Lecture 8

Orthogonal Projections

8.1 Introduction

We will now come back to our original aim: Given a vector space V, a subspace W, and a vector $v \in V$, find the vector $w \in W$ which is closest to v.

First let us clarify what the "closest" means. The tool to measure distance is the norm, so we want $\|v-w\|$ to be as small as possible.

Thus our problem is:
Find a vector $w \in W$ such that

$$
\|v-w\| \leq\|v-u\|
$$

for all $u \in W$.
Now let us recall that if $W=\mathbb{R} w_{1}$ is a line, then the vector w on the line W is the one with the property that $v-w \perp W$.
We will start by showing that this is always the case.

$8.2 w \in W$ is closest to v iff $v-w \perp W$

Theorem. Let V be a vector space with inner product (\cdot, \cdot). Let $W \subset V$ be a subspace and $v \in V$. If $v-w \perp W$, then $\|v-w\| \leq\|v-u\|$ for all $u \in W$ and $\|v-w\|=\|v-u\|$ if and only if $w=u$. Thus w is the member of W closest to v.

Proof. First we remark that $\|v-w\| \leq\|v-u\|$ if and only if $\|v-w\|^{2} \leq$ $\|v-u\|^{2}$. Now we simply calculate

$$
\begin{aligned}
\|v-u\|^{2}= & \|(v-w)+(w-u)\|^{2} \\
= & \|v-w\|^{2}+\|w-u\|^{2} \\
& \text { because } v-w \perp W \text { and } w-u \in W
\end{aligned}
$$

$$
(*) \geq\|v-w\|^{2} \quad \text { because }\|w-u\|^{2} \geq 0
$$

So $\|v-u\| \geq\|v-w\|$. If $\|v-u\|^{2}=\|v-w\|^{2}$, then we see - using (*)- that $\|w-u\|^{2}=0$, or $w=u$.
As $\|v-w\|=\|v-u\|$ if $u=w$, we have shown that the statement is correct.

Theorem. Let V be a vector space with inner product (\cdot, \cdot). Let $W \subset V$ be a subspace and $v \in V$. If $w \in W$ is the closest to v, then $v-w \perp W$.

Proof. We know that $\|v-w\|^{2} \leq\|v-u\|^{2}$ for all $u \in W$. Therefore the function $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$
F(t):=\|v-w+t x\|^{2} \quad(x \in W)
$$

has a minimum at $t=0$. We have

$$
\begin{aligned}
F(t)= & (v-w+t x, v-w+t x) \\
= & (v-w, v-w)+t(v-w, x) \\
& \quad+t(x, v-w)+t^{2}(x, x) \\
= & \|v-w\|^{2}+2 t(v-w, x)+t^{2}\|x\|^{2}
\end{aligned}
$$

Therefore

$$
0=F^{\prime}(0)=2(v-w, x) .
$$

As $x \in W$ was arbitrary, it follows that $v-w \perp W$.

8.2.1 Construction of w

Our task now is to construct the vector w such that $v-w \perp W$. The idea is to use Gram-Schmidt orthogonalization.
Let $W=\mathbb{R} u$ and $v \in V$. Applying Gram-Schmidt to u and v gives:

$$
v-\frac{(v, u)}{\|u\|^{2}} u \perp W
$$

So that $w=\frac{(v, u)}{\|u\|^{2}} u$ is the vector (point) on the line W closest to v.
What if the dimension of W is greater than one? Let v_{1}, \ldots, v_{n} be an orthogonal basis for W. Applying the Gram-Schmidt to the vectors v_{1}, \ldots, v_{n}, v shows that

$$
v-\sum_{j=1}^{n} \frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}} v_{j}
$$

is orthogonal to each one of the vectors v_{1}, \ldots, v_{n}. Since

$$
v-\sum_{j=1}^{n} \frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}} v_{j}
$$

is orthogonal to v_{j} for all j, it is orthogonal to any linear combination of them $c_{1} v_{1}+\ldots+c_{n} v_{n}=\sum_{j=1}^{n} c_{j} v_{j}$, and hence it is orthogonal to W. Therefore our vector w closest to v is given by

$$
w=\sum_{j=1}^{n} \frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}} v_{j} .
$$

