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tIn this paper we 
onstru
t two-sided SLE8=3 and des
ribe why it is a model of thein�nite self-avoiding polygon.1 Introdu
tionThe S
hramm-Loewner evolution, SLE�, as introud
ed in [9℄, is a 
andidate for s
aling limitsof random paths at 
riti
ality in two dimensions. Di�erent values of � 
orrepond to di�erentsystems. One value of parti
ular importan
e is � = 8=3, and the 
orresponding system is
onje
tured to be the limit of the self-avoiding walk. Trying to understand this led to thede�nition of the restri
tion property [6℄, and then the (nonrigorous) identi�
ation of the limitfor self-avoiding walks.The s
aling limit 
an be 
onsidered a probability measure on 
urves 
 : [0;1)! C with
(0) = 0. The point 0 is spe
ial on the 
urve. If we look lo
ally at any other point onthe 
urve, then lo
ally we see two 
urves at that point (the \past" and the \future"). Tounderstand this, one might 
onsider the limit as r !1 of the 
urves 
(r)(s) = 
(s+r)�
(r).Assuming this limit exists, we should have a limiting measure on 
urves 
 : (�1;1)! Cwith 
(0) = 0. Equivalently, we 
an 
onsider this as a measure on pairs of noninterse
ting(one-sided) 
urves.In this paper, we 
omplete the pi
ture in [7℄ by des
ribing the measure on two-sided
urves. We 
an think of a two-sided 
urve as a simple loop that goes through both theorigin and in�nity. For this reason, we 
onje
ture that this measure is the s
aling limit forself-avoiding polygons.Let us outline this paper. We start by dis
ussing the dis
rete model, the in�nite self-avoiding polygon (ISAP). While we do not know how to prove the s
aling limit of ISAP exists,we do use the heuristi
s from this model to derive the de�ntion of the two-sided SLE8=3. Inparti
ular, our approa
h is to make pre
ise the idea that two-sided radial SLE8=3 is obtainedby taking two independent radial SLE8=3 and 
onditioning them not to interse
t. This is
onditioning on an event of probability zero, so one must take a limit. Mu
h of this paperdeals with the justifying this limit.In Se
tion 4, we 
onsider the probability that two radial SLE8=3 paths do not interse
t,one running to time 1 and the other to time t. This tends to zero as t ! 1, and wegive the asymptoti
 behavior. The 
al
ulation uses the restri
tion property whi
h redu
esthe problem to a derivative estimate for radial SLE8=3. We do this 
al
ulation in detail1Resear
h supported by National S
ien
e Foundation grant DMS-0405021.1



although the argument is similar to arguments that have appeared in previous papers. Afterdoing this, we weight a path by a 
orresponding martingale to give a pro
ess that we 
allone-side of radial two-sided SLE8=3. It is a radial analogue of the SLE8=3(�:�) pro
esses asintrodu
ed in [6℄.This de�nition is not obviously symmetri
 in the two paths. In the next se
tion, wedes
ribe an alternate de�ntion that is obviously symmetri
. This shows that the two-sidedradial SLE8=3 
an be grown in any order, that is, we grow one side for a while and then theother. The fa
t that the order does not make a di�eren
e is an example of 
ommutation.See [1℄ for a mu
h more detailed dis
ussion of 
ommutation properties of SLE� paths. InSe
tion 6, we prove the restri
tion property for two-sided radial SLE8=3.We then 
onsider the 
hordal analogues of two-sided SLE8=3. This is an example of a
hordal SLE(�; �) pro
ess and is also an example of the kind of pro
esses dis
ussed in [1℄.Our �nal se
tion gives a proof that 
hordal SLE� is the limit of radial SLE� in thefollowing sense. Suppose that � : (0;1) ! D is a simple 
urve with �(0+) 2 �D n f1g and�(t)! 0 as t!1. For every t <1, we 
an 
onsider radial SLE� from 1 to 0 in D n �(0; t℄.As t!1, this measure approa
hes that of 
hordal SLE� from 1 to 0 in D n �(0;1℄. Thisfa
t, whi
h we prove for � � 4, is used in one of our 
onstru
tions of two-sided radial SLE8=3.We give a more prei
se formulation of the limit in this se
tion.Ex
ept for the �nal se
tion, we restri
t our 
onsideration to � = 8=3 for simpli
ity. Theideas 
an be generalized to other � � 4, but in these 
ases the measure is not obtained by\two SLE� paths 
onditioned not to interse
t".We assume that the reader knows the basi
 fa
ts about 
omplex variables and 
onfor-mal transformations (S
hwarz lemma, S
hwarz re
e
tion, Koebe-(1=4) lemma, Bieberba
hestimate, Beurling estimate). See [2℄ or [4℄ for referen
es.2 The in�nite self-avoiding polygon
oIn this se
tion we will des
ribe the dis
rete model whose limit we are trying to des
ribe.A two-sided self-avoiding walk (2-SAW) inZ2 =Z+iZof lengths j; k (
entered at the origin)is a nearest neighbor path! = [!�j ; !�j+1; : : : ; !k�1; !k℄; !l 2Z2;2



with !0 = 0 and !l 6= !m;�j � l < m � k: Let Lj;k denote the set of su
h walks and writejust Lk for L0;k. Walks in Lk are 
alled (one-sided) self-avoiding walks (SAW) of length k(rooted at the origin). Note that there is a natural one-to-one 
orresponden
e between Lj;kand Lj+k. For any n � j;m � k, there is a probability measure �j;k;n;m on Lj;k given by�j;k;n;m(!) = #f~! 2 Ln;m : [~!�j ; : : : ; ~!k℄ = !g#(Ln;m) :It is 
onje
tured but has not been proven that the limits��k(!) = limm!1 �0;k;0;m(!);�j;k(!) = limn;m!1 �j;k;n;m(!);exist and the se
ond limit is independent of the way that n;m go to in�nity. Assuming this
onje
ture, the measures f��k : 0 � k < 1g and f�j;k : 0 � j; k < 1g must be 
onsistent.Hen
e we get a probability measure �� on in�nite (one-sided) SAWs! = [!0 = 0; !1; !2; : : : ℄and a probability measure � on in�nite two-sided self-avoiding walks! = [: : : ; !�2; !�1; !0 = 0; !1; !2; :::℄;with proje
tion measures ��k; �j;k. We 
all these measures the (whole plane) in�nite self-avoiding walk (ISAW) and (whole plane) in�nite self-avoiding polygon (ISAP), respe
tively.Assuming the 
onje
ture, the measure � must be stationary, i.e., if�n! = [: : : ; !n�2 � !n; !n�1 � !n; 0; !n+1 � !n; !n+2 � !n; � � � ℄;then for ea
h integer n, �n� = �. We 
an also 
onsider � as a measure on one-sided in�niteself-avoiding walks, by looking at the proje
tion! 7! [!0 = 0; !1; !2; : : : ℄:We 
all this one side of ISAP. Note that this is not the same measure as the ISAW ��.There are two important 
riti
al exponents for SAWs. While these are usually de�nedin terms of uniform measures on Ln, they 
an also be de�ned in terms of the measure �.The mean-square displa
ement exponent � is de�ned by saying that under the measure �,the expe
ted value of j!nj2 grows like n2� as n ! 1. The interse
tion exponent � (this isthe same as the exponent 
 � 1 as in [8℄) is de�ned by saying that if two one-sided walks!1 = [!10; !11; : : : ℄; !2 = [!20; !21; : : : ℄;3



are 
hosen independently using ��, then the probability thatf!11; : : : ; !1ng \ f!12; : : : ; !2ng = ;de
ays like n��. The existen
e of these exponents has not been proved but there is very strongeviden
e for the values � = 3=4; � = 11=32 (see [8℄). Combining these two 
onje
tures, we 
ansay that the probability that two independent SAWs rea
h distan
e R without interse
tingde
ays like R�11=24.We will 
onsider 
ontinuum limits of these measures. Assuming that the exponent �exists, we 
ould expe
t that we 
an s
ale the walks by n�� to get a measure on 
ontinuous
urves. There are a
tually four measure on 
ontinuous 
urves:� m�: the s
aling limit of �� whi
h gives a measure on simple 
urves 
 : [0;1)! C with
(0) = 0.� m: the s
aling limit of � whi
h gives a measure on simple 
urves 
 : (�1;1) ! Cwith 
(0) = 0. Equivalently, it 
an be 
onsidered as a measure on ordered pairs of
urves (
1; 
2) where 
j : [0;1)! C with 
j(0) = 0 and
1(0;1) \ 
2(0;1) = ;:� The marginal measure on 
1 in the measure m.� The 
onditional measure on 
2 given 
1 in m.The �rst and fourth of these measures were 
onsidered in [7℄ where it was shown that thereis only one possibility for the s
aling limit assuming that the limit exists and is 
onformallyinvariant. The fourth measure was 
onsidered �rst. Under the assumption of 
onformalinvarian
e, given 
1 we 
an map C n 
1[0;1) to the upper half-plane H mapping 0 to 0and 1 to 1. Then the stationarity property of the ISAP implies that the measure on
2, appropriately parametrized, satis�es the 
onformal Markov property. From this it wasderived that the distribution must be that of 
hordal SLE� as introdu
ed by S
hramm [9℄.The nature of the s
aling limit also implied that the limit would satisfy a 
ertain propertywhi
h was denoted the restri
tion property. In [6℄ it was shown that this implies that � mustbe 8=3. A similar argument established that the only possibility for m� is that of whole-planeSLE8=3, whi
h is really a version of radial SLE8=3.At the moment there is no proof of the existen
e of the s
aling limit or of its 
onformalinvarian
e. However, there is strong numeri
al eviden
e [3℄ that the limit of SAWs is givenby SLE8=3. Moreover, the analogues of the exponents � = 4=3; � = 11=32 
an be 
omputedfor SLE8=3 whi
h gives very strong eviden
e for their 
orre
tness.In this paper we will 
omplete the pi
ture by 
onsidering the other two measures. Thisrequires 
onsidering two SLE8=3 at one time. In summary the 
onje
tured s
aling limits ofthe four measures above are 4



