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Lecture 4

Linear Maps

We have all seen linear maps before. In fact, most of the maps we have been
using in Calculus are linear.

4.1 Two Important Examples

4.1.1 The Integral

To integrate the function f(x) = x2 + 3x − cos x over the interval [a, b], we
first find the antiderivative of x2, that is 1

3
x3, then the antiderivative of x,

which is 1
2
x2, and then multiply that by 3 to get 3

2
x2. Finally, we find the

antiderivative of cos x, which is sin x, and then multiply that by −1 to get
− sin x. To finish the problem we insert the endpoints. Thus,

∫ 1

−1
x2 + 3x− cosx dx =

∫ 1

−1
x2 dx + 3

∫ 1

−1
x dx

−
∫ 1

−1
cosx dx

=
[
1
3
x3

]1

−1

+
[
3
2
x2

]1

−1

− [sinx]1−1

=
2
3
− sin 1 + sin(−1).

What we have used is the fact that the integral is a linear map C([a, b]) −→ R
and that
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22 LECTURE 4. LINEAR MAPS

∫ b

a
rf(x) + sg(x) dx = r

∫ b

a
f(x) dx + s

∫ b

a
g(x) dx.

4.1.2 The Derivative

Another example is differentiation Df = f ′. To differentiate the function f(x) =
x4 − 3x + ex − cosx, we first differentiate each term of the function and then add:

D(x4 − 3x + ex − cosx) = Dx4 − 3Dx + Dex

−D cosx

= 4x3 − 3 + ex + sin x.

Definition. Let V and W be two vector spaces. A map T : V −→ W is said to
be linear if for all v, u ∈ V and all r, s ∈ R we have:

T (rv + su) = rT (v) + sT (u).

Remark: This can also be written by using two equations:

T (v + u) = T (v) + T (u)

T (rv) = rT (v).

Lemma. Suppose that T : V −→ W is linear. Then T (~0) = ~0.

Proof. We can write ~0 = 0v, where v is any vector in V . But then T (~0) = T (0v) =
0T (v) = 0

4.2 Linear Maps from Rn to Rm

Example. Let us find all the linear maps from R2 −→ R2. Any arbitrary vector
(x1, x2) ∈ R2 can be written as:

(x1, x2) = x1(1, 0) + x2(0, 1).

Hence,
T (x1, x2) = x1T (1, 0) + x2T (0, 1).

Write T (1, 0) and T (0, 1) as:

T (1, 0) = (a11, a12), T (0, 1) = (a21, a22), where aij ∈ R.
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T (x1, x2) = x1(a11, a12) + x2(a21, a22)
= (x1a11 + x2a21, x1a12 + x2a22)

= (x1, x2)
(

a11 a12

a21 a22

)
.

Thus, all the information about T is given by the matrix:(
a11 a12

a21 a22

)
.

Example. Next, let us find all the linear maps T : R3 −→ R3. As before we write
(x1, x2, x3) ∈ R3 as:

(x1, x2, x3) = x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 0, 1)

where,

T (1, 0, 0) = (a11, a12, a13)
T (0, 1, 0) = (a21, a22, a23)
T (0, 0, 1) = (a31, a32, a33).

Then,

T (x1, x2, x3) = x1(a11, a12, a13) + x2(a21, a22, a23)
+ x3(a31, a32, a33)

= (x1a11 + x2a21 + x3a31, x1a12 + x2a22

+ x3a32, x1a13 + x2a23 + x3a33)

= (x1, x2, x3)




a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

Example. All the linear maps from R3 −→ R. Notice that R is also a vector space,
so we can consider all the linear maps Rn to R. We have :

T (x1, x2, ..., xn) = x1T (1, 0, ..., 0) + x2T (0, 1, ..., 0)
+... + xnT (0, 0, ..., 1)

= x1a1 + x2a2 + ... + xnan

where,
T (1, 0, ..., 0) = a1, T (0, 1, ..., 0) = a2, . . . T (0, 0, ..., 1) = an.
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4.2.1 Lemma

Lemma. A map Rn −→ Rm is linear if and only if there exists numbers aij , i =
1, ..., n, j = 1, ..., m, such that:

T (x1, x2, ..., xn) = (x1a11 + x2a21 + ... + xnan1, ...,

x1a1m + x2a2m + ... + xnanm)

This can also be written as:

T (x1, x2, ..., xn) = (
n∑

i=1

xiai1,
n∑

i=1

xiai2,
n∑

i=1

xiaim)

or by using matrix multiplication:

T (x1, x2, ..., xn) = (x1, x2, ..., xn)




a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . .

