
Lecture 5

Inner Product

Let us start with the following problem. Given a point P ∈ R2 and a line
L j R2, how can we find the point on the line closest to P?

Answer: Draw a line segment from P meeting the line in a right angle.
Then, the point of intersection is the point on the line closest to P .

Let us now take a plane L j R3 and a point outside the plane. How can
we find the point u ∈ L closest to P?

The answer is the same as before, go from P so that you meet the plane
in a right angle.

Observation

In each of the above examples we needed two things:

A1 We have to be able to say what the length of a vector is.

B1 Say what a right angle is.

Both of these things can be done by using the dot-product (or inner product)
in Rn.

Definition. Let (x1, x2, ..., xn), (y1, x2, ..., yn) ∈ Rn. Then, the dot-product
of these vectors is given by the number:

((x1, x2, ..., xn), (y1, x2, ..., yn)) = x1y1 + x2y2 + ... + xnyn.
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The norm (or length) of the vector ~u = (x1, x2, ..., xn) ∈ Rn is the non-
negative number:

‖u‖ =
√

(u, u) =
√

x2
1 + x2

2 + ... + x2
n.

Examples

Example. (a) ((1, 2,−3), (1, 1, 1)) = 1 + 2− 3 = 0

(b) ((1,−2, 1), (2,−1, 3)) = 2 + 2 + 3 = 7

Perpendicular

Because,

|x1y1 + x2y2 + ... + xnyn| ≤
√

x2
1 + x2

2 + ... + x2
n

√
y2
1 + y2

2 + ... + y2
n

or
|(u, v)| ≤ ‖u‖ · ‖v‖

we have that (for u, v 6= 0)

−1 ≤ (u, v)
‖u‖ · ‖v‖ ≤ 1.

Hence we can define:

cos(∠(u, v)) =
(u, v)

‖u‖ · ‖v‖ .

In particular, u⊥v (u is perpendicular to v) if and only if (u, v) = 0.

Questions

Example. Let L be the line in R2 given by y = 2x. Thus,

L = {r(1, 2) : r ∈ R} .

Let P = (2, 1). Consider the following questions.
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Question 1: What is the point on L closest to P?

Answer: Because u ∈ L, we can write ~u = (r, 2r). Furthermore, v − u =
(2− r, 1− 2r) is perpendicular to L. Hence,

0 = ((1, 2), (2− r, 1− 2r)) = 2− r + 2− 4r = 4− 5r.

Hence, r = 4
5 and ~v = (4

5 , 8
5). Question 2: What is the distance of P from the line?

Answer: The length of the vector v−u, i.e. ‖v − u‖. First we have to find out
what v − u is. We have done almost all the work:

v − u = (2, 1)− (
4
5
,
8
5
) = (

6
5
,
−3
5

).

The distance therefore is: √
36
25

+
9
25

=
3
√

5
5

.

Properties of the Inner Product

1. (positivity)To be able to define the norm, we used that (u, u) ≥ 0.

2. (zero length)All non-zero vectors should have a non-zero length. Thus,
(u, u) = 0 only if u = 0.

3. (linearity)If the vector v ∈ Rn is fixed, then a map u 7→ (u, v) from Rn to
R is linear. That is,

(ru + sw, v) = r(u, v) + s(w, v).

4. (symmetry) For all u, v ∈ Rn we have: (u, v) = (v, u).

We will use the properties above to define an inner product on arbitrary vector
spaces.

Definition

Let V be a vector space. An inner product on V is a map (., .) : V × V −→ R
satisfying the following properties:

1. (positivity) (u, u) ≥ 0, for all v ∈ V .

2. (zero length) (u, u) = 0 only if u = 0.
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3. (linearity)If v ∈ V is fixed, then a map u 7→ (u, v) from V to R is linear.

4. (symmetry) (u, v) = (v, u), for all u, v ∈ V .

Definition. We say that u and v are perpendicular if (u, v) = 0.

Definition. If (.,.) is an inner product on the vector space V , then the norm of
a vector v ∈ V is given by:

‖u‖ =
√

(u, u).

Properties of the Norm

Lemma. The norm satisfies the following properties:

1. ‖u‖ ≥ 0, and ‖u‖ = 0 only if u = 0.

2. ‖ru‖ = |r| · ‖u‖.

Proof. We have that

‖ru‖ =
√

(ru, rv)

=
√

(r2(u, v)
= |r|

√
(u, v) = |r| · ‖u‖ .

Examples

Example. Let a < b, I = [a, b], and V = PC([a, b]). Define:

(f, g) =
∫ b

a
f(t)g(t) dt

Then, (.,.) is an inner product on V .

Proof. Let r, s ∈ R, f, g, h ∈ V . Then:

1. (f, f) =
∫ b
a f(t)2 dt. As f(t)2 ≥ 0, it follows that

∫ b
a f(t)2 dt ≥ 0.

2. If (f, f) = 0, then f(t)2 = 0 for all t, i.e f = 0.
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3.
∫ b
a (rfsg)(t)h(t) dt =

∫ b
a rf(t)h(t) + sg(t)h(t) dt

= r

∫ b

a
f(t)h(t) dt + s

∫ b

a
g(t)h(t) dt

= r(f, h) + s(g, h).