� whole-plane SLE8=3, in other words, the distribution of 
[t;1) given 
[0; t℄ is radialSLE8=3.� two-sided whole-plane SLE8=3, in other words, the distribution of 
(�1;1) given
[�s; t℄ is two-sided radial SLE8=3.� one side of two-sided whole-plane SLE8=3,� 
hordal SLE8=3.3 Radial SLE8=3 and restri
tionIn this se
tion, we remind the reader of the de�nition of radial SLE� and the restri
tionproperty, whi
h SLE8=3 satis�es. The restri
tion property will be 
ru
ial in our developmentof two-sided SLE8=3. See [4℄ for more details.Let Bt be a standard Brownian motion. Then radial SLE� is the solution to the Loewnerequation with driving fun
tion p�Bt. That is to say, it is the family of 
onformal maps ~gtsolving the initial value problem�t~gt(z) = ~gt(z)eip�Bt + ~gt(z)eip�Bt � ~gt(z) ; ~g0(z) = z;for z 2 D . These maps satisfy the normalization that ~g0(0) = et. It will be 
onvenient for usto 
hange this parametrization by a fa
tor of 1=�. This is equivalent to 
onsidering solutionsto the initial value problem�tgt(z) = a2 gt(z) eiBt + gt(z)eiBt � gt(z) ; g0(z) = z; (1)for z 2 D , where a = 2=�. Here the 
onformal maps gt are normalized so that g0(0) = eat=2.Although this 
hange may make some of the exponents in our 
omputations a little lessfriendly, we prefer to work with a standard Brownian motion rather one multiplied by p�.If � � 4, then radial SLE� gives a measure on simple 
urves. The radial SLE� pathis the fun
tion 
 : [0;1) ! D with the following properties: 
(0) = eiB0; 
(0;1) �D n f0g; limt!1 
(t) = 0; and gt is the unique 
onformal transformation of D n 
[0; t℄ onto Dwith gt(0) = 0 and g0t(0) > 0. We will often refer to this path as radial SLE8=3 (starting ateiB0) rather than the family of maps gt.Simply stated, the restri
tion property says that SLE8=3 in a subdomain of D is SLE8=3in D 
onditioned to stay in the subdomain. To des
ribe this more fully, let A denote the setof A 2 D su
h that D n A is a simply 
onne
ted domain 
ontaining the origin. If x 2 R, letA(x) = Ax = fA 2 A : dist(eix; A) > 0g. For A 2 A, let DA = D nA and let 	A : DA ! Dbe the unique 
onformal transformation with 	A(0) = 0 and 	0A(0) > 0. If A 2 Ax, then	A has an analyti
 extension in a neighborhood of eix, and hen
e 	0A(eix) is well de�ned.Suppose A 2 Ax and 
 is radial SLE8=3 started at eix. On the event f
(0;1) \ A = ;g let5



�(t) = 	A Æ 
(t). Then the restri
tion property states that the 
onditional distribution of �given f
(0;1) \ A = ;g is the same (modulo time reparametrization) as radial SLE from	A(eix) to 0 in D .The following 
omputation is at the heart of the restri
tion property:Pf
[0;1)\A = ;g = j	0A(eiB0)j5=8	0A(0)5=48; (2)and we will often refer to this simply as the restri
tion property. To establish (2), one mustshow that Mt, as de�ned below, is a bounded martingale with limt!1Mt = 1f
(0;1)\A =;g: This will allow us to 
on
lude that Mt = P[
(0;1)\A = ;jFt℄, sin
e the latter is alsoa bounded martingale with the same limit at in�nity. We de�neMt = 1f
(0; t℄ \A = ;gj	0At(eiBt)j5=8	0At(0)5=48;where At = gt(A)\ D . Noti
e that M0 = j	0A(eiB0)j5=8	0A(0)5=48: For the details, see Se
tion6.5 of [4℄. In Se
tion 5, we will prove the restri
tion property for two-sided radial SLE8=3,and the proof of this will follow the same general argument.Whole-plane SLE�If D is a simply 
onne
ted domain, z 2 �D;w 2 D, then radial SLE� from z to w in D isthe 
onformal image of radial SLE� in D from 1 to 0 by the 
onformal transformation ofD onto D mapping 1 to z and 0 to w. This is 
onsidered a measure on paths modulo timereparametrization.Whole plane SLE�, 0 < � � 4, is the measure on simple 
urves 
 : [0;1) ! C with
(0) = 0 that has the property that given 
[0; t℄ the 
onditional distribution of 
(t;1) isthat of radial SLE� from 
(t) to 1 in C n 
[0; t℄. Standard results about 
onformal maps
an be used to see that this is well de�ned; see, e.g., [4, Se
tion 6.6℄.4 One side of two-sided radial SLE8=3The measure on two-sided SAWs of lengths n; n is exa
tly the same as the measure of twoindependent (one-sided) SAWs of length n 
onditioned not to interse
t. Hen
e, we 
an thinkof the in�nite ISAP as the measure on two independent ISAWs given by 
ondtioning thatthey do not interse
t. This des
ription does not make pre
ise sense sin
e this is 
onditioningon an event of probability zero. However, we 
ould hope to make rigorous sense by a limitingargument.Using this as an analogy, we will try to build up two-sided radial SLE8=3 by takingtwo (one-sided) radial SLE8=3 paths and 
onditioning them not to interse
t. Again, this is
onditioning on an event of probability zero so we must take a limiting argument. We beginour study of two-sided radial SLE8=3 by using the restri
tion property to understand theprobability that a SLE8=3 path will avoid the beginning of another, independent SLE8=3path. We will obtain a parti
ular martingale Ms, and then then we will de�ne one side of6



two-sided SLE8=3 by weighting a SLE8=3 path by Ms=M0. The pro
ess so obtained is alsoreferred to as \SLE8=3 
onditioned to avoid another SLE8=3." We 
on
lude the se
tion bydis
ussing an alternate de�nition of the pro
ess, derived using Girsanov's Theorem.Let Bt and B̂t be independent standard Brownian motions with z := eiB0 6= eiB̂0 :=ẑ, and let 
 and 
̂ denote the SLE8=3 paths generated by these Brownian motions (with
orresponding fun
tions gt and ĝt) by solving (1) (with a = 3=8). The restri
tion propertytells us that Pf
[0; t℄\ 
̂[0;1) = ; j 
[0; t℄g = e5t=128 jg0t(ẑ)j5=8:(Re
all that g0t(0) = e3t=8 and hen
e e5t=128 = g0t(0)5=48.) Hen
e,Pf
[0; t℄\ 
̂[0;1) = ;g = e5t=128 E [jg0t(ẑ)j5=8℄; (3)where the expe
tation is over the �rst Brownian motion Bt. As we wish to understand whathappens with (3) as t approa
hes in�nity, we must examine E[jg0t(ẑ)j5=8℄.Our �rst step is to introdu
e ht(z) = �i log gt(eiz). Here the bran
h of the logarithm is
hosen so that �i log eiB0 = B0. For �xed t < 1, this is well de�ned in a neighborhoodof 
[0; t℄. Note that jg0t(ẑ)j = h0t(B̂0); allowing us to study �(t; x) = E[h0t(x)5=8℄ instead.Equation (1) implies that_ht(z) = 38 
ot�ht(z)�Bt2 � ; h0(z) = z: (4)Di�erentiating this givesh0t(z) = exp�� 316 Z t0 
s
2�hs(z)�Bs2 � ds� :If we let x = B̂0 and Vt = ht(x)�Bt, then Vt satis�esdVt = 38 
ot�Vt2 � dt� dBt;and h0t(x) = exp�� 316 Z t0 
s
2�Vs2 � ds� :We will assume for ease that B0 = 0. Let Ft denote the �ltration generated by fBs : 0 �s � tg. Then if s < t, E [h0t(x)5=8 j Fs℄ = h0s(x)5=8 �(t� s; Vs):Sin
e this is a martingale, Itô's formula implies that� _�(t; x) + 12 �00(t; x) + 38 
ot�x2� �0(t; x)� 15128 
s
2 �x2� �(t; x) = 0: (5)7



We 
ould also have obtained the di�erential equation for �(t; x) by appealing to the Feynman-Ka
 formula.Let L be the di�erential operator des
ribed by (5), that isL(f) := � _f + 12 f 00 + 38 
ot �x2� f 0 � 15128 
s
2 �x2� f:To solve a di�erential equation like L(f) = 0, one often attempts to �nd a solution of theform e��tF (x); by solving an ordinary di�erential equation for F . In our 
ase, we wouldneed to solve 12 F 00(x) + 38 
ot �x2� F 0(x) + �� � 15128 
s
2 �x2�� F (x) = 0: (6)We noti
e that F (x) = 
 sin3=4(x=2);is a solution when � = 27=128.Although we now know 
� e�27t=128 sin3=4(x=2), is a solution to L(f) = 0, this 
annot beequal �(t; x) sin
e they do not have the same initial 
onditions. In parti
ular, �(0; x) = 1.We wish to 
ompare �(t; x) to this solution, however, and we will be espe
ially interested inthe behavior of these two fun
tions as t goes to in�nity. Although the 
hoi
e seems arbitraryat this point, we will take 
� = R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :In the subse
tion below, we explain how we obtained the 
onstant 
�. However, the exa
tvalue of this 
onstant will not matter for our development of two-sided SLE8=3.To show that �(t; x) � 
� e�27t=128 sin3=4(x=2) as t ! 1, we 
onstru
t fun
tions F�(t; x)and G�(t; x) as follows. To begin, for � > 0 setF�(t; x) = 
� e�27t=128 sin3=4(x=2) + e�at=128 �1 � 
� sin3=4(x=2)�+ �� �(t; x);where a > 27: ThenL(F�(x; t)) = e�at128 �a� 15 
s
2(x=2) � (a� 27)
� sin3=4(x=2)� � 15�128 
s
2(x=2);whi
h is negative for an appropriate 
hoi
e of a, su
h as a = 54. Looking at the boundary
onditions, note that F�(0; x) = � > 0, and F�(t; 0) = F�(t; 2�) > 0. Suppose that F�(t; x) < 0for some (t; x) 2 [0;1) � [0; 2�℄. Then there is some point (t0; x0) 2 [0;1) � [0; 2�℄ withF�(t0; x0) = 0 and with F�(t; x) � �(t; x) > 0 for all t < t0. It follows that we musthave _F�(t0; x0) � 0; F 0�(t0; x0) = 0, and F 00� (t0; x0) � 0. This, however, 
ontradi
ts the8



fa
t that L(F�(t0; x0)) < 0. Therefore, F� � 0; and by letting � go to zero, we have that
� e�27t=128 sin3=4(x=2) + 
 e�at=128 � �(t; x): In parti
ular, noti
e that we havelimt!1 e27t=128�(t; x) � 
� sin3=4(x=2):We also wish to obtain the opposite inequality. We 
an a

omplish this with a similarargument in whi
h we utilizeG�(t; x) = 
� e�27t=128 sin3=4(x=2) �1 + e�(a1�27)t=128�� 2
� e�a2t=128 � �� �(t; x);with a2 > a1 > 27 appropriately 
hosen so that L(G�) > 0. In this way, we obtainlimt!1 e27t=128�(t; x) = 
� sin3=4(x=2) = 2�3=4
� jeix � 1j3=4: (7)We have now established the following proposition.Proposition 4.1. Suppose 
; 
̂ are independent radial SLE8=3 
urves started at z; ẑ respe
-tively. Then, limt!1 e11t=64Pf
[0; t℄\ 
̂[0;1) = ;g = C� jz � ẑj3=4;where C� = 2�3=4
� = 2�3=4R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :Proof. Assume without loss of generality that z = 1; ẑ = eix, and as before, let �(t; x) =E[h0(x)5=8℄. Then, Pf
[0; t℄\ 
̂[0;1) = ;g = e5t=128�(t; x):The proposition then follows from (7).We 
ontinue to use the notation x = B̂0 and Vs = hs(x) � Bs, and now we wish to
onsider Ms = C� e27s=128 jg0s(eix)j5=8jeiBs � gs(eix)j3=4 = e27s=128h0s(x)5=8F (Vs);where F (x) = 
� sin3=4(x=2) satis�es (6) with � = 27=128. Using this, we 
an 
ompute thatdMs = �38 
ot�Vs2 � Ms dXs;where Xs = Bs. Therefore Ms is a martingale with jMsj � 
0 e27s=128.9



