Lecture 2

Subspaces

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

The answer is NO.

Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the same addition and scalar multiplication as V, is a vector space if and only if the following two conditions hold:

1. $u + v \in W$ for all $u, v \in W$ (or $W + W \subseteq W$)

2. $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W$ (or $\mathbb{R}W \subseteq W$).

In this case we say that W is a *subspace* of V.

Proof. Assume that $W + W \subseteq W$ and $\mathbb{R}W \subseteq W$. To show that W is a vector space we have to show that all the 10 axioms of Definition 1.1 hold for W. But that follows because the axioms hold for V and W is a subset of V:

A1 (Commutativity of addition) For $u, v \in W$, we have u + v = v + u. This is because u, v are also in V and commutativity holds in V.

- A4 (Existence of additive identity) Take any vector $u \in W$. Then by assumption $0 \cdot u = \vec{0} \in W$. Hence $\vec{0} \in W$.
- A5 (Existence of additive inverse) If $u \in W$ then $-u = (-1) \cdot u \in W$.

One can check that the other axioms follow in the same way.

2.1 Examples

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

 $W = \{ v \in V : \underline{\text{some conditions}} \text{ on } v \}$

We will then have to show that

 $\left. \begin{array}{ll} u,v\in W & u+v \\ r\in \mathbb{R} & r\cdot u \end{array} \right\} \text{ Satisfy the <u>same conditions.} \end{array}$ </u>

2.2 Lines through the origin as subspaces of \mathbb{R}^2

Example.

$$V = \mathbb{R}^{2},$$

$$W = \{(x, y) | y = kx\} \text{ for a given } k$$

$$= \text{ line through } (0, 0) \text{ with slope } k.$$

To see that W is in fact a subspace of \mathbb{R}^2 : Let $u = (x_1, y_1), v = (x_2, y_2) \in W$. Then $y_1 = kx_1$ and $y_2 = kx_2$ and

$$u + v = (x_1 + x_2, y_1 + y_2)$$

= $(x_1 + x_2, kx_1 + kx_2)$
= $(x_1 + x_2, k(x_1 + x_2)) \in W$

Similarly, $r \cdot u = (rx_1, ry_1) = (rx_1, krx_1) \in W$

So what are the subspaces of \mathbb{R}^2 ?

- 1. $\{0\}$
- 2. Lines. But only those that contain (0,0). Why?
- 3. \mathbb{R}^2

Remark (First test). If W is a subspace, then $\vec{0} \in W$. **Thus:** If $\vec{0} \notin W$, then W is not a subspace.

This is why a line not passing through (0,0) can not be a subspace of \mathbb{R}^2 .

2.3 A subset of \mathbb{R}^2 that is not a subspace

Warning. We can not conclude from the fact that $\vec{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^2 :

$$W = \{(x, y) | x^2 - y^2 = 0\}$$

Is W a subspace of \mathbb{R}^2 ? Why?

The answer is NO.

We have (1,1) and $(1,-1) \in W$ but $(1,1) + (1,-1) = (2,0) \notin W$. i.e., W is not closed under addition.

Notice that $(0,0) \in W$ and W is closed under multiplication by scalars.

2.4 Subspaces of \mathbb{R}^3

What are the subspaces of \mathbb{R}^3 ?

- 1. $\{0\}$ and \mathbb{R}^3 .
- 2. Planes: A plane $W \subseteq \mathbb{R}^3$ is given by a normal vector (a, b, c) and its distance from (0, 0, 0) or

$$W = \{(x, y, z) | \underbrace{ax + by + cz = p}_{\text{condition on } (x, y, z)} \}$$

For W to be a subspace, (0, 0, 0) must be in W by the *first* test. Thus

$$p = a \cdot 0 + b \cdot 0 + c \cdot 0 = 0$$

or

p = 0

2.4.1 Planes containing the origin

A plane containing (0, 0, 0) is indeed a subspace of \mathbb{R}^3 .

Proof. Let (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in W$. Then

$$ax_1 + by_1 + cz_1 = 0$$

$$ax_2 + by_2 + cz_2 = 0$$

Then we have

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2) = \underbrace{(ax_1 + by_1 + cz_1)}_{0} + \underbrace{(ax_2 + by_2 + cz_2)}_{0}$$
$$= 0$$

and

$$a(rx_1) + b(ry_1) + c(rz_1) = r(ax_1 + by_1 + cz_1)$$

= 0 \Box

2.5 Summary of subspaces of \mathbb{R}^3

- 1. $\{0\}$ and \mathbb{R}^3 .
- 2. Planes containing (0, 0, 0).
- 3. Lines containing (0,0,0).(Intersection of two planes containing (0,0,0))

2.6 Exercises

Determine whether the given subset of \mathbb{R}^n is a subspace or not (Explain):

- a) $W = \{(x, y) \in \mathbb{R}^2 | xy = 0\}.$
- b) $W = \{(x, y, z) \in \mathbb{R}^3 | 3x + 2y^2 + z = 0\}.$
- c) $W = \{(x, y, z) \in \mathbb{R}^3 | 2x + 3y z = 0\}.$
- d) The set of all vectors (x_1, x_2, x_3) satisfying

$$2x_3 = x_1 - 10x_2.$$

e) The set of all vectors in \mathbb{R}^4 satisfying the system of linear equations

$$2x_1 + 3x_2 + 5x_4 = 0$$

$$x_1 + x_2 - 3x_3 = 0$$

f) The set of all points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ satisfying

$$x_1 + 2x_2 + 3x_3 + x_4 = -1.$$