

Dt,A =Dy \

| (erk+ ’y((),t])] ,

and D; 4 = gt(DLA). Then locally (the image under the logarithm map of) radial SLE, in
D 4 looks like chordal SLE, from 0 to infinity in the domain D, 4. In particular, it satisfies
(18) with a driving process U; satisfying

T
dU, = b ‘Ifﬁ(Ut) dt + dB;,
i(lh)

t t

where \i/t is a conformal transformation of D; 4 onto H fixing infinity.
Finally, suppose that n : (0,00) — H is a simple curve with —27 < 7n(0—) < 0 and
Im[n(s)] = oo. Assume also that

1(0,00) N 27 + 7(0, 00)] = 0.

For each r > 0, let o, denote the largest s with Im(n,) < r. Let D denote the domain
bounded by [1(04),n(04) + 27],7(0,0), and [27 4 n(0,00)]. For each s < oo, let D)

denote the domain

DB =M\

|J @k +n 0, 3])] .

k=—occ0

We need to compare chordal SLE, in D from 0 to oo to radial SLE, in D, from 0 to oo.
Both processes can be considered as measures on paths v : (0,00) — H with v(0+) = 0.
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In both cases, the measures can be obtained by solving (18) with a driving function Uy; the

difference comes in the SDE that U, satisfies. Let D; = ¢:(D) and Dis) = gt(D(s)). Let

®, be a conformal transformation of D, onto H fixing infinity and let ®; , be a conformal

transformation of Dﬁ“’) onto H fixing infinity. Then the driving processes, Uy, Uy, satisty

/(T 0, (Uts)
dU, = b -t dt + dB;, dU, s, = b—2_"-
Uy ! TS (U,)

dt + dB;,

Let I, be the open interval (by + 17, by+ 27 +7r;) where by = max{z : a+ri € n(0,0,]},by =
min{xz : 2 +ri € n(0,t,]}. Let D, denote the Jordan domain bounded by I, (n(0+),n(0+) +
27),n(0,t1], 2m 4+ (0, t3) where n(t1) = by + ri,n(t2) = by + ri. Note that if s > o,, then any
curve from 0 to D \ D in D) must go through I,.

—@ L 4
o N(0+) o NOH+2m 21

Figure 5: The domain D®) is H with the solid curves removed. The domain D is the
connected component of H \ (1(0, 00) U [27 4+ n(0, 00)]) with 0 € 9D.

We will restrict to 0 < ¢ < 1. From (18) we can see that if |z| > 2y/a and t < 1, then
lg:(z) — 2| < 2a/|z|. In particular, if r > 2y/a, then ¢(I,) C {Im(z) > r — \/a}. Note
that any curve from U; to ¢,(D®) in g(D®) must go through g;(I,). We list some other
properties here.

e There exists an € > 0 such that for all 0 <t <1,

{zel:|z—-Ul <€} Caq(D,).

o There exists a ¢ < oo such that the probability that a Brownian motion starting at U;
reflected off the real axis into H reaches ¢;(I,) before leaving ¢;(D,) is bounded above
by c¢e"/2. This follows from the Beurling estimate (see, e.g., [4, Section 3.8]) and the
fact that ¢.(I,) C {Im(z) > r — \/a}.
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We point out that the constant ¢ in the second statement depends only on a while the € in
the first statement depends on ~ and 7.

To prove (21) it suffices to establish an estimate on conformal maps. We do this in the
next subsection. From (22), we can conclude that if

s > sup{s’ : Im(n(s")) < r},
then
|Rs+ — Ri| < cele /2,

This implies (21).

Lemmas about conformal maps

Here we will discuss some of the necessary estimates about conformal maps. We start with
some setup.
Suppose v',v? : (0,1] — H are simple curves satisfy

e 1 = ’yl(O—I—) <0< 72(0+) = 1,
. 20,1 N+2(0.1] = 0.
o If I = (7'(1),4%*(1)) denote the open line segment connecting the endpoints, then

In(v'(0,1]U~%*0,1]) = 0.

Let D denote the Jordan domain bounded by the curves v1(0,1],~4%(0,1], I, and [xy, x3]. Let

N

D* =D U(xy,22)U{z:7 € D},

be the extension of D by Schwarz reflection. Finally, let ¢ = ¢(4*,+?) denote the harmonic
measure of [ U I* in D* from 0. Equivalently, ¢ is the probability that a Brownian motion
starting at 0 leaves D* at I or I*. By symmetry, the probability of leaving at [ is ¢/2.

Lemma 8.2. There is a ¢ < oo such that the following holds. Assume v',~4? are given as
above. Suppose D is a simply connected domain with

DUIcDcH\(y'(0,1]U~*(0,1]).

Let F': D — p be the unique conformal transformation with F(xy) = x4, F(0) = 0, F(x3) =
x9. Suppose D™ contains the open ball of radius € about 0. Then,

[F'(0) = 1| <ecq,  |F'(0)] <celq.
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Proof. By scaling we may assume that e = 1. The Koebe-1/4 and the Bieberbach estimate
give 1/4 < F'(0) < 4,|F"(0)] < 2F'(0), so it suffices to prove the result for ¢ sufficiently
small.