We 
laim that Ms = limt!1 e11t=64Pf
[0; t℄\ 
̂[0;1) = ; j Fsg:By using the restri
tion property, we havePf
[0; t℄ \ 
̂[0;1) = ; j Fsg= Pf
[0; s℄\ 
̂[0;1) = ; and gs Æ 
[s; t℄ \ gs Æ 
̂[0;1) = ; j Fsg= e5s=128 h0s(x)5=8Pfgs Æ 
[s; t℄ \ gs Æ 
̂[0;1) = ; j FsgProposition 4.1 implies thatlimt!1 e11(t�s)=64Pfgs Æ 
[s; t℄ \ gs Æ 
̂[0;1) = ; j Fsg = C�jeiBs � gs(eix)j;whi
h proves the 
laim.This se
ond view of Ms leads us to de�ne one side of two-sided SLE8=3, otherwise 
alledSLE8=3 
onditioned to avoid another SLE8=3, by weighting a SLE8=3 path by Ms=M0. Inparti
ular, letQ denote the probability measure on paths indu
ed by this positive martingale,and let Qs denote this measure restri
ted to Xt; 0 � t � s. Then dQs=dP =Ms=M0.By making use of Girsanov's Theorem, we obtain an alternate viewpoint of this obje
t:we 
an 
onsider one side of two-sided SLE8=3 to be the solution to the Loewner equationwhere the driving term has an appropriate drift. Girsanov's Theorem states that with respe
tto the measure Q, Ws := Xs + 38 Z s0 
ot�Vt2 � dt;is a standard Brownian motion, or in other words,dXs = �38 
ot�Vs2 � ds+ dWs:Thus one side of two-sided SLE8=3 is the pro
ess generated by the Loewner equation withdriving term Xs, where Ws is a Brownian motion,dXs = �38 
ot X̂s �Xs2 ! ds + dWs;and dX̂s = 38 
ot X̂s �Xs2 ! ds:Note that we have repla
ed hs(x) by X̂s in anti
ipation of the notation we will use in the nextse
tion, whi
h will re
e
t the fa
t that the two sides of two-sided SLE8=3 are symmetri
.10



The 
onstant 
�In this subse
tion, we brie
y des
ribe how we obtained the 
onstant 
� found in our previous
al
ulations. It arises naturally when �nding a 
ertain invariant density. The basi
 ideasused here are dis
ussed in Se
tion 1.11 of [4℄.Re
all that dVt = 38 
ot�Vt2 � dt� dBt;and h0t(x)5=8 = exp�� 15128 Z t0 
s
2(Vs=2) ds� :Let p(t; x; y) denote the transition probability density de�ned byEx [f(Vt)h0t(x)5=8℄ = Z 2�0 p(t; x; y) f(y) dy;and noti
e that for �(t; x) = Ex [h0t(x)5=8℄, we have that�(t; x) = Z 2�0 p(t; x; y) dy:There are two di�erential equations that p(t; x; y) must satisfy, one for when y is �xedand the other for x �xed. If we had started in a simpler situation and were interested inthe transition probability density for Ex [f(Vt)℄, we 
ould easily obtain the two di�erentialequations from Kolmogorov's ba
kward and forward equations. Although our situation isslightly more 
ompli
ated, it is not diÆ
ult to �nd the desired equations. We have alreadyseen that �(t; x) satis�es the di�erential equation (5), and one 
an show that p must satisfythis as well. That is, _p = 12pxx + 38 
ot(x=2) px � 15128 
s
2(x2 ) p:By 
onsidering the adjoint, we 
an �nd our se
ond di�erential equation for p:_p = 12pyy � �y [38 
ot(y=2) p℄� 15128 
s
2(y=2) p:See se
tion 1.11 of [4℄ for further details.As we did for �, we 
an solve these di�erential equations to understand the behavior ofp as t approa
hes in�nity. In parti
ular, we will �nd positive fun
tions  1 and  2 satisfyingthe ordinary di�erential equations12  001(x) + 38 
ot(x=2) 01(x) + [� � 15128 
s
2(x=2)℄ 1(x) = 0;11



12  002(y)� �y [38 
ot(y=2) 2(y)℄ + [� � 15128 
s
2(y=2)℄ 2(y) = 0;so that p(t; x; y) � 
 e��t  1(x) 2(y) as t!1. The desired solutions are 1(x) = sin3=4(x=2);  2(y) = sin9=4(y=2);with � = 27=128. We therefore getp(t; x; y) � 
1 e�27t=128 sin3=4(x=2) sin9=4(y=2); t!1: (8)We will now 
ompute the 
onstant 
1 as well as our previous 
onstant 
�. The fun
tionsin9=4(y=2) 
an be 
onsidered an invariant density in the sense thatZ 2�0 sin9=4(x=2) p(t; x; y) dx = e�27t=128 sin9=4(y=2):Plugging in (8) gives 
1 = �Z 2�0 sin3(x=2) dx��1 :Using (8) with �(t; x) = Ex [h0t(x)5=8℄ = Z 2�0 p(t; x; y) dy;gives again that �(t; x) � 
� e�27t=128 sin3=4(x=2);and here it is 
lear that 
� = R 2�0 sin9=4(x=2) dxR 2�0 sin3(x=2) dx :5 Two-sided radial SLE8=3In this se
tion we will de�ne two-sided radial SLE8=3 by weighting two independent SLE8=3paths by a two-parameter martingale Ns;r=N0;0. We will show that Ns;r is symmetri
 in sand r, and this will give 
ommutation, meaning that we 
an \grow" the two 
urves in eitherorder.We begin by establishing the notation we will use. Let 
 and 
̂ be independent radialSLE8=3 paths starting at z and ẑ with 
orresponding 
onformal maps gt and ĝt. Let Fs;r12



denote the �-algebra generated by fBt : 0 � t � sg [ fB̂t : 0 � t � rg, let Et;r denote theevent Et;r = f
[0; t℄ \ 
̂[0; r℄ = ;g;and let Et = Et;1. In Proposition 4.1 we showed thatlimt!1 e11t=64P(Et) = C� jz � ẑj3=4:On the event Es;r, we let vs;r denote the unique 
onformal transformation of D n (
(0; s℄ [
̂(0; r℄) onto D with vs;r(0) = 0 and v0s;r(0) > 0. Note that gs = vs;0 and ĝr = v0;r. For Us;r :=vs;r(
(s)) and Ûs;r := vs;r(
̂(r)), we observe that Us;0 = eiBs; Ûs;0 = gs(ẑ), U0;r = ĝr(z); andÛ0;r = eiB̂r . Finally, de�ne gs;r and ĝs;r by the relations vs;r = gs;r Æ ĝr = ĝs;r Æ gs.
U

0,0

Û0,0

U
0,r

U
0,r

^

Us,r Us,r
^

Us,0

Us,0
^

vs,r

vs,0

v
0,r g 

s,r
^

gs,rFigure 1: The maps vs;r; gs;r; ĝs;r. Note that gs = gs;0 = vs;0 and similarly ĝr = ĝ0;r = v0;r:Suppose 0 � s � t; 0 � r <1, and letNs;r := limt!1 e11t=64P(Et j Fs;r):Although it is not immediately obvious that the limit exists and that the de�nition of Ns;r issymmetri
, that is, it does not depend the way we order the two SLE8=3's, the next lemmaestablishes these fa
ts. 13



Lemma 5.1. Ns;r = C� 1Es;r g0s;r(0)5=48 jg0s;r(Û0;r)j5=8 ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8� jUs;r � Ûs;rj3=4 v0s;r(0)11=24:In parti
ular, Ns;r is a two-parameter martingale in the sense that if s � s0 and r � r0,E[Ns0 ;r0 j Fs;r℄ = Ns;r: (9)Moreover, there is a 
 su
h that for all s and r, Ns;r � 
 e11(r+s)=64.Proof. We �rst write Ns;r = limt!1 e11t=64 E[P(Et j Ft;r) j Fs;r℄The restri
tion property implies thatP[Et j Ft;r℄ = 1Et;r g0t;r(0)5=48 jg0t;r(Û0;r)j5=8;and hen
e, Ns;r = limt!1 e11t=64 E[1Et;r g0t;r(0)5=48 jg0t;r(Û0;r)j5=8 j Fs;r℄= limt!1P[Et;r j Fs;r℄ e11t=64 E[g0t;r (0)5=48 jg0t;r(Û0;r)j5=8 j Fs;r; Et;r℄:Another appli
ation of the restri
tion property giveslimt!1P[Et;r j Fs;r℄ = P[E1;r j Fs;r℄ = 1Es;r ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8:On the event Et;r, let ut;s;r = vt;r Æ v�1s;r ; so that gt;r = ut;s;r Æ gs;r. Therefore,Ns;r =1Es;r ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8 g0s;r(0)5=48 jg0s;r(Û0;r)j5=8� limt!1 e11t=64 E[u0t;s;r(0)5=48 ju0t;s;r(Ûs;r)j5=8 j Fs;r; Et;r℄:Using the restri
tion property a third time, we 
an rewrite the above expe
tation asPfa SLE8=3 path from Ûs;r to 0 avoids vs;r Æ 
[s; t℄g:If we reparametrize the 
urve vs;r Æ 
[s; � ℄ so that u0�;s;r(0) = e3�=8, we will be able to applyProposition 4.1 to obtainlim�!0 e11�=64Pfa SLE8=3 path from Ûs;r to 0 avoids vs;r Æ 
[s; � ℄g = C� jUs;r � Ûs;rj3=4:14



