Lecture 8

Orthogonal Projections

8.1 Introduction

We will now come back to our original aim: Given a vector space V, a subspace W, and a vector $v \in V$, find the vector $w \in W$ which is closest to v.

First let us clarify what the "closest" means. The tool to measure distance is the <u>norm</u>, so we want ||v - w|| to be as small as possible.

Thus our problem is: Find a vector $w \in W$ such that

$$\|v - w\| \le \|v - u\|$$

for all $u \in W$.

Now let us recall that if $W = \mathbb{R}w_1$ is a line, then the vector w on the line W is the one with the property that $v - w \perp W$. We will start by showing that this is always the case.

8.2 $w \in W$ is closest to v iff $v - w \perp W$

Theorem. Let V be a vector space with inner product (\cdot, \cdot) . Let $W \subset V$ be a subspace and $v \in V$. If $v - w \perp W$, then $||v - w|| \leq ||v - u||$ for all $u \in W$ and ||v - w|| = ||v - u|| if and only if w = u. Thus w is the member of W closest to v. *Proof.* First we remark that $||v - w|| \le ||v - u||$ if and only if $||v - w||^2 \le ||v - u||^2$. Now we simply calculate

$$||v - u||^{2} = ||(v - w) + (w - u)||^{2}$$

= $||v - w||^{2} + ||w - u||^{2}$
because $v - w \perp W$ and $w - u \in W$
(*) $\geq ||v - w||^{2}$ because $||w - u||^{2} \geq 0$

So $||v - u|| \ge ||v - w||$. If $||v - u||^2 = ||v - w||^2$, then we see - using (*)- that $||w - u||^2 = 0$, or w = u. As ||v - w|| = ||v - u|| if u = w, we have shown that the statement is correct.

Theorem. Let V be a vector space with inner product (\cdot, \cdot) . Let $W \subset V$ be a subspace and $v \in V$. If $w \in W$ is the closest to v, then $v - w \perp W$.

Proof. We know that $||v - w||^2 \le ||v - u||^2$ for all $u \in W$. Therefore the function $f : \mathbb{R} \longrightarrow \mathbb{R}$

 $F(t) := \|v - w + tx\|^2 \quad (x \in W)$

has a minimum at t = 0. We have

$$F(t) = (v - w + tx, v - w + tx)$$

= $(v - w, v - w) + t(v - w, x)$
+ $t(x, v - w) + t^{2}(x, x)$
= $||v - w||^{2} + 2t(v - w, x) + t^{2}||x||^{2}$

Therefore

$$0 = F'(0) = 2(v - w, x).$$

As $x \in W$ was arbitrary, it follows that $v - w \perp W$.

8.2.1 Construction of w

Our task now is to construct the vector w such that $v - w \perp W$. The idea is to use Gram-Schmidt orthogonalization.

Let $W = \mathbb{R}u$ and $v \in V$. Applying Gram-Schmidt to u and v gives:

$$v - \frac{(v, u)}{\|u\|^2} u \perp W$$

So that $w = \frac{(v,u)}{\|u\|^2} u$ is the vector (point) on the line W closest to v.

What if the dimension of W is greater than one? Let v_1, \ldots, v_n be an orthogonal basis for W. Applying the Gram-Schmidt to the vectors v_1, \ldots, v_n, v shows that

$$v - \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j$$

is orthogonal to each one of the vectors v_1, \ldots, v_n . Since

$$v - \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j$$

is orthogonal to v_j for all j, it is orthogonal to any linear combination of them $c_1v_1 + \ldots + c_nv_n = \sum_{j=1}^n c_jv_j$, and hence it is orthogonal to W. Therefore our vector w closest to v is given by

$$w = \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j.$$

Let us look at another motivation; Let $w \in W$ be the closest to v and let v_1, \ldots, v_n be a basis for W. Then there are scalars $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$w = \sum_{k=1}^{n} c_k v_k.$$

So what are these scalars? As $v - w \perp v_j$ for $j = 1, \ldots, n$ and $v_k \perp v_j$ for

 $k \neq j$ we get:

$$0 = (v - w, v_j)$$

= $(v, v_j) - (w, v_j)$
= $(v, v_j) - \sum_{k=1}^{n} c_k(v_k, v_j)$
= $(v, v_j) - c_j(v_j, v_j)$
= $(v, v_j) - c_j ||v_j||^2.$

Solving for c_j we get

$$c_j = \frac{(v, v_j)}{\|v_j\|^2}$$

Thus

$$w = \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j.$$

8.3 The main theorem

We collect the results of the above computations in the following (main)theorem: Theorem. Let V be a vector space with inner product (\cdot, \cdot) . Let $W \subset V$ be a subspace and assume that $\{v_1, \ldots, v_n\}$ is an orthogonal basis for W. For $v \in V$ let $w = \sum_{j=1}^{n} \frac{(v, v_j)}{\|v_j\|^2} v_j \in W$. Then $v - w \perp W$ (or equivalently, w is the vector in W closest to v).

