Lecture 8

Orthogonal Projections

8.1 Introduction

We will now come back to our original aim: Given a vector space V, a
subspace W, and a vector v € V, find the vector w € W which is closest to
v.

First let us clarify what the ”closest” means. The tool to measure distance
is the norm, so we want ||[v — w|| to be as small as possible.

Thus our problem is:
Find a vector w € W such that

lo = w] < jv—uf

for all w € W.

Now let us recall that if W = Ruw; is a line, then the vector w on the line
W is the one with the property that v —w 1L W.
We will start by showing that this is always the case.

8.2 weW isclosest tov off v—w L W

Theorem. Let V' be a vector space with inner product (-,-). Let W C V be
a subspace and v € V. If v —w L W, then ||[v —w| < ||jv —ul| for all w € W
and ||[v — w| = |[v — ul| if and only if w = u. Thus w is the member of W
closest to v.
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Proof. First we remark that ||[v — w| < ||v — u] if and only if ||[v — w]||* <
v — u||>. Now we simply calculate

lo—ul* = [l(v—w)+ (w—u)]|*
= v —wl|*+|lw — ulf*
because v —w L W and w —u e W
(¥) > |lv—w|* because ||w —u|* >0
So |lv —ul| > |Jv —w||. If |[v — ul|? = ||v — w]||?, then we see - using (*)- that
|lw —ul|> =0, or w=u.

As |lv — w| = |Jlv — ul| if v = w, we have shown that the statement is
correct. ]

Theorem. Let V' be a vector space with inner product (-,-). Let W C V be
a subspace and v € V. If w € W is the closest to v, then v —w 1L W.

Proof. We know that ||[v — wl||? < ||lv — u||? for all w € W. Therefore the
function f : R — R

Ft):=|lv—w+tz||* (zeW)
has a minimum at ¢ = 0. We have

F(t)=(v—w+tz,v—w+tx)
=(w—-—w,v—w)+tlv—w,x)
+ t(z, v —w) + t*(x, )
= |lv — w|)® + 2t(v — w, x) + |||

Therefore

0=F"0)=2(v—w,x).

As x € W was arbitrary, it follows that v —w L W. Il
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8.2.1 Construction of w

Our task now is to construct the vector w such that v — w L W. The idea
is to use Gram-Schmidt orthogonalization.
Let W = Ru and v € V. Applying Gram-Schmidt to u and v gives:

(v, u)
]

uwl W

So that w = &%y is the vector (point) on the line W closest to v.

flull
What if the dimension of W is greater than one? Let vq,...,v, be an or-
thogonal basis for W. Applying the Gram-Schmidt to the vectors vy, ..., v,,v
shows that
—~ (v,v))
v= Z ; ]2 Yj
2]
is orthogonal to each one of the vectors vy, ..., v,. Since
n
v, V;
o=t
2]

is orthogonal to v; for all j, it is orthogonal to any linear combination of them
cvr + ...+, = Z;;l c;v;, and hence it is orthogonal to W. Therefore
our vector w closest to v is given by

n
w=3y ),
[l

Jj=1

Let us look at another motivation; Let w € W be the closest to v and let

v1,...,0, be a basis for W. Then there are scalars c¢q,...,c, € R such that
n
w = Z CrVUf.
k=1

So what are these scalars? As v —w L v; for j =1,...,n and v, L v; for
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k # 7 we get:
0 = (v—w,v,)

= (Uavj) - (w7vj>

= (v,v5) = > cxlvnvy)

k=1
= (v,v5) = ¢;(v5,5)

= (v, Uj) - CJHUJ'HQ-

Solving for ¢; we get

Thus

8.3 The main theorem

We collect the results of the above computations in the following (main)theorem:

Theorem. Let V' be a vector space with inner product (-,-). Let W C V be

a subspace and assume that {vq,...,v,} is an orthogonal basis for . For
veVietw=>", fﬁj—”ﬁgv € W. Then v —w L W (or equivalently, w is
J

the vector in W closest to v).