. . . . . .
an1 an2 . . . anm




.

4.2.2 A Counterexample

Example. The map T (x, y, z) = (2x+3xy, z +y) is not linear because of the factor
xy. Notice that:

T (1, 1, 0) = (5, 0)

but
T (2(1, 1, 0)) = T (2, 2, 0) = (16, 0)

and
2T (1, 1, 0) = (10, 0) 6= (16, 0)

4.2.3 Examples

Example. Evaluate the given following maps at a given point:

T (x, y) = (3x + y, 3y), (x, y) = (1,−1)
T (1,−1) = (3 · 1− 1, 3(−1)) = (2,−3)

T (x, y, z) = (2x− y + 3z, 2x + z), (x, z, y) = (2,−1, 1)
T (2,−1, 1) = (4 + 1 + 3, 4 + 1) = (8, 5)
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Example. Some examples involving differentiation and integration:

D(3x2 + 4x− 1) = 6x + 4

∫ 2

1
x2 − ex dx =

[
1
3
x3 − ex

]2

1

=
8
3
− e2 − 1

3
+ e

=
7
3
− e2 + e

4.3 Kernel

Definition. Let V and W be two vector spaces and T : V −→ W a linear map.

• A1 The set Ker(T ) = {v ∈ V : T (v) = 0} is called the kernel of T .

• A2 The set Im(T ) = {w ∈ W : there exists av ∈ V : T (v) = w} is called
the image of T .

Remark: Notice that Ker(T ) ⊆ V and Im(T ) ⊆ W .

Theorem. The kernel of T is a vector space.

Proof. Let u, v ∈ Ker(T ) and r, s ∈ R We have to show that ru + sv ∈ Ker(T ).
Now,u, v ∈ Ker(T ) if and only if T (u) = T (v) = 0. Hence,

T (ru + sv) = rT (u) + sT (v) (T is linear)
= r · 0 + s · 0 (u, v ∈ Ker(T ))
= 0

This shows that ru + sv ∈ Ker(T ).

Remark: Let R2 −→ R2 be the map:

T (x, y) = (x2 + y, x + y).

Then,
T (1,−1) = (1− 1, 1− 1) = (0, 0).

But T (2(1,−1)) = T (2,−2) = (4− 2, 2− 2) = (2, 0) 6= (0, 0).

So if T is not linear, then the set v ∈ V : T (v) = 0 is in general not a vector
space.
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Example. Let R2 −→ R be the map: T (x, y) = 2x− y. Describe the kernel of T .
We know that (x, y) is in the kernel of T if and only if T (x, y) = 2x− y = 0.
Hence, y = 2x. Thus, the kernel of T is a line through (0, 0) with slope 2.

Example. Let R3 −→ R2 be the map: T (x, y, z) = (2x−3y+z, x+2y−z). Describe
the kernel of T .

We have that (x, y, z) ∈ Ker(T ) if and only if

2x− 3y + z = 0 and x + 2y − z = 0.

The equations describe planes through (0, 0, 0) with normal vectors (2,−3, 1) and
(1, 2,−1) respectively. The normal vectors are not parallel and therefore the planes
are different. It follows that the intersection is a line.

Let us describe this line. Adding the equations we get:

3x− y = 0 or y = 3x.

Plugging this into the second equation we get:

0 = x + 2(3x)− z = 7x− z or z = 7x.

Hence, the line is given by: x · (1, 3, 7).

Theorem. Let V and W be vector spaces, and T : V −→ W linear. Then, Im(T ) j
W is a vector space.

Proof. Let w1, w2 ∈ Im(T ). Then we can find u1, u2 ∈ V such that T (u1) =
w1, T (u2) = w2. Let r, s ∈ R. Then,

rw1 + sw2 = rT (u1) + sT (u2)
= T (ru1 + su2) ∈ Im(T )).