Let us look at another motivation; Let $w \in W$ be the closest to v and let v_{1}, \ldots, v_{n} be a basis for W. Then there are scalars $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
w=\sum_{k=1}^{n} c_{k} v_{k} .
$$

So what are these scalars? As $v-w \perp v_{j}$ for $j=1, \ldots, n$ and $v_{k} \perp v_{j}$ for
$k \neq j$ we get:

$$
\begin{aligned}
0 & =\left(v-w, v_{j}\right) \\
& =\left(v, v_{j}\right)-\left(w, v_{j}\right) \\
& =\left(v, v_{j}\right)-\sum_{k=1}^{n} c_{k}\left(v_{k}, v_{j}\right) \\
& =\left(v, v_{j}\right)-c_{j}\left(v_{j}, v_{j}\right) \\
& =\left(v, v_{j}\right)-c_{j}\left\|v_{j}\right\|^{2} .
\end{aligned}
$$

Solving for c_{j} we get

$$
c_{j}=\frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}}
$$

Thus

$$
w=\sum_{j=1}^{n} \frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}} v_{j} .
$$

8.3 The main theorem

We collect the results of the above computations in the following (main)theorem: Theorem. Let V be a vector space with inner product (\cdot, \cdot). Let $W \subset V$ be a subspace and assume that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal basis for W. For $v \in V$ let $w=\sum_{j=1}^{n} \frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}} v_{j} \in W$. Then $v-w \perp W$ (or equivalently, w is the vector in W closest to v).

Proof. We have

$$
\begin{aligned}
\left(v-w, v_{j}\right) & =\left(v, v_{j}\right)-\left(w, v_{j}\right) \\
& =\left(v, v_{j}\right)-\sum_{k=1}^{n} \frac{\left(v, v_{k}\right)}{\left\|v_{k}\right\|^{2}}\left(v_{k}, v_{j}\right) \\
& =\left(v, v_{j}\right)-\frac{\left(v, v_{j}\right)}{\left\|v_{j}\right\|^{2}}\left\|v_{j}\right\|^{2} \\
& =\left(v, v_{j}\right)-\left(v, v_{j}\right) \\
& =0
\end{aligned}
$$

Hence $v-w \perp v_{j}$. But, as we saw before, this implies that $v-w \perp W$ because v_{1}, \ldots, v_{n} is a basis.

8.4 Orthogonal projections

Let us now look at what we just did from the point of view of linear maps. What is given in the beginning is a vector space with an inner product and a subspace W. Then for each $v \in V$ we associated a unique vector $w \in W$. Thus we got a map

$$
P: V \longrightarrow W, \quad v \mapsto w
$$

We even have an explicit formula for $P(v)$: Let (if possible) v_{1}, \ldots, v_{n} be an orthogonal basis for W, then

$$
P(v)=\sum_{k=1}^{n} \frac{\left(v, v_{k}\right)}{\left\|v_{k}\right\|^{2}} v_{k}
$$

This shows that P is linear.
We showed earlier that if $v \in W$, then

$$
v=\sum_{k=1}^{n} \frac{\left(v, v_{k}\right)}{\left\|v_{k}\right\|^{2}} v_{k}
$$

So $P(v)=v$ for all $v \in W$. In particular, we get
Lemma. $P^{2}=P$.
The map P is called the orthogonal projection onto W. The projection part comes from $P^{2}=P$ and orthogonal from the fact that $v-P \overline{(v) \perp W}$.

8.5 Summary

The result of this discussion is the following:
To find the vector w closest to v we have to:

1. Find (if possible) a basis u_{1}, \ldots, u_{n} for W.
2. If this is not an orthogonal basis, then use Gram-Schmidt to construct an orthogonal basis v_{1}, \ldots, v_{n}.
3. Then $w=\sum_{k=1}^{n} \frac{\left(v, v_{k}\right)}{\left\|v_{k}\right\|^{2}} v_{k}$.

