
Lecture 8

Orthogonal Projections

8.1 Introduction

We will now come back to our original aim: Given a vector space V , a
subspace W , and a vector v ∈ V , find the vector w ∈ W which is closest to
v.

First let us clarify what the ”closest” means. The tool to measure distance
is the norm, so we want ‖v − w‖ to be as small as possible.

Thus our problem is:
Find a vector w ∈ W such that

‖v − w‖ ≤ ‖v − u‖

for all u ∈ W .

Now let us recall that if W = Rw1 is a line, then the vector w on the line
W is the one with the property that v − w ⊥ W .
We will start by showing that this is always the case.

8.2 w ∈ W is closest to v iff v − w ⊥ W

Theorem. Let V be a vector space with inner product (·, ·). Let W ⊂ V be
a subspace and v ∈ V . If v−w ⊥ W , then ‖v−w‖ ≤ ‖v− u‖ for all u ∈ W
and ‖v − w‖ = ‖v − u‖ if and only if w = u. Thus w is the member of W
closest to v.
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Proof. First we remark that ‖v − w‖ ≤ ‖v − u‖ if and only if ‖v − w‖2 ≤
‖v − u‖2. Now we simply calculate

‖v − u‖2 = ‖(v − w) + (w − u)‖2

= ‖v − w‖2 + ‖w − u‖2

because v − w ⊥ W and w − u ∈ W

(∗) ≥ ‖v − w‖2 because ‖w − u‖2 ≥ 0

So ‖v − u‖ ≥ ‖v −w‖. If ‖v − u‖2 = ‖v −w‖2, then we see - using (∗)- that
‖w − u‖2 = 0, or w = u.
As ‖v − w‖ = ‖v − u‖ if u = w, we have shown that the statement is
correct.

Theorem. Let V be a vector space with inner product (·, ·). Let W ⊂ V be
a subspace and v ∈ V . If w ∈ W is the closest to v, then v − w ⊥ W .

Proof. We know that ‖v − w‖2 ≤ ‖v − u‖2 for all u ∈ W . Therefore the
function f : R −→ R

F (t) := ‖v − w + tx‖2 (x ∈ W )

has a minimum at t = 0. We have

F (t) = (v − w + tx, v − w + tx)

= (v − w, v − w) + t(v − w, x)

+ t(x, v − w) + t2(x, x)

= ‖v − w‖2 + 2t(v − w, x) + t2‖x‖2

Therefore

0 = F ′(0) = 2(v − w, x).

As x ∈ W was arbitrary, it follows that v − w ⊥ W .
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8.2.1 Construction of w

Our task now is to construct the vector w such that v − w ⊥ W . The idea
is to use Gram-Schmidt orthogonalization.
Let W = Ru and v ∈ V . Applying Gram-Schmidt to u and v gives:

v − (v, u)

‖u‖2
u ⊥ W

So that w = (v,u)
‖u‖2 u is the vector (point) on the line W closest to v.

What if the dimension of W is greater than one? Let v1, . . . , vn be an or-
thogonal basis for W . Applying the Gram-Schmidt to the vectors v1, . . . , vn, v
shows that

v −
n∑

j=1

(v, vj)

‖vj‖2
vj

is orthogonal to each one of the vectors v1, . . . , vn. Since

v −
n∑

j=1

(v, vj)

‖vj‖2
vj

is orthogonal to vj for all j, it is orthogonal to any linear combination of them
c1v1 + . . . + cnvn =

∑n
j=1 cjvj, and hence it is orthogonal to W . Therefore

our vector w closest to v is given by

w =
n∑

j=1

(v, vj)

‖vj‖2
vj.

Let us look at another motivation; Let w ∈ W be the closest to v and let
v1, . . . , vn be a basis for W . Then there are scalars c1, . . . , cn ∈ R such that

w =
n∑

k=1

ckvk.

So what are these scalars? As v − w ⊥ vj for j = 1, . . . , n and vk ⊥ vj for
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k 6= j we get:

0 = (v − w, vj)

= (v, vj)− (w, vj)

= (v, vj)−
n∑

k=1

ck(vk, vj)

= (v, vj)− cj(vj, vj)

= (v, vj)− cj‖vj‖2.

Solving for cj we get

cj =
(v, vj)

‖vj‖2
.

Thus

w =
n∑

j=1

(v, vj)

‖vj‖2
vj.

8.3 The main theorem

We collect the results of the above computations in the following (main)theorem:

Theorem. Let V be a vector space with inner product (·, ·). Let W ⊂ V be
a subspace and assume that {v1, . . . , vn} is an orthogonal basis for W . For

v ∈ V let w =
∑n

j=1
(v,vj)

‖vj‖2 vj ∈ W . Then v − w ⊥ W (or equivalently, w is

the vector in W closest to v).

