Lecture 8

Orthogonal Projections

8.1 Introduction

We will now come back to our original aim: Given a vector space V, a subspace W, and a vector $v \in V$, find the vector $w \in W$ which is closest to v.

First let us clarify what the "closest" means. The tool to measure distance is the norm, so we want $\|v - w\|$ to be as small as possible.

Thus our problem is:
Find a vector $w \in W$ such that

$$\|v - w\| \leq \|v - u\|$$

for all $u \in W$.

Now let us recall that if $W = \mathbb{R}w_1$ is a line, then the vector w on the line W is the one with the property that $v - w \perp W$.

We will start by showing that this is always the case.

8.2 $w \in W$ is closest to v iff $v - w \perp W$

Theorem. Let V be a vector space with inner product (\cdot, \cdot). Let $W \subset V$ be a subspace and $v \in V$. If $v - w \perp W$, then $\|v - w\| \leq \|v - u\|$ for all $u \in W$ and $\|v - w\| = \|v - u\|$ if and only if $w = u$. Thus w is the member of W closest to v.
Proof. First we remark that \(\|v - w\| \leq \|v - u\| \) if and only if \(\|v - w\|^2 \leq \|v - u\|^2 \). Now we simply calculate
\[
\|v - u\|^2 = \|(v - w) + (w - u)\|^2 = \|v - w\|^2 + \|w - u\|^2
\]
because \(v - w \perp W \) and \(w - u \in W \)
\[
(*) \geq \|v - w\|^2 \quad \text{because} \quad \|w - u\|^2 \geq 0
\]
So \(\|v - u\| \geq \|v - w\| \). If \(\|v - u\|^2 = \|v - w\|^2 \), then we see - using (*) - that \(\|w - u\|^2 = 0 \), or \(w = u \).
As \(\|v - w\| = \|v - u\| \) if \(u = w \), we have shown that the statement is correct. \(\Box \)

Theorem. Let \(V \) be a vector space with inner product \((\cdot, \cdot)\). Let \(W \subset V \) be a subspace and \(v \in V \). If \(w \in W \) is the closest to \(v \), then \(v - w \perp W \).

Proof. We know that \(\|v - w\|^2 \leq \|v - u\|^2 \) for all \(u \in W \). Therefore the function \(f : \mathbb{R} \rightarrow \mathbb{R} \)
\[
F(t) := \|v - w + tx\|^2 \quad (x \in W)
\]
has a minimum at \(t = 0 \). We have
\[
F(t) = (v - w + tx, v - w + tx)
= (v - w, v - w) + t(v - w, x) + t(x, v - w) + t^2(x, x)
= \|v - w\|^2 + 2t(v - w, x) + t^2\|x\|^2
\]
Therefore
\[
0 = F'(0) = 2(v - w, x).
\]
As \(x \in W \) was arbitrary, it follows that \(v - w \perp W \). \(\Box \)
8.2. $W \in W$ IS CLOSEST TO V IFF $V - W \perp W$

8.2.1 Construction of w

Our task now is to construct the vector w such that $v - w \perp W$. The idea is to use Gram-Schmidt orthogonalization. Let $W = \mathbb{R}u$ and $v \in V$. Applying Gram-Schmidt to u and v gives:

$$v - \frac{(v, u)}{||u||^2} u \perp W$$

So that $w = \frac{(v, u)}{||u||^2} u$ is the vector (point) on the line W closest to v.

What if the dimension of W is greater than one? Let v_1, \ldots, v_n be an orthogonal basis for W. Applying the Gram-Schmidt to the vectors v_1, \ldots, v_n, v shows that

$$v - \sum_{j=1}^{n} \frac{(v, v_j)}{||v_j||^2} v_j$$

is orthogonal to each one of the vectors v_1, \ldots, v_n. Since

$$v - \sum_{j=1}^{n} \frac{(v, v_j)}{||v_j||^2} v_j$$

is orthogonal to v_j for all j, it is orthogonal to any linear combination of them $c_1v_1 + \ldots + c_nv_n = \sum_{j=1}^{n} c_jv_j$, and hence it is orthogonal to W. Therefore our vector w closest to v is given by

$$w = \sum_{j=1}^{n} \frac{(v, v_j)}{||v_j||^2} v_j.$$

Let us look at another motivation; Let $w \in W$ be the closest to v and let v_1, \ldots, v_n be a basis for W. Then there are scalars $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$w = \sum_{k=1}^{n} c_kv_k.$$

So what are these scalars? As $v - w \perp v_j$ for $j = 1, \ldots, n$ and $v_k \perp v_j$ for
\[k \neq j \text{ we get:} \]
\[
0 = (v - w, v_j) \\
= (v, v_j) - (w, v_j) \\
= (v, v_j) - \sum_{k=1}^{n} c_k(v_k, v_j) \\
= (v, v_j) - c_j(v_j, v_j) \\
= (v, v_j) - c_j\|v_j\|^2.
\]

Solving for \(c_j \) we get
\[
c_j = \frac{(v, v_j)}{\|v_j\|^2}.
\]

Thus
\[
w = \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j.
\]

8.3 The main theorem

We collect the results of the above computations in the following (main)theorem:

Theorem. Let \(V \) be a vector space with inner product \((\cdot, \cdot)\). Let \(W \subset V \) be a subspace and assume that \(\{v_1, \ldots, v_n\} \) is an orthogonal basis for \(W \). For \(v \in V \) let \(w = \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j \in W \). Then \(v - w \perp W \) (or equivalently, \(w \) is the vector in \(W \) closest to \(v \)).