The Riemann mapping theorem states that there is a unique conformal transformation
f:DNH — D with f(=1) = a1, f(0) = 0, f(1) = 22. By Schwarz reflection, this can be
extended to a conformal transformation f : D — D* where D* = DU(—xy,22)U{z :Z € D}.

Let U = f_l(D*) Then U is a simply connected subdomain of DD with the property
that the probability that a Brownian motion starting at the origin leaves U before leaving D
equals ¢. Since U is simply connected (and, hence, U is connected), we can see that there
is a ¢ such that

(1—cq)DCU.

We will assume that ¢ is sufficient small so that cg < 1/2 and write § = ¢q.

Let h : D — U be the unique conformal transformation with ~2(0) = 0,4/(0) > 0. The
Schwarz lemma tells us that (1 — ) < 2/(0) < 1. We will show that |A”(0)] < ¢d. Let
g(z) =log(h(z)/z) which is a well-defined analytic function since h'(0) > 0 and h(z) # 0 for

z # 0. The maximum principle implies that
|[Reg(z)] < sup{|Reg(z)|:|z] =1} < |log(l —d)| < ¢é.

Since Reg is a harmonic function, this implies that the partial derivatives of Reg(z) are
O(§) for |z] < 1/4. Hence, by the Cauchy-Riemann equations, |¢'(z)| = O(9) for |z| < 1/4.
Since g(0) =log h'(0) = O(9), we conclude that |g(z)| < ¢ for |z| < 1/4, and hence

|h(z) — z] < ¢d.
From this we conclude that [A"(0)| = |(h — 2)"(0)| < ¢4.

Since h is unique, we can see that A = f~! o Fo f. The chain rule gives

F'(0) = 1'(0),

G |1 = oo -2
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The Koebe-1/4 and the Bieberbach estimate give | f/(0)] > 1/4, |f”(0)] < 2 f/(0). Therefore,
FI(0) =1=0"(0) =1, [F"(0)] < 8[|A"(0)] + [R'(0)] |A'(0) — 1]].
However we have seen that
|2'(0) = 1|, ["(0)] < cq,

at least if ¢ is sufficiently small.
O

Lemma 8.3. Suppose D is as above and D, D are two domains satisfying the conditions
(on D) of the previous lemma and let ¢, € be as in that lemma. Let ® : D — H denote the
unique conformal transformation with ®(0) = 0, ®(oc0) = oo, #(0) = 1; and let & denote the
corresponding transformation for D. Then

(0) — 8"(0)] < cqe. (22)

Proof. Let F be the unique conformal transformation of D onto D with F(xy) =21, F(0) =
0, F(x2) = x3. By applying the previous lemma we cam see that

[F'(0) = 1| <cq,  [F'(0)] <celq
Let
Do F(z)
U(z) = o2 8)
=)
Then ¥ is a conformal transformation of D onto H with ¥(0) = 0, ¥/(0) = 1. Also,

F//(O)

T"(0) = "(0) F'(0) + 0}

The transformation ¥ might not equal ® since ¥(co) might not equal co. However, it is
easy to check that
Y Y
N CSL IO
U(oo) —U(z)
where ¥(o0)/[¥(o0) — ¥(z)] is interpreted to equal 1 if U(oco) = oco. Note that ¢'(0) = 1

and

v = ﬁ = PO F(0) + ?((8)) " \If(Qoo).
Therefore,
[(0) — 27(0)] < |2"(0)| |F'(0) 1] + ‘?58; ‘ + |q/<io>|'
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Applying the Bieberbach estimate to (the Schwarz reflection extension of) z — ®(ez)/e
gives |®”(0)| < 2/e. We have already bounded |F'(0) — 1| and |F”(0)|. We now need to
estimate |¥(oo)|. Note that ¥(I) is a curve in H connecting the negative real axis to the
positive real axis. Let d be the distance of this curve from the origin. Using the gambler’s
ruin estimate, it is not difficult to show that the probability that a Brownian motion starting
at 01 hits this image before leaving H is bounded below by ¢d/d. [In fact, if § < d/2, and
z € H with |z] < 2d; By is a Brownian motion starting at i0; and T' denotes the first ¢ with
B; € R, then with probability at least O(d/d) the point z will be in a bounded component
of H\ (B[0,T]U[0,d:]). In this case we must have B(0,T) intersecting the image curve.]
Note that ¥(oo) lies outside this curve so |[¥(o0)| > d. The probability starting at di that
a Brownian motion leaves D at I is bounded above by ¢(d/€)q. [Here, ¢d/e bounds the
probability to reach the sphere of radius €/2 and the Harnack inequality implies that the
probability of reaching I given this is bounded by ¢¢.] Hence, since ¥'(0) = 1, we get that

[T(o0)] > ceq™".

This establishes (22). I
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