
Lecture 1

Vector Spaces over R

1.1 Definition

Definition 1. A vector space over R is a nonempty set V of objects,
called vectors, on which are defined two operations, called addition + and
multiplication by scalars · , satisfying the following properties:

A1 (Closure of addition)
For all u, v ∈ V, u + v is defined and u + v ∈ V .

A2 (Commutativity for addition)
u + v = v + u for all u, v ∈ V .

A3 (Associativity for addition)
u + (v + w) = (u + v) + w for all u, v, w ∈ V .

A4 (Existence of additive identity)
There exists an element ~0 such that u +~0 = u for all u ∈ V .

A5 (Existence of additive inverse)
For each u ∈ V , there exists an element -denoted by −u- such that
u + (−u) = ~0.

M1 (Closure for scalar multiplication)
For each number r ∈ R and each u ∈ V , r · u is defined and r · u ∈ V .

M2 (Multiplication by 1)
1 · u = u for all u ∈ V .
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M3 (Associativity for multiplication)
r · (s · u) = (r · s) · u for r, s ∈ R and all u ∈ V .

D1 (First distributive property)
r · (u + v) = r · u + r · v for all r ∈ R and all u, v ∈ V .

D2 (Second distributive property)
(r + s) · u = r · u + s · u for all r, s ∈ R and all u ∈ V .

Remark. The zero element ~0 is unique, i.e., if ~01, ~02 ∈ V are such that

u + ~01 = u + ~02 = u,∀u ∈ V

then ~01 = ~02.

Proof. We have ~01 = ~01 + ~02 = ~02 + ~01 = ~02

Lemma. Let u ∈ V , then 0 · u = ~0.

Proof.

u + 0 · u = 1 · u + 0 · u
= (1 + 0) · u
= 1 · u
= u

Thus ~0 = u + (−u) = (0 · u + u) + (−u)

= 0 · u + (u + (−u))

= 0 · u +~0

= 0 · u
Lemma. a) The element −u is unique.

b) −u = (−1) · u.

Proof of part (b).

u + (−1) · u = 1 · u + (−1) · u
= (1 + (−1)) · u
= 0 · u
= ~0
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1.2 Examples

Before examining the axioms in more detail, let us discuss two examples.

Example. Let V = Rn ,considered as column vectors

Rn = {




x1

x2
...

xn


 |x1, x2, . . . , xn ∈ R} Then for

u =




x1
...

xn


 , v =




y1
...

yn


 ∈ Rn and r ∈ R :

Define

u + v =




x1 + y1
...

xn + yn


 and r · u =




rx1
...

rxn




Note that the zero vector and the additive inverse of u are given by:

~0 =




0
...
0


, −u =



−x1

...
−x2




Remark. Rn can also be considered as the space of all row vectors.

Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}

The addition and scalar multiplication is again given coordinate wise

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

r · (x1, . . . , xn) = (rx1, . . . , rxn)

Example. If ~x = (2, 1, 3), ~y = (−1, 2,−2) and r = −4 find ~x + ~y and r · ~x.
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Solution.

~x + ~y = (2, 1, 3) + (−1, 2,−2)

= (2− 1, 1 + 2, 3− 2)

= (1, 3, 1)

r · ~x = −4 · (2, 1, 3) = (−8,−4,−12).

Remark.

(x1, . . . , xn) + (0, . . . , 0) = (x1 + 0, . . . , xn + 0)

= (x1, . . . , xn)

So the additive identity is ~0 = (0, . . . , 0).

Note also that

0 · (x1, . . . , xn) = (0x1, . . . , 0xn)

= (0, . . . , 0)

for all (x1, . . . , xn) ∈ Rn.

Example. Let A be the interval [0, 1) and V be the space of functions
f : A −→ R, i.e.,

V = {f : [0, 1) −→ R}
Define addition and scalar multiplication by

(f + g)(x) = f(x) + g(x)

(r · f)(x) = rf(x)

For instance, the function f(x) = x4 is an element of V and so are

g(x) = x + 2x2, h(x) = cos x, k(x) = ex

We have (f + g)(x) = x + 2x2 + x4.
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Remark. (a) The zero element is the function ~0 which associates to each x
the number 0:

~0(x) = 0 for all x ∈ [0, 1)

Proof. (f +~0)(x) = f(x) +~0(x) = f(x) + 0 = f(x).

(b) The additive inverse is the function −f : x 7→ −f(x).

Proof. (f + (−f))(x) = f(x)− f(x) = 0 for all x.

Example. Instead of A = [0, 1) we can take any set A 6= ∅, and we can replace
R by any vector space V . We set

V A = {f : A −→ V }
and set addition and scalar multiplication by

(f + g)(x) = f(x) + g(x)

(r · f)(x) = r · f(x)

Remark. (a) The zero element is the function which associates to each x
the vector ~0:

0 : x 7→ ~0

Proof

(f + 0)(x) = f(x) + 0(x)

= f(x) +~0 = f(x)

Remark.

(b) Here we prove that + is associative:

Proof. Let f, g, h ∈ V A. Then

[(f + g) + h](x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x)) associativity in V

= f(x) + (g + h)(x)

= [f + (g + h)](x)
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1.3 Exercises

Let V = R4. Evaluate the following:

a) (2,−1, 3, 1) + (3,−1, 1,−1).

b) (2, 1, 5,−1)− (3, 1, 2,−2).

c) 10 · (2, 0,−1, 1).

d) (1,−2, 3, 1) + 10 · (1,−1, 0, 1)− 3 · (0, 2, 1,−2).

e) x1 · (1, 0, 0, 0) + x2 · (0, 1, 0, 0) + x3 · (0, 0, 1, 0) + x4 · (0, 0, 0, 1).