Proof. We have
\[
(v - w, v_j) = (v, v_j) - (w, v_j) \\
= (v, v_j) - \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} (v_k, v_j) \\
= (v, v_j) - \frac{(v, v_j)}{\|v_j\|^2} \|v_j\|^2 \\
= (v, v_j) - (v, v_j) \\
= 0
\]

Hence \(v - w \perp v_j \). But, as we saw before, this implies that \(v - w \perp W \) because \(v_1, \ldots, v_n \) is a basis. \(\square \)
8.4 Orthogonal projections

Let us now look at what we just did from the point of view of linear maps. What is given in the beginning is a vector space with an inner product and a subspace W. Then for each $v \in V$ we associated a unique vector $w \in W$. Thus we got a map

$$ P : V \rightarrow W, \quad v \mapsto w $$

We even have an explicit formula for $P(v)$: Let (if possible) v_1, \ldots, v_n be an orthogonal basis for W, then

$$ P(v) = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k $$

This shows that P is linear.

We showed earlier that if $v \in W$, then

$$ v = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k $$

So $P(v) = v$ for all $v \in W$. In particular, we get

Lemma. $P^2 = P$.

The map P is called the orthogonal projection onto W. The projection part comes from $P^2 = P$ and orthogonal from the fact that $v - P(v) \perp W$.

8.5 Summary

The result of this discussion is the following:

To find the vector w closest to v we have to:

1. Find (if possible) a basis u_1, \ldots, u_n for W.

2. If this is not an orthogonal basis, then use Gram-Schmidt to construct an orthogonal basis v_1, \ldots, v_n.

3. Then $w = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k$.
8.6 Examples

Example. Let W be the line $W = \mathbb{R}(1, 2)$. Then $u = (1, 2)$ is a basis (orthogonal!) for W. It follows that the orthogonal projection is given by

$$P(x, y) = \frac{x + 2y}{5}(1, 2).$$

Let $(x, y) = (3, 1)$. Then $P(3, 1) = (1, 2)$.

Example. Let W be the line given by $y = 3x$. Then $(1, 3) \in W$ and hence $W = \mathbb{R}(1, 3)$. It follows that

$$P(x, y) = \frac{x + 3y}{10}(1, 3).$$

Example. Let W be the plane generated by the vectors $(1, 1, 1)$ and $(1, 0, 1)$. Find the orthogonal projection $P : \mathbb{R}^3 \rightarrow W$.

Solution. We notice first that $((1, 1, 1), (1, 0, 1)) = 2 \neq 0$, so this is not an orthogonal basis. Using Gram-Schmidt we get:

$v_1 = (1, 1, 1)$
$v_2 = (1, 0, 1) - \frac{2}{3}(1, 1, 1) = (\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}) = (1, -2, 1)$.

To avoid fractions, we can use $(1, -2, 1)$ instead of $\frac{1}{3}(1, -2, 1)$. Thus the orthogonal projection is:

$$P(x, y, z) = \frac{x + y + z}{3}(1, 1, 1) + \frac{x - 2y + z}{6}(1, -2, 1)$$

$$= \left(\frac{2x + 2y + 2z}{6} + \frac{x - 2y + z}{6}, \frac{2x + 2y + 2z}{6} - \frac{x - 2y + z}{6}, \frac{2x + 2y + 2z}{6} + \frac{x - 2y + z}{6}\right)$$

$$= \left(\frac{x + z}{2}, y, \frac{x + z}{2}\right).$$

Example. Let W be the plane $\{(x, y, z) \in \mathbb{R}^3 | x + y + 2z = 0\}$. Find the orthogonal projection $P : \mathbb{R}^3 \rightarrow W$.

8.7. EXERCISES

Solution. We notice that our first step is to find an orthogonal basis for W. The vectors $(1, -1, 0)$ and $(2, 0, -1)$ are in W, but are not orthogonal. We have

$$(2, 0, -1) - \frac{2}{5}(1, -1, 0) = (1, 1, -1) \in W$$

and orthogonal to $(1, -1, 0)$. So we get:

$$P(x, y, z) = \frac{x-y}{2}(1, -1, 0) + \frac{x+y-z}{3}(1, 1, -1)$$

$$= \left(\frac{5x-y-2z}{6}, -\frac{x+5y-2z}{6}, -\frac{x-y+z}{3}\right).$$

8.7 Exercises

1. Let $V \subset \mathbb{R}^2$ be the line $V = \mathbb{R}(1, -1)$.

 (a) Write a formula for the orthogonal projection $P : \mathbb{R}^2 \to V$.
 (b) What is: i) $P(1, 1)$, ii) $P(2, 1)$, iii) $P(2, -2)$?

2. Let $W \subset \mathbb{R}^3$ be the plane

 $$W = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0\}.$$

 (a) Find the orthogonal projection $P : \mathbb{R}^3 \to W$.
 (b) What is: i) $P(1, 1, 2)$, ii) $P(1, -2, 1)$, iii) $P(2, 1, 1)$?

3. Let $W \subset \mathbb{R}^3$ be the plane generated by the vectors $(1, 1, 1)$ and $(1, -1, 1)$.

 (a) Find the orthogonal projection $P : \mathbb{R}^3 \to W$.
 (b) What is: i) $P(1, 1, 2)$, ii) $P(2, 0, 1)$?

4. Let W be the space of continuous functions on $[0, 1]$ generated by the constant function 1 and x. Thus $W = \{a_0 + a_1 x : a_0, a_1 \in \mathbb{R}\}$. Find the orthogonal projection of the following functions onto W:

 i) $P(x^2)$, ii) $P(e^x)$, iii) $P(1 + x^2)$.

5. Let W be the space of piecewise continuous functions on $[0, 1]$ generated by $\chi_{[0,1/2]}$ and $\chi_{[1/2,1]}$. Find orthogonal projections of the following functions onto W:

 i) $P(x)$, ii) $P(x^2)$, iii) $P(\chi_{[0,3/4]})$.