Lecture 5

Inner Product

Let us start with the following problem. Given a point $P \in \mathbb{R}^2$ and a line $L \subseteq \mathbb{R}^2$, how can we find the point on the line closest to P?

<u>Answer</u>: Draw a line segment from P meeting the line in a right angle. Then, the point of intersection is the point on the line closest to P.

Let us now take a plane $L \subseteq \mathbb{R}^3$ and a point outside the plane. How can we find the point $u \in L$ closest to P?

The answer is the same as before, go from P so that you meet the plane in a right angle.

Observation

In each of the above examples we needed two things:

- A1 We have to be able to say what the length of a vector is.
- B1 Say what a right angle is.

Both of these things can be done by using the <u>dot-product</u> (or inner product) in \mathbb{R}^n .

Definition. Let $(x_1, x_2, ..., x_n), (y_1, x_2, ..., y_n) \in \mathbb{R}^n$. Then, the **dot-product** of these vectors is given by the number:

$$((x_1, x_2, \dots, x_n), (y_1, x_2, \dots, y_n)) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

The **norm** (or length) of the vector $\vec{u} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ is the non-negative number:

$$||u|| = \sqrt{(u, u)} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Examples

Example. (a)
$$((1, 2, -3), (1, 1, 1)) = 1 + 2 - 3 = 0$$

(b)
$$((1, -2, 1), (2, -1, 3)) = 2 + 2 + 3 = 7$$

Perpendicular

Because,

$$|x_1y_1 + x_2y_2 + \ldots + x_ny_n| \le \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}\sqrt{y_1^2 + y_2^2 + \ldots + y_n^2}$$

or

$$|(u,v)| \le ||u|| \cdot ||v||$$

we have that (for $u, v \neq 0$)

$$-1 \le \frac{(u,v)}{\|u\| \cdot \|v\|} \le 1.$$

Hence we can define:

$$\cos(\angle(u,v)) = \frac{(u,v)}{\|u\| \cdot \|v\|}.$$

In particular, $u \perp v$ (*u* is **perpendicular** to *v*) if and only if (u, v) = 0.

Questions

Example. Let L be the line in \mathbb{R}^2 given by y = 2x. Thus,

$$L = \{r(1,2) : r \in \mathbb{R}\}.$$

Let P = (2, 1). Consider the following questions.

Question 1: What is the point on L closest to P?

<u>Answer</u>: Because $u \in L$, we can write $\vec{u} = (r, 2r)$. Furthermore, v - u = (2 - r, 1 - 2r) is perpendicular to L. Hence,

$$0 = ((1,2), (2-r, 1-2r)) = 2 - r + 2 - 4r = 4 - 5r.$$

Hence, $r = \frac{4}{5}$ and $\vec{v} = (\frac{4}{5}, \frac{8}{5})$. Question 2: What is the distance of P from the line?

<u>Answer</u>: The length of the vector v - u, i.e. ||v - u||. First we have to find out what v - u is. We have done almost all the work:

$$v - u = (2, 1) - (\frac{4}{5}, \frac{8}{5}) = (\frac{6}{5}, \frac{-3}{5}).$$

The distance therefore is:

$$\sqrt{\frac{36}{25} + \frac{9}{25}} = \frac{3\sqrt{5}}{5}.$$

Properties of the Inner Product

- 1. (**positivity**)To be able to define the norm, we used that $(u, u) \ge 0$.
- 2. (zero length)All non-zero vectors should have a non-zero length. Thus, (u, u) = 0 only if u = 0.
- 3. (linearity) If the vector $v \in \mathbb{R}^n$ is fixed, then a map $u \mapsto (u, v)$ from \mathbb{R}^n to \mathbb{R} is linear. That is,

$$(ru + sw, v) = r(u, v) + s(w, v).$$

4. (symmetry) For all $u, v \in \mathbb{R}^n$ we have: (u, v) = (v, u).

We will use the properties above to define an inner product on arbitrary vector spaces.

Definition

Let V be a vector space. An inner product on V is a map $(.,.): V \times V \longrightarrow \mathbb{R}$ satisfying the following properties:

- 1. (**positivity**) $(u, u) \ge 0$, for all $v \in V$.
- 2. (zero length) (u, u) = 0 only if u = 0.