Proof. We have

(v_wvvj) = (Uavj)_(wvvj)
= (v,v;) — -~ (0, 00)
( ) J) kz:; ”UkHQ( ks ])
= (o) = TRl
= (vaj>_(vvvj>
0

Hence v — w L v;. But, as we saw before, this implies that v —w L W
because vy, ..., v, is a basis. Il
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8.4 Orthogonal projections

Let us now look at what we just did from the point of view of linear maps.
What is given in the beginning is a vector space with an inner product and
a subspace W. Then for each v € V we associated a unique vector w € W.
Thus we got a map

P:V—W ve—uw

We even have an explicit formula for P(v): Let (if possible) vy, ..., v, be an
orthogonal basis for W, then

P =3
k=

<o

This shows that P is linear.
We showed earlier that if v € W, then

Z o
v =
el

So P(v) = v for all v € W. In particular, we get
Lemma. P* = P.

The map P is called the orthogonal projection onto W. The projection
part comes from P? = P and orthogonal from the fact that v — P(v) L W.

8.5 Summary

The result of this discussion is the following:

To find the vector w closest to v we have to:
1. Find (if possible) a basis uy, ..., u, for W.

2. If this is not an orthogonal basis, then use Gram-Schmidt to construct
an orthogonal basis vy,...,v,.

3. Then w =37, %vk'
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8.6 Examples

Ezample. Let W be the line W = R(1,2). Then u = (1,2) is a basis (orthog-
onall) for W. It follows that the orthogonal projection is given by
T+ 2y

Pla,y) = =2 (1,2)

Let (z,y) = (3,1). Then
P(3,1) = (1,2).

Ezample. Let W be the line given by y = 3z. Then (1,3) € W and hence
W =R(1,3).It follows that

x + 3y
P =—(1,3).
(‘rJy) 10 ( ? )
Ezample. Let W be the plane generated by the vectors (1,1,1) and (1,0, 1).

Find the orthogonal projection P : R® — W.

Solution. We notice first that ((1,1,1),(1,0,1)) = 2 # 0, so this is not an
orthogonal basis. Using Gram-Schmidt we get:

v =(1,1,1)

ve = (1,0,1) — %(1,1,1) =(3,-2),t =

535 =520,
To avoid fractions, we can use (1,—2,1) instead of %(1, —2,1). Thus the

orthogonal projection is:

rTH+y+=z r—2y+z
P(CL‘,y,Z) = %(17171)4»%
20 +2y+2z xT—2y+=z
+ )
6 6
2z + 2y + 22 2x—2y+z
6 6 ’
2m+2y+2z+a}—2y+z>

(1,-2,1)

6 6
_ r+z r—+z
- 2 )?/7 2 .

Ezample. Let W be the plane {(z,y,2) € R*z + y + 22 = 0}. Find the
orthogonal projection P : R3 — W.
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Solution. We notice that our first step is to find an orthogonal basis for .
The vectors (1,—1,0) and (2,0, —1) are in W, but are not orthogonal.We
have

(2,0,—-1) — 2(1,-1,0) = (1,1,-1) e W
and orthogonal to (1,—1,0). So we get:

Play,2) = 5 21,-1,00+ =21, )
B Sr—y—22 —x+d0y—2z —x—y+=2
B 6 ’ 6 ’ 3 ‘

8.7 Exercises

1. Let V C R? be the line V = R(1, —1).
(a) Write a formula for the orthogonal projection P : R? — V.
(b) What is: i) P(1, 1), i) P(2,1), i) P(2,-2)?
2. Let W C R? be the plane
W ={(z,y,2) €ER®: 2 —2y+2z=0}.
(a) Find the orthogonal projection P : R® — W.
(b) What is: i) P(1,1,2), i) P(1,-2,1),  ii) P(2,1,1)?
3. Let W C R? be the plane generated by the vectors (1,1,1) and (1, —1,1).
(a) Find the orthogonal projection P : R® — W.
(b) What is: i) P(1,1,2), i) P(2,0,1)?

4. Let W be the space of continuous functions on [0, 1] generated by the
constant function 1 and x. Thus W = {ag + a1z : ap,a; € R}. Find
the orthogonal projection of the following functions onto W:

i) P(2?), ii) P(e"), iii) P(1 4 z?).

5. Let W be the space of piecewise continuous functions on [0, 1] gener-
ated by X[0,1/2) and x[1/2,1)- Find orthogonal projections of the following
functions onto W:

i) P(z). i) P(a?), i) P(xi03/2):