Thus, limt!1 e11t=64 E[u0t;s;r(0)5=48 ju0t;s;r(Ûs;r)j5=8 j Fs;r; Et;r℄= C� jUs;r � Ûs;rj3=4 limt!1 e11t=64 �u0t;r;s(0)��11=24= C� jUs;r � Ûs;rj3=4 v0s;r(0)11=24;sin
e u0t;r;s(0) = v0t;r(0)=v0s;r(0) and v0t;r(0) � g0t(0) = e3t=8 as t approa
hes in�nity with r �xed.The exponent 11=24 results from (11=64)=(3=8): We have now shown that Ns;r has the formwe 
laimed.From the restri
tion property, we 
an see that[g0s;r(0)5=48 jg0s;r(Û0;r)j5=8℄ [ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8℄ � 1;sin
e the terms in bra
kets ea
h represent probabilities of events. Also v0s;r(0) � 
 e3(r+s)=8,implying that jNs;rj � 
 e11(r+s)=64. The relation (9) is immediate.Noti
e that if r = 0, vs;0 = gs;0 = gs and ĝs;0 is the identity. Hen
e,Ns;0 = C� e27s=128 jg0s(ẑ)j5=8 jeiBs � gs(ẑ)j3=4;whi
h is equal to the martingale Ms that we 
onsidered in the previous se
tion.With Lemma 5.1 behind us, we will now de�ne two-sided radial SLE8=3:De�nition. If z; ẑ 2 �D are distin
t points, then two-sided radial SLE8=3 in D startingat (z; ẑ) is the measure on ordered pairs of paths (
; 
̂) su
h that for ea
h s; r < 1, thedistribution of 
(s0); 0 � s � s0; 
̂(r0); 0 � r � r0is given by saying that the Radon-Nikodym derivative of this distribution with respe
t tothat of independent radial SLE's starting at z; ẑ is Ns;r=N0;0, whi
h is equal to1Es;r g0s;r(0)5=48 jg0s;r(Û0;r)j5=8 ĝ0s;r(0)5=48 jĝ0s;r(Us;0)j5=8 jUs;r � Ûs;rj3=4jz � ẑj3=4 v0s;r(0)11=24:Note that we 
an write Ns;rN0;0 = Ns;0N0;0 Ns;rNs;0 = N0;rN0;0 Ns;rN0:r : (10)In other words we 
an grow the �rst path and then the se
ond or the se
ond path then the�rst and we get the same distribution. Sin
eNs;0 =Ms = C� e27s=128 jg0s(ẑ)j5=8 jeiBs � gs(ẑ)j3=4;15



growing one of the paths 
orresponds to growing one side of two-sided SLE8=3, whi
h was thetopi
 of the previous se
tion. Again, we 
an des
ribe this in terms of the Loewner equation.Let Us;0 = eiXs; Ûs;0 = eiX̂s: If Xs and X̂s satisfydXs = �38 
ot X̂s �Xs2 ! ds + dBs; dX̂s = 38 
ot X̂s �Xs2 ! ds; (11)then the Loewner 
hain driven by Xs gives the two-sided SLE8=3 up to time (s; 0). To getthe se
ond path we map down by gs and then pro
eed similarly, inter
hanging the roles ofthe two paths. In this 
ase we need to go until a time that depends on the path 
.We will use the notation (
; 
̂) to denote two-sided SLE8=3 starting at (z; ẑ). By a slightabuse of notation, we will write just 
 for 
[0;1℄ and (
; 
̂) for 
[0;1℄[ 
̂[0;1℄. Note thatthese 
urves are de�ned modulo reparametrization.Conditional distribution of 
̂ given 
Suppose that t is large and we have generated 
[0; t℄ a

ording to the distribution of oneside of two-sided radial SLE8=3. What is the 
onditional distribution of 
̂[0; 1℄ given this?By (10), we 
an see that the Radon-Nikodym derivative of this 
onditional measure withrespe
t to that of radial SLE8=3 run until time 1 is Nt;1=Nt;0, i.e.,1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8 ĝ0t;1(0)5=48 jĝ0t;1(Ut;0)j5=8 jUt;1 � Ût;1j3=4 v0t;1(0)11=24e27t=128 jg0t(ẑ)j5=8 jeiBt � gt(ẑ)j3=4; : (12)Given 
, we 
an 
onsider three distributions of 
̂[0; 1℄:� radial SLE8=3 in D weighted by Nt;1=Nt;0;� radial SLE8=3 in D n 
[0; t℄ from ẑ to 0;� 
hordal SLE8=3 in D n 
[0;1) [ f0g from ẑ to f0g.What we would like to show is that as t ! 1 these three distributions on 
̂[0; 1℄ areasymptoti
ally the same.Let us �rst 
onsider the se
ond distribution. The restri
tion property states that thedistribution of radial SLE8=3 in D n 
[0; t℄ from ẑ to 0 is exa
tly the same as that of radialSLE8=3 in D from ẑ to 0 
onditoned on the event E = f
[0; t℄ \ 
̂[0;1) = ;g. From thiswe see that the Radon-Nikodym derivative of the se
ond distribution with respe
t to that ofradial SLE8=3 in D from ẑ to 0 is given by1f
̂[0; 1℄ \ 
[0; t℄ = ;g Pf
̂[1;1) \ 
[0; t℄ = ; j 
̂[0; 1℄gPf
[0; t℄\ 
̂[0;1) = ;gwhi
h equals 1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8g0t;0(0)5=48 jg0t;0(ẑ)j5=8 = 1Et;1 g0t;1(0)5=48 jg0t;1(Û0;1)j5=8e5t=128 jg0t;0(ẑ)j5=8 :16



If we re
all that v0t;1(0) = ĝ0t;1(0) g0t;0(0) = e3t=8 ĝ0t;1(0), we 
an see that the quantity in (12)equals this times ĝ0t;1(0)27=48 jĝ0t;1(Ut;0)j5=8 jUt;1 � Ût;1j3=4jUt;0 � Ût;0j3=4 :Lemma 5.2. For every � > 0, there exists an r > 0 su
h that the following holds. Suppose
 : (0; 1℄ ! D ; 
̂ : (0; 1℄ ! D are two simple 
urves with 
(0+); 
̂(0+) 2 �D and 
(0; 1℄ \
̂(0; 1℄ = ;. Suppose j
̂(t)j � 1=4 for all t; 0 62 
(0; 1℄ and j
(1)j � r. Let g denote the unique
onformal transformation of D n 
(0; 1℄ onto D with g(0) = 0; g0(0) > 0. Let A = g(
̂(0; 1℄).Let h denote the unique 
onformal transformation of D nA onto D with h(0) = 0; h0(0) > 0.Let z = g(
(1)); w = g(
̂(0)); z� = h(z); w� = h(g(
̂(1))). Then,1 � h0(0) � 1 + �; j jh0(z)j � 1 j � �;���� jz � wjjz� � w�j � 1���� � �:We will not give the details of this proof, but the key estimate is the Beurling estimate(see, e.g., [4, Se
tion 3.8℄) whi
h 
an be used to show that there is a 
 su
h thatdiam(A) � 
 r1=2 dist(z;A):A similar argument with more details is given in Se
tion 8.The asymptoti
 equivalen
e of the se
ond and third distributions will be dis
ussed inSe
tion 86 Restri
tion property for two-sided radial SLE8=3As one might expe
t, two-sided radial SLE8=3 satis�es the restri
tion property, whi
h meansthat two-sided radial SLE8=3 
onditioned to stay in a subdomain of D is two-sided radialSLE8=3 in that subdomain. More pre
isely, the restri
tion property states that the 
ondi-tional distribution of 	A(
; 
̂) given f(
; 
̂) \A = ;g is the same as two-sided SLE8=3 from(	A(eix);	A(eix̂)) to 0 in D , where (
; 
̂) is a two-sided SLE8=3 started at (eix; eix̂) andA 2 A(x)\A(x̂). Here we have 
ontinued to use our notation from the se
ond se
tion, thatis, A(x) denotes the set of A 2 D su
h that D nA is a simply 
onne
ted domain 
ontainingthe origin with dist(eix; A) > 0; DA denotes D nA, and 	A : DA ! D is the unique 
onformaltransformation with 	A(0) = 0; and 	0A(0) > 0.In this se
tion we prove the restri
tion property for two-sided radial SLE8=3. The prooffollows the same general outline as in the 
ase of one-sided radial or 
hordal SLE8=3. Themain di�eren
e is that the martingale we will 
onsider is more 
ompli
ated, and hen
e our
al
ulations using Itô 
al
ulus will be more involved. The following theorem 
ontains theessential result for the restri
tion property. 17



Theorem 1. Suppose x; x̂ 2 R and A 2 A(x) \ A(x̂). If (
; 
̂) denotes two-sided radialSLE8=3 from (eix; eix̂) to 0, thenPf(
; 
̂) \ A = ;g = 	0A(0)2=3 j	0A(eix)	0A(eix̂)j5=8 ����	A(eix̂)�	A(eix)eix̂ � eix ����3=4 :If x = x̂, this is to be interpreted as	0A(0)2=3 j	0A(eix)j2:We �rst dis
uss how this implies the restri
tion property. To spe
ify the distributionof a pair of simple, non-interse
ting paths (�1; �2) from (ex1; ex2) to 0, it suÆ
es to givePf(�1; �2) \ K = ;g for ea
h K 2 A(x1) \ A(x2). Thus, to prove the restri
tion propertyfrom the previous theorem, we need to show that for A 2 A(x1) \ A(x2), then P0 :=Pf	A(
; 
̂) \K = ; j (
; 
̂) \A = ;g is	0K(0)2=3 j	0K(z)	0K(ẑ)j5=8 ����	K(ẑ)�	K(z)ẑ � z ����3=4 ; (13)where z = 	A(eix) and ẑ = 	A(eix̂). We �rst note that P0 is equal toPf(
; 
̂) \ (A [ 	�1A (K)) = ;gPf(
; 
̂) \A = ;g :Sin
e 	A[	�1A (K) = 	K Æ	A, we obtain (13) from another appli
ation of Theorem 1.In order to prove Theorem 1, we start with a simple lemma.Lemma 6.1. There is a 
 <1 su
h that if A;x; x̂; and 	A are as in the theorem, then	0A(0)2=3 j	0A(eix)j5=8 j	0A(eix̂)j5=8 ����	A(eix)�	A(eix̂)eix � eix̂ ����3=4 � 
 r1=3;where r = inrad(D nA) = dist(0; A):Proof. If f : D ! f(D ) is a 
onformal transformation with f(0) = 0, the Koebe (1=4)-theorem and the S
hwarz lemma imply that 1 � f 0(0)=dist[0; �f(D )℄ � 4. Applying this tof = 	�1A gives 14r � 	0A(0) � 1r :Suppose I � �D and let h(A; I) denote the harmoni
 measure of I in D nA from 0; in otherwords, h(A; I) is the probability that a Brownian motion starting at the origin leaves D atI. The Beurling estimate implies that there is a 
 su
h that the probability that a Brownianmotion starting at 0 rea
hes fjzj = 1=2g without leaving D is at most 
 r1=2. The probability18