8.6 Examples

Example. Let W be the line $W=\mathbb{R}(1,2)$. Then $u=(1,2)$ is a basis (orthogonal!) for W. It follows that the orthogonal projection is given by

$$
P(x, y)=\frac{x+2 y}{5}(1,2) .
$$

Let $(x, y)=(3,1)$. Then

$$
P(3,1)=(1,2) .
$$

Example. Let W be the line given by $y=3 x$. Then $(1,3) \in W$ and hence $W=\mathbb{R}(1,3)$.It follows that

$$
P(x, y)=\frac{x+3 y}{10}(1,3) .
$$

Example. Let W be the plane generated by the vectors $(1,1,1)$ and $(1,0,1)$. Find the orthogonal projection $P: \mathbb{R}^{3} \longrightarrow W$.
Solution. We notice first that $((1,1,1),(1,0,1))=2 \neq 0$, so this is not an orthogonal basis. Using Gram-Schmidt we get:
$v_{1}=(1,1,1)$
$v_{2}=(1,0,1)-\frac{2}{3}(1,1,1)=\left(\frac{1}{3},-\frac{2}{3}\right), \frac{1}{3}=\frac{1}{3}(1,-2,1)$.
To avoid fractions, we can use $(1,-2,1)$ instead of $\frac{1}{3}(1,-2,1)$. Thus the orthogonal projection is:

$$
\begin{aligned}
P(x, y, z)= & \frac{x+y+z}{3}(1,1,1)+\frac{x-2 y+z}{6}(1,-2,1) \\
= & \left(\frac{2 x+2 y+2 z}{6}+\frac{x-2 y+z}{6},\right. \\
& \frac{2 x+2 y+2 z}{6}-2 \frac{x-2 y+z}{6}, \\
& \left.\frac{2 x+2 y+2 z}{6}+\frac{x-2 y+z}{6}\right) \\
= & \left(\frac{x+z}{2}, y, \frac{x+z}{2}\right) .
\end{aligned}
$$

Example. Let W be the plane $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+2 z=0\right\}$. Find the orthogonal projection $P: \mathbb{R}^{3} \longrightarrow W$.

Solution. We notice that our first step is to find an orthogonal basis for W. The vectors $(1,-1,0)$ and $(2,0,-1)$ are in W, but are not orthogonal.We have

$$
(2,0,-1)-\frac{2}{2}(1,-1,0)=(1,1,-1) \in W
$$

and orthogonal to $(1,-1,0)$. So we get:

$$
\begin{aligned}
P(x, y, z) & =\frac{x-y}{2}(1,-1,0)+\frac{x+y-z}{3}(1,1,-1) \\
& =\left(\frac{5 x-y-2 z}{6}, \frac{-x+5 y-2 z}{6}, \frac{-x-y+z}{3}\right) .
\end{aligned}
$$

8.7 Exercises

1. Let $V \subset \mathbb{R}^{2}$ be the line $V=\mathbb{R}(1,-1)$.
(a) Write a formula for the orthogonal projection $P: \mathbb{R}^{2} \rightarrow V$.
(b) What is: i) $P(1,1)$,
ii) $P(2,1)$,
iii) $P(2,-2)$?
2. Let $W \subset \mathbb{R}^{3}$ be the plane

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3}: x-2 y+z=0\right\} .
$$

(a) Find the orthogonal projection $P: \mathbb{R}^{3} \rightarrow W$.
(b) What is: i) $P(1,1,2)$,
ii) $P(1,-2,1)$,
iii) $P(2,1,1)$?

3 . Let $W \subset \mathbb{R}^{3}$ be the plane generated by the vectors $(1,1,1)$ and $(1,-1,1)$.
(a) Find the orthogonal projection $P: \mathbb{R}^{3} \rightarrow W$.
(b) What is: i) $P(1,1,2)$,
ii) $P(2,0,1)$?
4. Let W be the space of continuous functions on $[0,1]$ generated by the constant function 1 and x. Thus $W=\left\{a_{0}+a_{1} x: a_{0}, a_{1} \in \mathbb{R}\right\}$. Find the orthogonal projection of the following functions onto W :
i) $P\left(x^{2}\right)$,
ii) $P\left(e^{x}\right)$,
iii) $P\left(1+x^{2}\right)$.

5 . Let W be the space of piecewise continuous functions on $[0,1]$ generated by $\chi_{[0,1 / 2)}$ and $\chi_{[1 / 2,1)}$. Find orthogonal projections of the following functions onto W :
i) $P(x)$,
ii) $P\left(x^{2}\right)$,
iii) $P\left(\chi_{[0,3 / 4]}\right)$.