Proof. We have

(v − w, vj) = (v, vj)− (w, vj)

= (v, vj)−
n∑

k=1

(v, vk)

‖vk‖2
(vk, vj)

= (v, vj)− (v, vj)

‖vj‖2
‖vj‖2

= (v, vj)− (v, vj)

= 0

Hence v − w ⊥ vj. But, as we saw before, this implies that v − w ⊥ W
because v1, . . . , vn is a basis.
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8.4 Orthogonal projections

Let us now look at what we just did from the point of view of linear maps.
What is given in the beginning is a vector space with an inner product and
a subspace W . Then for each v ∈ V we associated a unique vector w ∈ W .
Thus we got a map

P : V −→ W, v 7→ w

We even have an explicit formula for P (v): Let (if possible) v1, . . . , vn be an
orthogonal basis for W , then

P (v) =
n∑

k=1

(v, vk)

‖vk‖2
vk

This shows that P is linear.
We showed earlier that if v ∈ W , then

v =
n∑

k=1

(v, vk)

‖vk‖2
vk

So P (v) = v for all v ∈ W . In particular, we get

Lemma. P 2 = P .

The map P is called the orthogonal projection onto W . The projection
part comes from P 2 = P and orthogonal from the fact that v − P (v) ⊥ W .

8.5 Summary

The result of this discussion is the following:

To find the vector w closest to v we have to:

1. Find (if possible) a basis u1, . . . , un for W .

2. If this is not an orthogonal basis, then use Gram-Schmidt to construct
an orthogonal basis v1, . . . , vn.

3. Then w =
∑n

k=1
(v,vk)
‖vk‖2 vk.
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8.6 Examples

Example. Let W be the line W = R(1, 2). Then u = (1, 2) is a basis (orthog-
onal!) for W . It follows that the orthogonal projection is given by

P (x, y) =
x + 2y

5
(1, 2).

Let (x, y) = (3, 1). Then
P (3, 1) = (1, 2).

Example. Let W be the line given by y = 3x. Then (1, 3) ∈ W and hence
W = R(1, 3).It follows that

P (x, y) =
x + 3y

10
(1, 3).

Example. Let W be the plane generated by the vectors (1, 1, 1) and (1, 0, 1).
Find the orthogonal projection P : R3 −→ W .

Solution. We notice first that ((1, 1, 1), (1, 0, 1)) = 2 6= 0, so this is not an
orthogonal basis. Using Gram-Schmidt we get:
v1 = (1, 1, 1)
v2 = (1, 0, 1)− 2

3
(1, 1, 1) = (1

3
,−2

3
), 1

3
= 1

3
(1,−2, 1).

To avoid fractions, we can use (1,−2, 1) instead of 1
3
(1,−2, 1). Thus the

orthogonal projection is:

P (x, y, z) =
x + y + z

3
(1, 1, 1) +

x− 2y + z

6
(1,−2, 1)

=
(

2x + 2y + 2z

6
+

x− 2y + z

6
,

2x + 2y + 2z

6
− 2

x− 2y + z

6
,

2x + 2y + 2z

6
+

x− 2y + z

6

)

=
(

x + z

2
, y,

x + z

2

)
.

Example. Let W be the plane {(x, y, z) ∈ R3|x + y + 2z = 0}. Find the
orthogonal projection P : R3 −→ W .
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Solution. We notice that our first step is to find an orthogonal basis for W .
The vectors (1,−1, 0) and (2, 0,−1) are in W , but are not orthogonal.We
have

(2, 0,−1)− 2
2
(1,−1, 0) = (1, 1,−1) ∈ W

and orthogonal to (1,−1, 0). So we get:

P (x, y, z) =
x− y

2
(1,−1, 0) +

x + y − z

3
(1, 1,−1)

=

(
5x− y − 2z

6
,
−x + 5y − 2z

6
,
−x− y + z

3

)
.

8.7 Exercises

1. Let V ⊂ R2 be the line V = R(1,−1).

(a) Write a formula for the orthogonal projection P : R2 → V.

(b) What is: i) P (1, 1), ii) P (2, 1), iii) P (2,−2)?

2. Let W ⊂ R3 be the plane

W = {(x, y, z) ∈ R3 : x− 2y + z = 0}.
(a) Find the orthogonal projection P : R3 → W.

(b) What is: i) P (1, 1, 2), ii) P (1,−2, 1), iii) P (2, 1, 1)?

3. Let W ⊂ R3 be the plane generated by the vectors (1, 1, 1) and (1,−1, 1).

(a) Find the orthogonal projection P : R3 → W.

(b) What is: i) P (1, 1, 2), ii) P (2, 0, 1)?

4. Let W be the space of continuous functions on [0, 1] generated by the
constant function 1 and x. Thus W = {a0 + a1x : a0, a1 ∈ R}. Find
the orthogonal projection of the following functions onto W :
i) P (x2), ii) P (ex), iii) P (1 + x2).

5. Let W be the space of piecewise continuous functions on [0, 1] gener-
ated by χ[0,1/2) and χ[1/2,1). Find orthogonal projections of the following
functions onto W :
i) P (x), ii) P (x2), iii) P (χ[0,3/4]).