- 3. (linearity) If $v \in V$ is fixed, then a map $u \mapsto (u, v)$ from V to \mathbb{R} is linear.
- 4. (symmetry) (u, v) = (v, u), for all $u, v \in V$.

Definition. We say that u and v are perpendicular if (u, v) = 0.

Definition. If (.,.) is an inner product on the vector space V, then the norm of a vector $v \in V$ is given by:

$$||u|| = \sqrt{(u, u)}.$$

Properties of the Norm

Lemma. The norm satisfies the following properties:

- 1. $||u|| \ge 0$, and ||u|| = 0 only if u = 0.
- 2. $||ru|| = |r| \cdot ||u||$.

Proof. We have that

$$\begin{aligned} \|ru\| &= \sqrt{(ru, rv)} \\ &= \sqrt{(r^2(u, v))} \\ &= |r|\sqrt{(u, v)} = |r| \cdot \|u\| \end{aligned}$$

Examples

Example. Let a < b, I = [a, b], and V = PC([a, b]). Define:

$$(f,g) = \int_a^b f(t)g(t)\,dt$$

Then, (.,.) is an inner product on V.

Proof. Let $r, s \in \mathbb{R}, f, g, h \in V$. Then:

- 1. $(f, f) = \int_a^b f(t)^2 dt$. As $f(t)^2 \ge 0$, it follows that $\int_a^b f(t)^2 dt \ge 0$.
- 2. If (f, f) = 0, then $f(t)^2 = 0$ for all t, i.e f = 0.

3.
$$\int_{a}^{b} (rfsg)(t)h(t) dt = \int_{a}^{b} rf(t)h(t) + sg(t)h(t) dt$$
$$= r \int_{a}^{b} f(t)h(t) dt + s \int_{a}^{b} g(t)h(t) dt$$
$$= r(f,h) + s(g,h).$$

Hence, linear in the first factor.

4. As f(t)g(t) = g(t)f(t), it follows that (f,g) = (g,f).

Notice that the norm is:

$$\|f\| = \sqrt{\int_a^b f(t)^2 dt}.$$

Example. Let a = 0, b = 1 in the previous example. That is, $f(t) = t^2$ and $g(t) = t - 3t^2$. Then:

$$(f,g) = \int_0^1 t^2 (t-3t^2) dt$$

= $\int_0^1 t^3 - 3t^4 dt$
= $\frac{1}{4} - \frac{3}{5}$
= $-\frac{7}{20}$.

Also, the norms are:

$$\begin{split} \|f\| &= \sqrt{\int_0^1 t^4 \, dt} = \frac{1}{\sqrt{5}}.\\ \|g\| &= \sqrt{\int_0^1 (t - 3t^2)^2 \, dt}\\ &= \sqrt{\int_0^1 t^2 - 6t^3 + 9t^4 \, dt}\\ &= \sqrt{\frac{1}{3} - \frac{3}{2} + \frac{9}{5}}\\ &= \sqrt{\frac{19}{30}}. \end{split}$$

Example. Let $f(t) = \cos 2\pi t$ and $g(t) = \sin 2\pi t$. Then:

$$(f,g) = \int_0^1 \cos 2\pi t \sin 2\pi t \, dt = \frac{1}{4\pi} \left[(\sin 2\pi t)^2 \right]_0^1 = 0.$$

So, $\cos 2\pi t$ is perpendicular to $\sin 2\pi t$ on the interval [0, 1]. Example. Let $f(t) = \chi_{[0,1/2)} - \chi_{[1/2,1)}$ and $g(t) = \chi_{[0,1)}$. Then:

$$\begin{aligned} (f,g) &= \int_0^1 (\chi_{[0,1/2)}(t) - \chi_{[1/2,1)}(t))(\chi_{[0,1)}) \, dt \\ &= \int_0^1 \chi_{[0,1/2)}(t) \, dt - \int_0^1 \chi_{[1/2,1)}(t) \, dt \\ &= \int_0^{1/2} \, dt - \int_{1/2}^1 \, dt = \frac{1}{2} = \frac{1}{2} = 0. \end{aligned}$$

One can also easily show that ||f|| = ||g|| = 1.

