Lecture 4

Linear Maps

We have all seen linear maps before. In fact, most of the maps we have been using in Calculus are linear.

4.1 Two Important Examples

4.1.1 The Integral

To integrate the function $f(x) = x^2 + 3x - \cos x$ over the interval [a, b], we first find the antiderivative of x^2 , that is $\frac{1}{3}x^3$, then the antiderivative of x, which is $\frac{1}{2}x^2$, and then multiply that by 3 to get $\frac{3}{2}x^2$. Finally, we find the antiderivative of $\cos x$, which is $\sin x$, and then multiply that by -1 to get $-\sin x$. To finish the problem we insert the endpoints. Thus,

$$\int_{-1}^{1} x^{2} + 3x - \cos x \, dx = \int_{-1}^{1} x^{2} \, dx + 3 \int_{-1}^{1} x \, dx$$
$$- \int_{-1}^{1} \cos x \, dx$$
$$= \left[\frac{1}{3}x^{3}\right]_{-1}^{1} + \left[\frac{3}{2}x^{2}\right]_{-1}^{1} - [\sin x]_{-1}^{1}$$
$$= \frac{2}{3} - \sin 1 + \sin(-1).$$

What we have used is the fact that the integral is a linear map $\mathcal{C}([a,b]) \longrightarrow \mathbb{R}$ and that

$$\int_{a}^{b} rf(x) + sg(x) \, dx = r \int_{a}^{b} f(x) \, dx + s \int_{a}^{b} g(x) \, dx.$$

4.1.2 The Derivative

Another example is differentiation Df = f'. To differentiate the function $f(x) = x^4 - 3x + e^x - \cos x$, we first differentiate each term of the function and then add:

$$D(x^{4} - 3x + e^{x} - \cos x) = Dx^{4} - 3Dx + De^{x}$$

-D\cos x
= 4x^{3} - 3 + e^{x} + \sin x.

Definition. Let V and W be two vector spaces. A map $T: V \longrightarrow W$ is said to be linear if for all $v, u \in V$ and all $r, s \in \mathbb{R}$ we have:

$$T(rv + su) = rT(v) + sT(u).$$

Remark: This can also be written by using two equations:

$$T(v+u) = T(v) + T(u)$$
$$T(rv) = rT(v).$$

Lemma. Suppose that $T: V \longrightarrow W$ is linear. Then $T(\vec{0}) = \vec{0}$.

Proof. We can write $\vec{0} = 0v$, where v is any vector in V. But then $T(\vec{0}) = T(0v) = 0T(v) = 0$

4.2 Linear Maps from \mathbb{R}^n to \mathbb{R}^m

Example. Let us find all the linear maps from $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$. Any arbitrary vector $(x_1, x_2) \in \mathbb{R}^2$ can be written as:

$$(x_1, x_2) = x_1(1, 0) + x_2(0, 1).$$

Hence,

$$T(x_1, x_2) = x_1 T(1, 0) + x_2 T(0, 1)$$

Write T(1, 0) and T(0, 1) as:

$$T(1,0) = (a_{11}, a_{12}), \quad T(0,1) = (a_{21}, a_{22}), \text{ where } a_{ij} \in \mathbb{R}.$$

$$T(x_1, x_2) = x_1(a_{11}, a_{12}) + x_2(a_{21}, a_{22})$$

= $(x_1a_{11} + x_2a_{21}, x_1a_{12} + x_2a_{22})$
= $(x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Thus, all the information about T is given by the matrix:

 $\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right).$

Example. Next, let us find all the linear maps $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$. As before we write $(x_1, x_2, x_3) \in \mathbb{R}^3$ as:

$$(x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1)$$

where,

$$T(1,0,0) = (a_{11}, a_{12}, a_{13})$$

$$T(0,1,0) = (a_{21}, a_{22}, a_{23})$$

$$T(0,0,1) = (a_{31}, a_{32}, a_{33}).$$

Then,

$$T(x_1, x_2, x_3) = x_1(a_{11}, a_{12}, a_{13}) + x_2(a_{21}, a_{22}, a_{23}) + x_3(a_{31}, a_{32}, a_{33}) = (x_1a_{11} + x_2a_{21} + x_3a_{31}, x_1a_{12} + x_2a_{22} + x_3a_{32}, x_1a_{13} + x_2a_{23} + x_3a_{33}) = (x_1, x_2, x_3) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Example. All the linear maps from $\mathbb{R}^3 \longrightarrow \mathbb{R}$. Notice that \mathbb{R} is also a vector space, so we can consider all the linear maps \mathbb{R}^n to \mathbb{R} . We have :

$$T(x_1, x_2, ..., x_n) = x_1 T(1, 0, ..., 0) + x_2 T(0, 1, ..., 0)$$
$$+ ... + x_n T(0, 0, ..., 1)$$
$$= x_1 a_1 + x_2 a_2 + ... + x_n a_n$$

where,

$$T(1, 0, ..., 0) = a_1, T(0, 1, ..., 0) = a_2, ..., T(0, 0, ..., 1) = a_n.$$

4.2.1 Lemma

Lemma. A map $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is linear if and only if there exists numbers $a_{ij}, i = 1, ..., n, j = 1, ..., m$, such that:

$$T(x_1, x_2, ..., x_n) = (x_1 a_{11} + x_2 a_{21} + ... + x_n a_{n1}, ..., x_1 a_{1m} + x_2 a_{2m} + ... + x_n a_{nm})$$