that a Brownian motio starting at fjzj = 1=2g leaves D at I is bounded by 
 l(I) where ldenotes length. Therefore h(A; I) � 
 r1=2 l(I)whi
h implies ����	A(z)�	A(w)z � w ���� � 
 r1=2:and j	0A(z)j � 
 r1=2:The proof 
ontinues as in the one-sided 
ase. The basi
 idea is to show the equality oftwo random variables: the �rst is a martingale ~Mt that is equal to Pf(
; 
̂) \ A = ;g whent = 0, and the se
ond is our \martingale 
andidate" Mt, whi
h has initial value	0A(0)2=3 j	0A(eix)	0A(eix̂)j5=8 ����	A(eix̂)�	A(eix)eix̂ � eix ����3=4 : (14)We will think of generating (
; 
̂) in two steps. First we obtain 
 by solving the Loewnerequation with the driving term Xt, where Xt is des
ribed by (11). Then we take 
̂ to be
hordal SLE8=3 in D n 
. Let Ft denote the �ltration generated by Xt, and set~Mt := E �1f
\A=;gPf
̂ \ A = ; j 
g j Ft� :Note that ~M0 = Pf(
; 
̂)\A = ;g and ~Mt is a 
ontinuous, bounded martingale. Additionally,limt!1 ~Mt = 1f
\A=;gPf
̂ \A = ; j 
g:In what follows, we will de�ne our \martingale 
andidate" Mt; whi
h will satisfy M0 equalto (14), and we will show that Mt is also a 
ontinuous, bounded martingale with the samelimit at in�nity as ~Mt. This will imply that Mt = ~Mt, 
ompleting the proof. The mosttedious part of the work, whi
h is 
ontained in the subse
tion below, is the 
al
ulation toshow that Mt a
tually is a martingale.The martingale 
al
ulationAs usual, we begin by establishing the notation we will use. Set X0 = eix and X̂0 = eix̂, andlet Xt and X̂t satisfy dXt = �38 Kt dt+ dBt; dX̂t = 38 Kt dt;where we write Kt = 
ot"X̂t �Xt2 # :19



Re
all that the Loewner equation with driving term Xt generates one side of two-sidedSLE8=3, and we will refer to this 
urve as 
. Let gt be the 
onformal maps asso
iated withthis Loewner 
hain. That is, _gt(z) = 38 gt(z) eiXt + gt(z)eiXt � gt(z) :As before, we let ht(z) = �i log gt(eiz). Then, as is dis
ussed in Se
tion 4.6 of [4℄, on theevent f
[0; t℄ \ A = ;g we take 	t and �t to be 
onformal perturbations of the Loewner
hains with 	0 = 	A. More spe
i�
ally, if g�t is the the 
onformal map from D n	A Æ 
[0; t℄onto D with g�t (0) = 0 and (g�t )0(0) > 0, then 	t = g�t Æ	A Æ g�1t and �t(z) = �i log 	t(eiz).Finally, let X̂�t = �t(X̂t) and X�t = �t(Xt), and takeK�t = 
ot "X̂�t �X�t2 # ; Gt = 
s
2 "X̂t �Xt2 # ; G�t = 
s
2 "X̂�t �X�t2 # :We will make use of the following �ve equations from Se
tion 4.6 of [4℄:_�t(Xt) = �98�00t (Xt);_�t(X̂t) = 38 h�0t(Xt)2K�t � �0t(X̂t)Kti ;_�0t(Xt) = 38 �0t(Xt) � �00t (Xt)22�0t(Xt)2 � 4�000t (Xt)3�0t(Xt) + 1� �0t(Xt)26 � ;_�0t(X̂t) = 38 ��12 �0t(Xt)2�0t(X̂t)G�t � �00t (X̂t)Kt + 12 �0t(X̂t)Gt� ;_	0t(0) = 38(�0t(Xt)2 � 1)	0t(0):Note that these di�er from the results in [4℄ by a fa
tor of 3=8 be
ause of our 
hoi
e ofparametrization for 
.We 
an now state our martingale 
andidate:Mt := 1f
[0;t℄\A=;g	0t(0)2=3�0t(Xt)5=8�0t(X̂t)5=8 F (X̂�t �X�t )F (X̂t �Xt) ;where F (x) = sin3=4(x=2). Equiped with the tools of Itô 
al
ulus, we wish to show that Mtis a 
ontinuous martingale. 20



We begin by 
onsidering the three derivative terms in Mt. We �rst 
ompute thatd[	0t(0)2=3℄ = 14 	0t(0)2=3 (�0t(Xt)2 � 1) dt:Using the standard 
hain rule for fun
tions of two variables, we obtain next thatd[�0t(X̂t)b℄ = b�0t(X̂t)b _�0t(X̂t) dt+ �00t (X̂t) dX̂t�0t(X̂t)= �0t(X̂t)b ��3b16 �0t(Xt)2G�t + 3b16 Gt� dt;and so, d[�0t(X̂t)5=8℄ = �0t(X̂t)5=8 �� 15128 �0t(Xt)2G�t + 15128 Gt� dt:For the Xt term we need to use Itô's formula, whi
h tells us thatd[�0t(Xt)℄ = _�0t(Xt) dt+ �00t (Xt) dXt + 12�000t (Xt) dt:Hen
e, d[�0t(Xt)℄ = � 316 �00t (Xt)2�0t(Xt) + 116 �0t(Xt) [1� �0t(Xt)2℄� 38Kt�00t (Xt)� dt+�00t (Xt) dBt:From another use of Itô's formula, we obtaind[�0t(Xt)5=8℄ = �0t(Xt)5=8�� 5128 [1� �0t(Xt)2℄� 1564 Kt �00t (Xt)�0t(Xt) � dt+58 �00t (Xt)�0t(Xt) dBt� :Combining all of this gives thatd[	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8℄is 	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8 times�� 27128 (1� �0t(Xt)2) � 1564 Kt �00t (Xt)�0t(Xt) � 15128 �0t(Xt)2G�t + 15128 Gt� dt21



+58 �00t (Xt)�0t(Xt) dBt:We now turn our attention to the terms involving F (x) = sin3=4(x=2): Note thatF 0(x) = 38 
ot(x=2)F (x); F 00(x) = �� 364 
s
2(x=2) � 964� F (x):If f(x) = 1=F (x) = sin�3=4(x=2), thenf 0(x) = �38 
ot(x=2) f(x); f 00(x) = �2164 
s
2(x=2)� 964� f(x):Let Zt = X̂t �Xt; and Z�t = X̂�t �X�t . Then,dZt = 34Kt dt� dBt;and we have d[f(Zt)℄ = f 0(Zt) dZt + 12f 00(Zt) dt= f(Zt)��� 15128 Gt + 27128� dt+ 38KtdBt� ;where we have made use of the trig identity 1 +K2t = Gt:The last term we need to 
ompute is d[F (Z�t )℄, and to do this, we must �rst 
omputedX̂� and dX�: dX̂�t = _�t(X̂t) dt+ �0t(X̂t) dX̂t = 38 �0t(Ut)2K�t dt:dX�t = _�t(Xt) dt+ �0t(Xt) dXt + 12�00t (Xt) dt= ��58 �00t (Xt)� 38 Kt �0t(Xt)� dt+ �0t(Xt) dBt:Therefore, dZ�t = �38�0t(Xt)2K�t + 58 �00t (Xt) + 38 Kt �0t(Xt)� dt� �0t(Xt) dBt;and so, d[F (Z�t )℄ = F 0(Z�t ) dZ�t + 12F 00(Z�t )�0t(Xt)2 dt:22



Using that 1 + (K�t )2 = G�t , this simpli�es to gived[F (Z�t )℄ = F (Z�t ) �� 15128 G�t �0t(Xt)2 � 27128 �0t(Xt)2 + 1564 K�t �00t (Xt)+ 964 KtK�t �0t(Xt)� dt� 38 K�t �0t(Xt) dBt� :Now that we have 
omputed d[	0t(0)2=3�0t(X̂t)5=8�0t(Xt)5=8℄; d[f(Zt)℄, and d[F (Z�t )℄, weare ready to 
ompute the drift of Mt on the event that f
[0; t℄ \A = ;g. We �nd that thisis equal to zero, as desired.To show that Mt is a 
ontinuous martingale, one must also 
he
k that the limit of Mt ast approa
hes tA from below is zero, where tA is the �rst time that 
[0; t℄ \ A 6= ;. We leavethis to the reader. Note that Lemma 6.1 implies that Mt is bounded.The behavior of the martingale at in�nityTo �nish our proof of the restri
tion property for two-sided radial SLE8=3, we must showthat Mt approa
hes 1f
\A=;gPf
̂ \A = ; j 
g as t!1. We �rst note that when t is large,A has small harmoni
 measure as viewed from zero in the domain D n (
[0; t℄[A), and thisimplies that the harmoni
 measure of gt(A) in D n gt(A) is also small. Therefore, away fromgt(A), the maps 	t and �t will be 
lose to the identity, and so 	0t(0)2=3 and �0t(Xt)5=8 willbe 
lose to 1. Sin
e eiX̂t will be near to gt(A); we do not have immediate 
ontrol over thederivative of �t at X̂t. However, the small harmoni
 measure of gt(A) does imply that �t
annot move X̂t mu
h, whi
h gives that F (Z�t ) f(Zt) = F (X̂�t �X�t )F (X̂t�Xt) is also 
lose to 1.The last step is to show that the remaining term, �0t(X̂t)5=8, approa
hes Pf
̂\A = ; j 
gas t!1. The underlying idea here is that if we take t to be large and just look at the partof the boundary of the disk near gt(A) and eiX̂t, then our pi
ture will look roughly like theupper halfplane, and in this setting �0t(X̂t)5=8 gives the probability that a 
hordal SLE8=3started at X̂t avoids gt(A). To make things more pre
ise, we will use our result from Se
tion8 that tells us that the limit as t ! 1 of radial SLE8=3 in D n 
[0; t℄ from eiX̂0 to 0 is a
hordal SLE8=3 from eiX̂0 to 0 in D n 
. Note thatPfa radial SLE8=3 in D n 
[0; t℄ from eiX̂0 to 0 avoids A j 
[0; t℄g= Pfa radial SLE8=3 in D from eiX̂t to 0 avoids gt(A)g= 	0t(0)5=48�t(X̂t)5=8:Sin
e 	0t(0) is approa
hing 1 and 
̂ is pre
isely a 
hordal SLE8=3 in D n 
 from eiX̂0 to 0, wehave that limt!1�t(X̂t)5=8 = Pf
̂ \ A = ; j 
g;as desired. 23