Hence, linear in the first factor.

4. As f(t)g(t) = g(t)f(t), it follows that (f, g) = (g, f).

Notice that the norm is:

‖f‖ =

√∫ b

a
f(t)2 dt.

Example. Let a = 0, b = 1 in the previous example. That is, f(t) = t2 and
g(t) = t− 3t2. Then:

(f, g) =
∫ 1

0
t2(t− 3t2) dt

=
∫ 1

0
t3 − 3t4) dt

=
1
4
− 3

5

= − 7
20

.

Also, the norms are:

‖f‖ =

√∫ 1

0
t4 dt =

1√
5
.

‖g‖ =

√∫ 1

0
(t− 3t2)2 dt

=

√∫ 1

0
t2 − 6t3 + 9t4 dt

=

√
1
3
− 3

2
+

9
5

=

√
19
30

.
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Example. Let f(t) = cos 2πt and g(t) = sin 2πt. Then:

(f, g) =
∫ 1

0
cos 2πt sin 2πt dt

=
1
4π

[
(sin 2πt)2

]1

0
= 0.

So, cos 2πt is perpendicular to sin 2πt on the interval [0, 1].

Example. Let f(t) = χ[0,1/2) − χ[1/2,1) and g(t) = χ[0,1). Then:

(f, g) =
∫ 1

0
(χ[0,1/2)(t)− χ[1/2,1)(t))(χ[0,1)) dt

=
∫ 1

0
χ[0,1/2)(t) dt−

∫ 1

0
χ[1/2,1)(t) dt

=
∫ 1/2

0
dt−

∫ 1

1/2
dt =

1
2

=
1
2

= 0.

One can also easily show that ‖f‖ = ‖g‖ = 1.

Problem

Problem: Find a polynomial f(t) = a+ bt that is perpendicular to the polynomial
g(t) = 1− t.

Answer: We are looking for numbers a and b such that:

0 = (f, g) =
∫ 1

0
(a + bt)(1− t) dt

=
∫ 1

0
a + bt− at− bt2 dt

= a +
b

2
− a

2
− b

3

=
a

2
+

b

6
.

Thus, 3a + b = 0. So, we can take f(t) = 1− 3t.

Important Facts

We state now two important facts about the inner product on a vector space V .
Recall that in R2 we have:

cos(θ) =
(u, v)

‖u‖ · ‖v‖ .
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where u, v are two non-zero vectors in R2 and θ is the angle between u and v. In
particular, because −1 ≤ cos θ ≤ 1, we must have:

‖(u, v)‖ ≤ ‖u‖ · ‖v‖.
We will show now that this comes from the positivity and linearity of the inner
product.
Theorem. Let V be a vector space with inner product (.,.). Then:

|(u, v)| ≤ ‖u‖ · ‖v‖
for all u, v ∈ V .

Proof. We can assume that u, v 6= 0 because otherwise both the LHS and the RHS
will be zero. By the positivity of the inner product we get:

0 ≤ (v − (v, u)
‖u‖2 u, v − (v, u)

‖u‖2 u) (positivity)

= (v, v)− (v, u)
‖u‖2 (u, v)− (v, u)

‖u‖2 (v, u) +
(v, u)2

‖u‖4 (u, u) (linearity)

= ‖v‖2 − 2
(u, v)2

‖u‖2 +
(v, u)2

‖u‖2 (symmetry)

= ‖v‖2 − (u, v)2

‖u‖2 .

Thus,
(u, v)2

‖u‖2 ≤ ‖v‖2 or ‖(u, v)‖ ≤ ‖u‖ · ‖v‖.

Note

Notice that:
0 = (v − (u, v)

‖u‖2 u, v − (u, v)
‖u‖2 u)

only if

v − (u, v)
‖u‖2 u = 0

i.e.
v =

(u, v)
‖u‖2 u.

Thus, v and u have to be on the same line through 0.
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A Lemma

We can therefore conclude:

Lemma. ‖(u, v)‖ = ‖u‖ · ‖v‖ if and only if u and v are on the same line through 0.

Theorem

The following statement is generalization of Pythagoras Theorem.

Theorem. Let V be a vector space with inner product (.,.). Then:

‖u + v‖ ≤ ‖u‖ · ‖v‖

for all u, v ∈ V . Furthermore, ‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if (u, v) = 0.

Proof.

‖u + v‖2 = (u + v, u + v)
= (u, u) + 2(u, v) + (v, v) (∗)
≤ ‖u‖2 + 2 ‖u‖ · ‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2.

If (u, v) = 0, then (*) reads:

‖u + v‖2 = ‖u‖2 + ‖v‖2

On the other hand, if ‖u + v‖2 = ‖u‖2 + ‖v‖2, we see from (*) that (u, v) = 0.

Example. Let u = (1, 2,−1), v = (0, 2, 4). Then:

(u, v) = 4− 4 = 0

and
‖u‖2 = 1 + 4 + 1 = 6, ‖v‖2 = 4 + 16 = 20.

Also, u + v = (1, 4, 3) and finally:

‖u + v‖2 = 1 + 16 + 9 = 26 = 6 + 20 = ‖u‖2 + ‖v‖2 .