This can also be written as:

$$T(x_1, x_2, \dots, x_n) = \left(\sum_{i=1}^n x_i a_{i1}, \sum_{i=1}^n x_i a_{i2}, \sum_{i=1}^n x_i a_{im}\right)$$

or by using matrix multiplication:

$$T(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ & & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

4.2.2 A Counterexample

Example. The map T(x, y, z) = (2x + 3xy, z + y) is <u>not</u> linear because of the factor xy. Notice that:

$$T(1,1,0) = (5,0)$$

but

$$T(2(1,1,0)) = T(2,2,0) = (16,0)$$

and

$$2T(1,1,0) = (10,0) \neq (16,0)$$

4.2.3 Examples

Example. Evaluate the given following maps at a given point:

$$T(x,y) = (3x+y,3y), \quad (x,y) = (1,-1)$$

$$T(1,-1) = (3 \cdot 1 - 1, 3(-1)) = (2,-3)$$

$$T(x, y, z) = (2x - y + 3z, 2x + z), \quad (x, z, y) = (2, -1, 1)$$

$$T(2, -1, 1) = (4 + 1 + 3, 4 + 1) = (8, 5)$$

4.3. KERNEL

Example. Some examples involving differentiation and integration:

$$D(3x^2 + 4x - 1) = 6x + 4$$

$$\int_{1}^{2} x^{2} - e^{x} dx = \left[\frac{1}{3}x^{3} - e^{x}\right]_{1}^{2}$$
$$= \frac{8}{3} - e^{2} - \frac{1}{3} + e$$
$$= \frac{7}{3} - e^{2} + e$$

4.3 Kernel

Definition. Let V and W be two vector spaces and $T: V \longrightarrow W$ a linear map.

- A1 The set $Ker(T) = \{v \in V : T(v) = 0\}$ is called the **kernel** of T.
- A2 The set $Im(T) = \{w \in W : \text{there exists } av \in V : T(v) = w\}$ is called the **image** of T.

Remark: Notice that $Ker(T) \subseteq V$ and $Im(T) \subseteq W$.

Theorem. The kernel of T is a vector space.

Proof. Let $u, v \in Ker(T)$ and $r, s \in \mathbb{R}$ We have to show that $ru + sv \in Ker(T)$. Now, $u, v \in Ker(T)$ if and only if T(u) = T(v) = 0. Hence,

$$T(ru + sv) = rT(u) + sT(v) \quad (Tis linear)$$

= $r \cdot 0 + s \cdot 0 \quad (u, v \in Ker(T))$
= 0

This shows that $ru + sv \in Ker(T)$.

Remark: Let $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the map:

$$T(x,y) = (x^2 + y, x + y).$$

Then,

$$T(1,-1) = (1-1,1-1) = (0,0).$$

But $T(2(1,-1)) = T(2,-2) = (4-2,2-2) = (2,0) \neq (0,0).$

So if T is not linear, then the set $u \in V : T(u) = 0$ is in general no

So if T is <u>not</u> linear, then the set $v \in V : T(v) = 0$ is in general <u>not</u> a vector space.

Example. Let $\mathbb{R}^2 \longrightarrow \mathbb{R}$ be the map: T(x, y) = 2x - y. Describe the kernel of T. We know that (x, y) is in the kernel of T if and only if T(x, y) = 2x - y = 0. Hence, y = 2x. Thus, the kernel of T is a line through (0, 0) with slope 2.

Example. Let $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the map: T(x, y, z) = (2x - 3y + z, x + 2y - z). Describe the kernel of T.

We have that $(x, y, z) \in Ker(T)$ if and only if

$$2x - 3y + z = 0$$
 and $x + 2y - z = 0$.

The equations describe planes through (0,0,0) with normal vectors (2,-3,1) and (1,2,-1) respectively. The normal vectors are not parallel and therefore the planes are different. It follows that the intersection is a line.

Let us describe this line. Adding the equations we get:

3x - y = 0 or y = 3x.

Plugging this into the second equation we get:

$$0 = x + 2(3x) - z = 7x - z$$
 or $z = 7x$.

Hence, the line is given by: $x \cdot (1, 3, 7)$.

Theorem. Let V and W be vector spaces, and $T: V \longrightarrow W$ linear. Then, $Im(T) \subseteq W$ is a vector space.

Proof. Let $w_1, w_2 \in Im(T)$. Then we can find $u_1, u_2 \in V$ such that $T(u_1) = w_1, T(u_2) = w_2$. Let $r, s \in \mathbb{R}$. Then,

$$rw_1 + sw_2 = rT(u_1) + sT(u_2)$$

= $T(ru_1 + su_2) \in Im(T)).$