A 
onne
tion to Brownian motionWe end our dis
ussion by mentioning an alternate way to view two-sided radial SLE8=3started at (1; 1). We 
an obtain this pro
ess by taking the outer boundary of two independentBrownian motions from 0 to 1 in D that are 
onditioned not to dis
onne
t 0 from �D .7 Two-sided 
hordal SLE8=3Although we have previously 
on
erned ourselves only with the radial 
ase, one 
an alsode�ne two-sided 
hordal SLE8=3 and two-sided whole plane SLE8=3. The 
hordal versionof this pro
ess is a
tually one of the SLE(8=3; �) pro
esses, whi
h were introdu
ed in [6℄.We will des
ribe this 
onne
tion after 
onstru
ting the pro
ess and dis
ussing the restri
tionproperty that it satis�es. Here we follow the same general outline as our dis
ussion of theradial 
ase: Given 
 and 
̂, two independent 
hordal SLE8=3 pro
esses, we �rst wish tounderstand Pf
(0; t℄\ 
(0;1) = ;g as t!1. From this we obtain a martingale, Ms, andweighting an SLE8=3 by Ms=M0 gives one side of the two-sided 
hordal pro
ess. Girsanov'sTheorem allows us to des
ribe this pro
ess via Loewner's equation. We �nish with thede�nition of the two-sided pro
ess.Let Bt and B̂t be two independent standard Brownian motions with B0 < B̂0. Let 
; 
̂; gt,and ĝt be the 
orresponding SLE8=3. In other words, gt is the 
onformal transformation ofH n 
(0; t℄ onto H su
h that gt(z)� z! 0 as z!1. It satis�es the Loewner equation_gt(z) = 3=4gt(z)�Bt ; g0(z) = z: (15)Here 
 has been parametrized so that h
ap(
(0; t℄) = 3t=4, instead of 2t: All the same holdsof 
̂ and ĝt.By the restri
tion property for 
hordal SLE8=3, we know thatPf
(0; t℄\ 
̂(0;1) = ; j 
[0; t℄g = g0t(B̂0)5=8;and therefore, Pf
(0; t℄\ 
̂(0;1) = ;g = E[g0t(x̂)5=8℄:By di�erentiating (15), we see thatg0t(B̂0)5=8 = exp��1532 Z t0 dsY 2s � ;where Yt = gt(B̂0)�Bt satis�es dYt = 3=4Yt dt� dBt:24



We assume for ease that B0 = 0, and we let �(t; x) = E[g0t(x)5=8℄ for x > 0. Sin
e�(T � t; Yt) exp��1532 Z t0 dsY 2s � ; 0 � t < Tis a martingale, Itô's formula shows that � must satisfy_�(t; x) = 12�00(t; x) + 34x �0(t; x)� 1532x2 �(t; x):One 
ould also obtain this di�erential equation from the Feynman-Ka
 formula. If  (x) =�(1; x), then s
aling implies that �(t; x) =  (x=pt). Letting y = x=pt, we see that 00(y) +�y + 32y�  0(y)� 1516 y2  (y) = 0:We must have boundary 
onditions  (1) = 1 and  (0) = 0. The solution to this initialvalue problem, dis
ussed in Appendix B.2 of [4℄, is  (x) = x3=4f(x); wheref(x) = e�x2=2 �(13=8)23=8 �(2) �(13=8; 2;x2=2)and � denotes the 
on
uent hypergeometri
 fun
tion (of the �rst kind). The a
tual expres-sion for f is unneeded, as all we will use is that 
0 = f(0) is well-de�ned and non-zero. Wehave now established that E[g0t(B̂0)5=8℄ = B̂3=40 t�3=8 f(B̂0=pt);and therefore limt!1 t3=8Pf
(0; t℄\ 
̂(0;1) = ;g = 
0 (B̂0 �B0)3=4: (16)Now we de�ne Ms := 
0 g0s(B̂0)5=8 Y 3=4s ;and a simple 
al
ulation show us thatdMs = �3=4Ys Ms dBs:Equation (16) allows us to 
on
lude thatMs = limt!1 t3=8Pf
(0; t℄\ 
̂(0;1) = ; j Fsg;25



sin
e limt!1t3=8Pf
(0; t℄\ 
̂(0;1) = ; j Fsg= g0s(B̂0)5=8 limt!1(t� s)3=8Pfgs Æ 
(s; t℄ \ gs Æ 
̂(0;1) = ;g= g0s(B̂0)5=8 
0 jgs(B̂0)�Bsj3=4:It is this latter view of Ms that leads us to de�ne one side of two-sided 
hordal SLE8=3as SLE8=3 weighted by Ms=M0. By making use of Girsanov's Theorem, this is the same assaying that one side of two-sided 
hordal SLE8=3 is the pro
ess obtained from the 
hordalLoewner equation with driving term Xs, where Ws is a standard Brownian motion (withrespe
t to the probability measure indu
ed by Ms=M0) anddXs = � 3=4X̂s �Xs ds + dWs; dX̂s = 3=4X̂s �Xs ds:Next we would like to de�ne the general two-sided 
hordal pro
ess. As in the radial 
ase,we will do so by weighting two independent 
hordal SLE8=3 pro
esses by a two-parametermartingale Ns;r=N0;0: We de�neNs;r = limt!1 t3=8Pf
(0; t℄\ 
̂(0;1) = ; j Fs;rg:In the lemma below, we will show that this limit exits and that Ns;r is symmetri
 in s andr. First we introdu
e some notation. On the event Es;r := f
(0; s℄\ 
̂(0; r℄ = ;g, let vs;r bethe unique 
onformal transformation of H n (
(0; s℄ [ 
̂(0; r℄) su
h that vs;r(z) � z ! 0 asz !1. Let Us;r = vs;r(
(s)) and Ûs;r = vs;r(
̂(r)); and de�ne gs;r and ĝs;r by the relationsvs;r = gs;r Æ ĝr = ĝs;r Æ gs.Lemma 7.1. Ns;r = 
0 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8 jÛs;r � Us;rj3=4:Proof. We �rst write Ns;r aslimt!1 t3=8 E [Pf
(0; t℄\ 
̂(0;1) = ; j Ft;rg j Fs;r℄:Then the restri
tion property implies thatPf
(0; t℄\ 
̂(0;1) = ; j Ft;rg = 1Et;r g0t;r(Û0;r)5=8;and limt!1 E[Et;r j Fs;r℄ = 1Es;r ĝ0s;r(Us;o)5=8:26



Therefore, Ns;r = 1Es;r ĝ0s;r(Us;o)5=8 limt!1 t3=8 E[g0t;r(Û0;r)5=8 j Fs;r; Et;r℄:On the event Et;r, we de�ne ut;s;r by gt;r = ut;s;r Æ gs;r, or equivalently by vt;r = ut;s;r Æ vs;r,and we set �(� ) = vs;r Æ 
(� + s) for � � 0. Noti
e thatE[u0t;s;r(Us;r)5=8 j Fs;r; Et;r℄= Pf a SLE8=3 started at Ûs;r avoids �(0; t� s℄ gby a third use of the restri
tion property. In order to use (16) to 
on
lude thatlimt!1 t3=8 E[u0t;s;r(Us;r)5=8 j Fs;r; Et;r℄ = 
0 jÛs;r � Us;rj3=4;we must have that limt!1 h
ap(�(0;t�s℄)3t=4 = 1. This, however, follows from the fa
t thath
ap(�(0; t�s℄) = h
ap(
(0; t℄[ 
̂(0; r℄)�h
ap(
(0; s℄[ 
̂(0; r℄) and limt!1 h
ap(
(0;t℄[
̂(0;r℄)3t=4 =1. Thus we have established thatNs;r = 
0 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8 jÛs;r � Us;rj3=4:De�nition. If x < x̂, then two-sided 
hordal SLE8=3 in H starting at (x; x̂) is the measureon ordered pairs of paths (
; 
̂) su
h that for ea
h s; r <1, the distribution of
(s0); 0 � s � s0; 
̂(r0); 0 � r � r0is given by saying that the Radon-Nikodym derivative of this distribution with respe
t tothat of independent 
hordal SLE's starting at x; x̂ isNs;rN0;0 = 1Es;r g0s;r(Û0;r)5=8ĝ0s;r(Us;0)5=8  Ûs;r � Us;rx̂� x !3=4 :Noti
e that as in the radial 
ase,Ns;rN0;0 = Ns;0N0;0 Ns;rNs;0 = N0;rN0;0 Ns;rN0:r ;whi
h implies that we 
an grow some of the �rst 
urve and then some of the se
ond, orvi
e versa. Again we 
an make sense of what this means using Girsanov's Theorem. Sin
eMs=M0 = Ns;0=N0;0, we 
an obtain part of the �rst 
urve by running the Loewner equationwith driving term Xt until time s, where X0 = x; X̂0 = x̂, anddXt = � 3=4X̂t �Xt dt+ dWt; dX̂t = 3=4X̂t �Xt dt: (17)27



To obtain a pie
e of the se
ond 
urve, we map the �rst 
urve down by gs and then pro
eedas before, swit
hing the roles of Xt and X̂tAlternately, we 
ould 
reate the two-sided 
hordal SLE8=3 pro
ess in two steps. Firstgrow one 
omplete 
urve 
 as above by using the Loewner equation with driving term Xtdes
ribed by (17). Then the se
ond 
urve 
̂ is 
hordal SLE8=3 from x̂ to in�nity in thesmaller domain D
, where D
 is the simply 
onne
ted 
omponent of H n 
(0;1) that has x̂on the boundary. This is a 
onsequen
e of the fa
t thatlims!1 Ns;rN0:r = 1E1;r ~�0r(X̂r)5=8;where ~�r is the 
onformal perturbation of a SLE8=3 Loewner 
hain with ~�0 a 
onformalmap from D
 onto H . Weighting a 
hordal SLE8=3 by 1E1;r ~�0r(X̂r)5=8 gives SLE8=3 in thedomain D
 .Restri
tion property for two-sided 
hordal SLE8=3Two-sided 
hordal SLE8=3 satis�es the restri
tion property: if (
; 
̂) is two-sided 
hordalSLE8=3 starting at (x; x̂), then the 
onditional distribution of �A(
; 
̂) given f(
; 
̂)\A = ;gis the same as two-sided 
hordal SLE8=3 starting at (	A(x);	A(x̂)). Here A is a 
ompa
t setin H su
h that H nA is simply 
onne
ted and dist(fx; x̂g; A) > 0, and �A denotes a 
onformalmap from H nA onto H with �A(z) � z for z near in�nity. The restri
tion property followsfrom the following theorem.Theorem 2. If (
; 
̂) denotes two-sided 
hordal SLE8=3 starting at (x; x̂), thenPf(
; 
̂) \A = ;g = �0A(x)5=8�0A(x̂)5=8��A(x̂)� �A(x)x̂� x �3=4 :If x = x̂, this is to be interpreted as �A(x)2:This theorem is proved in the same manner as Theorem 1. We use our third methodof obtaining a two-sided 
hordal SLE8=3: 
 is generated by the Loewner equation withdriving term Xt, where Xt satis�es (17), and 
̂ is 
hordal SLE8=3 in D
 . Let Ft denote the�ltration generated by Xt, and let �t be the 
onformal perturbation of this Loewner 
hainwith �0 = �A. Then, one must show that the martingale~Mt := E[1f
\A=;gPf
̂ \A = ; j 
g j Ft℄is equal to the \martingale 
andidate"Mt := 1f
(0;t℄\A=;g�0t(Xt)5=8�0t(X̂t)5=8 �t(X̂t)��t(Xt)X̂t �Xt !3=4 :28