Problem

Problem: Find a polynomial f(t) = a + bt that is perpendicular to the polynomial g(t) = 1 - t.

<u>Answer</u>: We are looking for numbers a and b such that:

$$0 = (f,g) = \int_0^1 (a+bt)(1-t) dt$$

= $\int_0^1 a+bt-at-bt^2 dt$
= $a+\frac{b}{2}-\frac{a}{2}-\frac{b}{3}$
= $\frac{a}{2}+\frac{b}{6}$.

Thus, 3a + b = 0. So, we can take f(t) = 1 - 3t.

Important Facts

We state now two important facts about the inner product on a vector space V. Recall that in \mathbb{R}^2 we have:

$$\cos(\theta) = \frac{(u,v)}{\|u\| \cdot \|v\|}.$$

where u, v are two non-zero vectors in \mathbb{R}^2 and θ is the angle between u and v. In particular, because $-1 \leq \cos \theta \leq 1$, we must have:

$$||(u,v)|| \le ||u|| \cdot ||v||.$$

We will show now that this comes from the positivity and linearity of the inner product.

Theorem. Let V be a vector space with inner product (.,.). Then:

$$|(u,v)| \le ||u|| \cdot ||v||$$

for all $u, v \in V$.

Proof. We can assume that $u, v \neq 0$ because otherwise both the LHS and the RHS will be zero. By the positivity of the inner product we get:

$$\begin{array}{ll} 0 & \leq (v - \frac{(v, u)}{\|u\|^2} u, v - \frac{(v, u)}{\|u\|^2} u) \quad (positivity) \\ & = & (v, v) - \frac{(v, u)}{\|u\|^2} (u, v) - \frac{(v, u)}{\|u\|^2} (v, u) + \frac{(v, u)^2}{\|u\|^4} (u, u) \quad (linearity) \\ & = & \|v\|^2 - 2\frac{(u, v)^2}{\|u\|^2} + \frac{(v, u)^2}{\|u\|^2} \quad (symmetry) \\ & = & \|v\|^2 - \frac{(u, v)^2}{\|u\|^2}. \end{array}$$

Thus,

$$\frac{(u,v)^2}{\|u\|^2} \le \|v\|^2 \quad \text{or} \quad \|(u,v)\| \le \|u\| \cdot \|v\|.$$

Note

Notice that:

 $0 = (v - \frac{(u, v)}{\|u\|^2}u, v - \frac{(u, v)}{\|u\|^2}u)$

only if

$$v - \frac{(u,v)}{\|u\|^2}u = 0$$

i.e.

$$v = \frac{(u,v)}{\|u\|^2}u.$$

Thus, v and u have to be on the same line through 0.

A Lemma

We can therefore conclude:

Lemma. $||(u, v)|| = ||u|| \cdot ||v||$ if and only if u and v are on the same line through 0.

Theorem

The following statement is generalization of Pythagoras Theorem.

Theorem. Let V be a vector space with inner product (.,.). Then:

$$\|u+v\| \le \|u\| \cdot \|v\|$$

for all $u, v \in V$. Furthermore, $||u + v||^2 = ||u||^2 + ||v||^2$ if and only if (u, v) = 0. *Proof.*

$$||u+v||^{2} = (u+v, u+v)$$

= $(u, u) + 2(u, v) + (v, v)$ (*)
 $\leq ||u||^{2} + 2 ||u|| \cdot ||v|| + ||v||^{2}$
= $(||u|| + ||v||)^{2}$.

If (u, v) = 0, then (*) reads:

$$||u+v||^2 = ||u||^2 + ||v||^2$$

On the other hand, if $||u + v||^2 = ||u||^2 + ||v||^2$, we see from (*) that (u, v) = 0. *Example.* Let u = (1, 2, -1), v = (0, 2, 4). Then:

$$(u, v) = 4 - 4 = 0$$

and

$$||u||^2 = 1 + 4 + 1 = 6, ||v||^2 = 4 + 16 = 20.$$

Also, u + v = (1, 4, 3) and finally:

$$||u+v||^2 = 1 + 16 + 9 = 26 = 6 + 20 = ||u||^2 + ||v||^2$$