This is done by showing that Mt is a bounded martingale and that ~Mt and Mt have thesame limit at in�nity. We omit the details.We end by noting a 
onne
tion between two-sided 
hordal SLE8=3 and the SLE(�; �)pro
esses. The latter pro
esses 
an be de�ned as solutions to the Loewner equation drivenby a random fun
tion having the appropriate drift. In parti
ular, if (Ot; Ut) are a pair ofpro
esses satisfyingdOt = aOt � Ut dt; dUt = �vOt � Ut + dBt; O0 = U0 = 0;then the solution to the Loewner equation with driving term Ut is the SLE(2=a; 2v=a)pro
ess. See Se
tion 9.3 of [4℄ for a brief introdu
tion. Therefore, one side of two-sided
hordal SLE started from (0; 0) is the same as SLE(8=3; 2): This also follows from therestri
tion exponent, sin
e both pro
esses satisfy the restri
tion property with exponent 2.8 Chordal SLE as the limit of radial SLEIn the 
onstru
tion of two-sided SLE8=3 we used the fa
t that 
hordal SLE 
an be obtainedas a limit of radial SLE. We will be more pre
ise about this here. Sin
e it is no morediÆ
ult, we will dis
uss � � 4 and as before we let a = 2=�.
(t)η∼

0 0
1 1Figure 2: A 
omparison of radial and 
hordal SLE.Suppose ~� : (0;1)! D n f0g is a simple 
urve with ~�(0+) 2 �D n f1g and ~�(t)! 0 ast!1. De�ne the following measures on paths (modulo reparametrization) ~
 : [0;1)! D :� �t: Radial SLE� in D n ~�(0; t℄ from 1 to 0;� �1: Chordal SLE� in D n ~�(0;1) from 1 to 0.In this se
tion, we will give a pre
ise version of the result that as t!1, �t approa
hes �1.By 
onsidering 
(t) = �i log ~
(t), we 
an 
an 
onsider �t; �1 as measures on paths (moduloreparametrization) 
 : (0;1)! H with 
(0+) = 0. We 
hoose the parametrization to be the29



half-plane parametrization. To be more pre
ise, if gt denotes the 
onformal transformationof H n 
(0; t℄ onto H with gt(z)� z = o(1) as z !1, then gt has expansiongt(z) = z + atz +O(jzj�2); z !1:In this 
ase, gt satis�es the 
hordal Loewner equation_gs(z) = ags(z)� Us ; g0(z) = z; (18)with \driving fun
tion" Us = gs(
(s)). For �xed r <1, let �t;r; �1;r denote these measureson paths stopped at time r. We write �(t) = �i log ~�(t) where the bran
h of the logarithmis 
hosen so that �2� < �(0+) < 0.Proposition 8.1. Suppose � � 4, � is a 
urve as in the previous paragraph, and 0 < r <1.Let �t;r; �1;r be �t; �1 restri
ted to 
urves up to time r, 
(s); 0 � s � r. There exists aT = T (�; r) su
h that for t � T , �t;r and �1;r are mutually absolutely 
ontinuous withrespe
t to ea
h other. Moreover, with probability one with respe
t to �1;r, the Radon-Nikodym derivative has a limit of 1 as t approa
hes in�nity, i.e.limt!1 d�t;rd�1;r = 1:We start by giving the basi
 idea for the proof. Without loss of generality we will assumethat r = 1; other values of r 
an be handled by s
aling. Let gs denote the 
onformaltransformation of H n
(0; s℄ onto H satisfying gs(z)� z = o(1) as z!1. To give a measureon the maps gs (or, equivalently, on the 
urve 
) we give a measure on the driving fun
tionUs. As we will see, this measure �1;r 
an be obtained by solving (18) where the drivingfun
tion Us satis�es a sto
hasti
 di�erential equationdUs = Rs ds+ dBs: (19)The drift term Rs depends on � and is adapted to the Brownian motion. Similarly, the mea-sure �t 
an be obtained from the Loewner equation using the driving fun
tion Us;t satisfyingdUs;t = Rs;t ds+ dBs = [Rs;t �Rs℄ ds+ dUs: (20)Let W denote the standard Wiener measure, i.e., the measure on paths Bs; 0 � s � 1 thatgives the standard Brownian motion. Then the Girsanov transformation tells us that themeasure on paths whose Radon-Nikodym deriviative with respe
t to W isexp�Z 10 Rs dBs � 12 Z 10 R2s ds� ;is the same as paths satisfying the di�erential equation (19). Similarly, if we 
hoose Radon-Nikodym derivative exp�Z 10 Rs;t dBs � 12 Z 10 R2s;t ds� ;30



the paths satisfy (20). In other words, we 
an de�ne the paths on the same probability spa
eso that vt = exp�Z 10 (Rs;t �Rs) dBs � 12 Z 10 [R2s;t �R2s℄ ds� :We will let T = T (�; 1) = �4pa where �r = supft : Im[�(t)℄ � rg. By properties ofhalf-plane 
apa
ity, 
(0; 1℄ is 
ontained in fz : Im(z) � 2pag. For T (�; 1) � t � 1, �1;t issupported on those paths 
 with 
(0; 1℄ \ �(0;1) = ; and (
(0; 1℄ \ �(0;1) + 2�) = ;; thisshows the mutual absolute 
ontinuity. Therefore, to prove the proposition it suÆ
es to showthat with �1;1 probability one, limt!1 sup0�s�1 jRs;t �Rsj = 0: (21)Chordal and radial SLE in subdomains of HChordal SLE� from 0 to 1 in H is de�ned by solving the Loewner equation (18) wherethe driving fun
tion is Brownian motion. Radial SLE� in D is de�ned by solving the radialequation. Chordal and radial SLE� in simply 
onne
ted subdomains is de�ned by 
onformaltransformation. In this se
tion we des
ribe a di�erent way of obtaining radial SLE� in Dand 
hordal and radial SLE� in subdomains by solving the Loewner equation (18) with adriving fun
tion with appropriate drift.For this se
tion we let � � 4 and set a = 2=�, b = (3a � 1)=2. Suppose D � H is adomain 
ontaning fz 2 H : jzj < �g for some � and suppose w 2 �D n f0g. Chordal SLE�from 0 to w in D is de�ned (modulo time reparametrization) to be the image of SLE� in Hfrom 0 to in�nity under a 
onformal map taking 0 to 0 and 1 to w. We 
an 
onstru
t thismeasure in a di�erent way.If 
 : (0; t℄ ! H is a simple 
urve with 
(0+) = 0, let gt denote the 
onformal trans-formation of H n 
(0; t℄ onto H satisfying gt(z) � z = o(1) as z ! 1. If 
(0; t℄ � D, letDt = gt(D n 
(0; t℄), Ut = gt(
(t)); wt = gt(w). Let Ft denote a 
onformal transformation ofH onto Dt with Ft(1) = wt; Ft(0) = Ut. Let �t = F�1t , whi
h is a 
onformal transformationof Dt onto H . Then (see, e.g., [5℄) 
hordal SLE� in D 
an be given by solving the 
hordalLoewner equation (18) with driving fun
tion Ut satisfying the SDEdUt = b �00t (Ut)�0t(Ut) dt+ dBt;where Bt is a standard Brownian motion.A similar 
onstru
tion 
an be given for radial SLE. Suppose ~
(t) denotes radial SLE�in D and ~gt denotes the unique 
onformal transformation of D n ~
(0; t℄ onto D with ~gt(0) =0; ~g0t(0) > 0. Then (under a suitable parametrization), the maps ht := �i log ~gt satisfy_ht(z) = a2 
ot�ht(z)�Bt2 � ;31
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Figure 3: The domain Dt and the maps Ft;�t.whereBt is a standard Brownian motion. Let 
 = �i log ~
(t) where a bran
h of the logarithmis 
hosen with log 1 = 0. Note that for t very small, 
 grows almost like 
hordal SLE� (attime 0 it is growing exa
tly like this).To see the di�eren
e between radial and 
hordal, suppose that the path has produ
ed
(0; t℄. For radial SLE, the path has also produ
ed all the 2� translates of 
(0; t℄. Therefore,lo
ally the path is now growing like 
hordal SLE from 
(t) to 1 in the domainD̂t := H n " 1[k=�1(2�k + 
(0; t℄)# :Let Dt = gt(D̂t); Ut = gt(
(t)). Although D̂t is periodi
, the domain Dt is not periodi
. By
onformal invarian
e, radial SLE� is the pro
ess that a
ts lo
ally like 
hordal SLE� fromUt to 1 in the domain Dt. Let 	t denote a 
onformal transformation of Dt onto H with	t(1) = 1. This transformation is not unique, but if ~	t is another su
h transformation,then ~	t = 
	t + x for some 
 > 0; x 2 R. If we parametrize the 
urve 
 so that gt(z) =z + (at=z) +O(jzj�2) as z !1, then the maps gt satisfy (18) where Ut satis�es the SDEdUt = b 	00t (Ut)	0t(Ut) dt+ dBt;and Bt is a standard Brownian motion. Note that 	00=	0 is independent of the 
hoi
e of 	.Now suppose that A � D is a 
losed set not 
ontaining 0 or 1 su
h that D nA is simply
onne
ted. Let DA = �i log(D nA) whi
h is the upper half plane with a peridoi
 set removed.Suppose � = �A is a 
onformal transformation of D onto D n A with �(0) = 0;�(1) = 132
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04π− 2π− 2π π4Figure 4: The domains D̂t and Dt for radial SLE.and let �(z) = �i log �(eiz) whi
h is a 
onformal transformation of H onto DA. The imageof radial SLE� from 1 to 0 under � is radial SLE� in D n A from 1 to 0. Therefore radialSLE� in DA 
an be obtained as the image under � of the measure des
ribed in the previousparagraph. By 
ombining, we see that (the image under the logarithm map of) radial SLE�in D nA looks lo
ally like 
hordal SLE in DA. LetD̂t;A = DA n " 1[k=�1(2�k + 
(0; t℄)# ;and Dt;A = gt(D̂t;A). Then lo
ally (the image under the logarithm map of) radial SLE� inDA looks like 
hordal SLE� from 0 to in�nity in the domain Dt;A. In parti
ular, it satis�es(18) with a driving pro
ess Ut satisfyingdUt = b 	̂00t (Ut)	̂0t(Ut) dt+ dBt;where 	̂t is a 
onformal transformation of Dt;A onto H �xing in�nity.Finally, suppose that � : (0;1) ! H is a simple 
urve with �2� < �(0�) < 0 andIm[�(s)℄!1. Assume also that�(0;1) \ [2� + �(0;1)℄ = ;:For ea
h r > 0, let �r denote the largest s with Im(�s) � r. Let D denote the domainbounded by [�(0+); �(0+) + 2�℄; �(0;1); and [2� + �(0;1)℄. For ea
h s < 1, let D(s)denote the domain D(s) = H n " 1[k=�1(2�k + �(0; s℄)# :We need to 
ompare 
hordal SLE� in D from 0 to 1 to radial SLE� in Ds from 0 to 1.Both pro
esses 
an be 
onsidered as measures on paths 
 : (0;1) ! H with 
(0+) = 0.33



In both 
ases, the measures 
an be obtained by solving (18) with a driving fun
tion Ut; thedi�eren
e 
omes in the SDE that Ut satis�es. Let Dt = gt(D) and D(s)t = gt(D(s)). Let�t be a 
onformal transformation of Dt onto H �xing in�nity and let �t;s be a 
onformaltransformation of D(s)t onto H �xing in�nity. Then the driving pro
esses, Ut; Ut;s satisfydUt = b �00t (Ut)�0t(Ut) dt + dBt; dUt;s = b �00t;s(Ut;s)�0t;s(Ut;s) dt+ dBt;Let Ir be the open interval (b1+ri; b2+2�+ri) where b1 = maxfx : x+ri 2 �(0; �r℄g; b2 =minfx : x+ ri 2 �(0; tr℄g. Let Dr denote the Jordan domain bounded by Ir; (�(0+); �(0+)+2�); �(0; t1℄; 2�+ �(0; t2) where �(t1) = b1+ ri; �(t2) = b2+ ri. Note that if s � �r, then any
urve from 0 to D(s) nD in D(s) must go through Ir.
η     (0+)

(s)η

π2−

η ( σr )

I r

π2η     (0+) π2+0Figure 5: The domain D(s) is H with the solid 
urves removed. The domain D is the
onne
ted 
omponent of H n (�(0;1) [ [2� + �(0;1)℄) with 0 2 �D.We will restri
t to 0 � t � 1. From (18) we 
an see that if jzj � 2pa and t � 1, thenjgt(z) � zj � 2a=jzj. In parti
ular, if r � 2pa, then gt(Ir) � fIm(z) � r � pag. Notethat any 
urve from Ut to gt(D(s)) in g(D(s)) must go through gt(Ir). We list some otherproperties here.� There exists an � > 0 su
h that for all 0 � t � 1,fz 2 H : jz � Utj < �g � gt(Dr):� There exists a 
 <1 su
h that the probability that a Brownian motion starting at Utre
e
ted o� the real axis into H rea
hes gt(Ir) before leaving gt(Dr) is bounded aboveby 
 e�r=2. This follows from the Beurling estimate (see, e.g., [4, Se
tion 3.8℄) and thefa
t that gt(Ir) � fIm(z) � r �pag. 34



We point out that the 
onstant 
 in the se
ond statement depends only on a while the � inthe �rst statement depends on 
 and �.To prove (21) it suÆ
es to establish an estimate on 
onformal maps. We do this in thenext subse
tion. From (22), we 
an 
on
lude that ifs � supfs0 : Im(�(s0)) � rg;then jRs;t �Rtj � 
 ��1 e�r=2:This implies (21).Lemmas about 
onformal mapsHere we will dis
uss some of the ne
essary estimates about 
onformal maps. We start withsome setup.Suppose 
1; 
2 : (0; 1℄! H are simple 
urves satisfy� x1 = 
1(0+) < 0 < 
2(0+) = x2� 
1(0; 1℄ \ 
2(0; 1℄ = ;.� If I = (
1(1); 
2(1)) denote the open line segment 
onne
ting the endpoints, thenI \ (
1(0; 1℄ [ 
2(0; 1℄) = ;:Let D̂ denote the Jordan domain bounded by the 
urves 
1(0; 1℄; 
2(0; 1℄; I, and [x1; x2℄. LetD̂� = D [ (x1; x2) [ fz : z 2 Dg;be the extension of D̂ by S
hwarz re
e
tion. Finally, let q = q(
1; 
2) denote the harmoni
measure of I [ I� in D̂� from 0. Equivalently, q is the probability that a Brownian motionstarting at 0 leaves D̂� at I or I�. By symmetry, the probability of leaving at I is q=2.Lemma 8.2. There is a 
 < 1 su
h that the following holds. Assume 
1; 
2 are given asabove. Suppose D is a simply 
onne
ted domain withD̂ [ I � D � H n (
1(0; 1℄ [ 
2(0; 1℄):Let F : D! D̂ be the unique 
onformal transformation with F (x1) = x1; F (0) = 0; F (x2) =x2. Suppose D̂� 
ontains the open ball of radius � about 0. Then,jF 0(0)� 1j � 
q; jF 00(0)j � 
 ��1 q:35
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fProof. By s
aling we may assume that � = 1. The Koebe-1=4 and the Bieberba
h estimategive 1=4 � F 0(0) � 4; jF 00(0)j � 2F 0(0); so it suÆ
es to prove the result for q suÆ
ientlysmall.The Riemann mapping theorem states that there is a unique 
onformal transformationf : D \ H ! D with f(�1) = x1; f(0) = 0; f(1) = x2. By S
hwarz re
e
tion, this 
an beextended to a 
onformal transformation f : D ! D� whereD� = D[(�x1; x2)[fz : z 2 Dg.Let U = f�1(D̂�). Then U is a simply 
onne
ted subdomain of D with the propertythat the probability that a Brownian motion starting at the origin leaves U before leaving Dequals q. Sin
e U is simply 
onne
ted (and, hen
e, �U is 
onne
ted), we 
an see that thereis a 
 su
h that (1 � 
 q) D � U:We will assume that q is suÆ
ient small so that 
q < 1=2 and write Æ = 
q.Let h : D ! U be the unique 
onformal transformation with h(0) = 0; h0(0) > 0. TheS
hwarz lemma tells us that (1 � Æ) � h0(0) � 1. We will show that jh00(0)j � 
 Æ. Letg(z) = log(h(z)=z) whi
h is a well-de�ned analyti
 fun
tion sin
e h0(0) > 0 and h(z) 6= 0 forz 6= 0. The maximum prin
iple implies thatjRe g(z)j � supfjRe g(z)j : jzj = 1g � j log(1� Æ)j � 
 Æ:Sin
e Re g is a harmoni
 fun
tion, this implies that the partial derivatives of Re g(z) areO(Æ) for jzj � 1=4. Hen
e, by the Cau
hy-Riemann equations, jg0(z)j = O(Æ) for jzj � 1=4.Sin
e g(0) = log h0(0) = O(Æ), we 
on
lude that jg(z)j � 
 Æ for jzj � 1=4, and hen
ejh(z)� zj � 
Æ:From this we 
on
lude that jh00(0)j = j(h� z)00(0)j � 
 Æ.Sin
e h is unique, we 
an see that h = f�1 Æ F Æ f . The 
hain rule givesF 0(0) = h0(0);F 00(0) = 1f 0(0) �h00(0)� h0(0) [h0(0)� 1℄ f 00(0)f 0(0) � :36



The Koebe-1=4 and the Bieberba
h estimate give jf 0(0)j � 1=4; jf 00(0)j � 2 f 0(0): Therefore,F 0(0) � 1 = h0(0) � 1; jF 00(0)j � 8 [jh00(0)j + jh0(0)j jh0(0)� 1j℄:However we have seen that jh0(0) � 1j; jh00(0)j � 
 q;at least if q is suÆ
iently small.Lemma 8.3. Suppose D̂ is as above and D; ~D are two domains satisfying the 
onditions(on D) of the previous lemma and let q; � be as in that lemma. Let � : D �! H denote theunique 
onformal transformation with �(0) = 0;�(1) =1;�0(0) = 1; and let ~� denote the
orresponding transformation for ~D. Thenj�00(0) � ~�00(0)j � 
 q ��1: (22)Proof. Let F be the unique 
onformal transformation of D onto ~D with F (x1) = x1; F (0) =0; F (x2) = x2. By applying the previous lemma we 
am see thatjF 0(0) � 1j � 
 q; jF 00(0)j � 
 ��1 q:Let 	(z) = ~� Æ F (z)F 0(0) :Then 	 is a 
onformal transformation of D onto H with 	(0) = 0;	0(0) = 1. Also,	00(0) = ~�00(0)F 0(0) + F 00(0)F 0(0) :The transformation 	 might not equal � sin
e 	(1) might not equal 1. However, it iseasy to 
he
k that �(z) = 	(1)	(z)	(1)�	(z) ;where 	(1)=[	(1) � 	(z)℄ is interpreted to equal 1 if 	(1) = 1. Note that �0(0) = 1and �00(0) = 	00(0) + 2	(1) = ~�00(0)F 0(0) + F 00(0)F 0(0) + 2	(1):Therefore, j�00(0) � ~�00(0)℄ � j~�00(0)j jF 0(0)� 1j+ ����F 00(0)F 0(0) ����+ 2j	(1)j :37
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00Applying the Bieberba
h estimate to (the S
hwarz re
e
tion extension of) z 7! ~�(�z)=�gives j~�00(0)j � 2=�. We have already bounded jF 0(0) � 1j and jF 00(0)j. We now need toestimate j	(1)j. Note that 	(I) is a 
urve in H 
onne
ting the negative real axis to thepositive real axis. Let d be the distan
e of this 
urve from the origin. Using the gambler'sruin estimate, it is not diÆ
ult to show that the probability that a Brownian motion startingat Æi hits this image before leaving H is bounded below by 
 Æ=d. [In fa
t, if Æ < d=2, andz 2 H with jzj � 2d; Bt is a Brownian motion starting at iÆ; and T denotes the �rst t withBt 2 R, then with probability at least O(Æ=d) the point z will be in a bounded 
omponentof H n (B[0; T ℄ [ [0; Æi℄). In this 
ase we must have B(0; T ) interse
ting the image 
urve.℄Note that 	(1) lies outside this 
urve so j	(1)j � d. The probability starting at Æi thata Brownian motion leaves D at I is bounded above by 
 (Æ=�) q: [Here, 
 Æ=� bounds theprobability to rea
h the sphere of radius �=2 and the Harna
k inequality implies that theprobability of rea
hing I given this is bounded by 
 q.℄ Hen
e, sin
e 	0(0) = 1, we get thatj	(1)j � 
 � q�1:This establishes (22).Referen
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