Proof. We have

$$(v - w, v_j) = (v, v_j) - (w, v_j)$$

= $(v, v_j) - \sum_{k=1}^n \frac{(v, v_k)}{\|v_k\|^2} (v_k, v_j)$
= $(v, v_j) - \frac{(v, v_j)}{\|v_j\|^2} \|v_j\|^2$
= $(v, v_j) - (v, v_j)$
= 0

Hence $v - w \perp v_j$. But, as we saw before, this implies that $v - w \perp W$ because v_1, \ldots, v_n is a basis.

8.4 Orthogonal projections

Let us now look at what we just did from the point of view of linear maps. What is given in the beginning is a vector space with an inner product and a subspace W. Then for each $v \in V$ we associated a unique vector $w \in W$. Thus we got a map

 $P:V\longrightarrow W,\quad v\mapsto w$

We even have an explicit formula for P(v): Let (if possible) v_1, \ldots, v_n be an orthogonal basis for W, then

$$P(v) = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k$$

This shows that P is <u>linear</u>.

We showed earlier that if $v \in W$, then

$$v = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k$$

So P(v) = v for all $v \in W$. In particular, we get

Lemma. $P^2 = P$.

The map P is called the <u>orthogonal projection</u> onto W. The projection part comes from $P^2 = P$ and orthogonal from the fact that $v - P(v) \perp W$.

8.5 Summary

The result of this discussion is the following:

To find the vector w closest to v we have to:

- 1. Find (if possible) a basis u_1, \ldots, u_n for W.
- 2. If this is not an orthogonal basis, then use Gram-Schmidt to construct an orthogonal basis v_1, \ldots, v_n .
- 3. Then $w = \sum_{k=1}^{n} \frac{(v, v_k)}{\|v_k\|^2} v_k$.

8.6 Examples

Example. Let W be the line $W = \mathbb{R}(1, 2)$. Then u = (1, 2) is a basis (orthogonal!) for W. It follows that the orthogonal projection is given by

$$P(x,y) = \frac{x+2y}{5}(1,2).$$

Let (x, y) = (3, 1). Then

$$P(3,1) = (1,2).$$

Example. Let W be the line given by y = 3x. Then $(1,3) \in W$ and hence $W = \mathbb{R}(1,3)$. It follows that

$$P(x,y) = \frac{x+3y}{10}(1,3).$$

Example. Let W be the plane generated by the vectors (1, 1, 1) and (1, 0, 1). Find the orthogonal projection $P : \mathbb{R}^3 \longrightarrow W$.

Solution. We notice first that $((1,1,1),(1,0,1)) = 2 \neq 0$, so this is not an orthogonal basis. Using Gram-Schmidt we get:

 $v_1 = (1, 1, 1)$ $v_2 = (1, 0, 1) - \frac{2}{3}(1, 1, 1) = (\frac{1}{3}, -\frac{2}{3}), \frac{1}{3} = \frac{1}{3}(1, -2, 1).$

To avoid fractions, we can use (1, -2, 1) instead of $\frac{1}{3}(1, -2, 1)$. Thus the orthogonal projection is:

$$P(x, y, z) = \frac{x + y + z}{3}(1, 1, 1) + \frac{x - 2y + z}{6}(1, -2, 1)$$

$$= \left(\frac{2x + 2y + 2z}{6} + \frac{x - 2y + z}{6}, \frac{2x + 2y + 2z}{6} - 2\frac{x - 2y + z}{6}, \frac{2x + 2y + 2z}{6} + \frac{x - 2y + z}{6}\right)$$

$$= \left(\frac{x + z}{2}, y, \frac{x + z}{2}\right).$$

Example. Let W be the plane $\{(x, y, z) \in \mathbb{R}^3 | x + y + 2z = 0\}$. Find the orthogonal projection $P : \mathbb{R}^3 \longrightarrow W$.

8.7. EXERCISES

Solution. We notice that our first step is to find an orthogonal basis for W. The vectors (1, -1, 0) and (2, 0, -1) are in W, but are not orthogonal.We have

$$(2,0,-1) - \frac{2}{2}(1,-1,0) = (1,1,-1) \in W$$

and orthogonal to (1, -1, 0). So we get:

$$P(x, y, z) = \frac{x - y}{2}(1, -1, 0) + \frac{x + y - z}{3}(1, 1, -1)$$
$$= \left(\frac{5x - y - 2z}{6}, \frac{-x + 5y - 2z}{6}, \frac{-x - y + z}{3}\right).$$

8.7 Exercises

- 1. Let $V \subset \mathbb{R}^2$ be the line $V = \mathbb{R}(1, -1)$.
 - (a) Write a formula for the orthogonal projection $P : \mathbb{R}^2 \to V$.
 - (b) What is: i) P(1,1), ii) P(2,1), iii) P(2,-2)?
- 2. Let $W \subset \mathbb{R}^3$ be the plane

$$W = \{ (x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0 \}.$$

- (a) Find the orthogonal projection $P : \mathbb{R}^3 \to W$.
- (b) What is: i) P(1, 1, 2), ii) P(1, -2, 1), iii) P(2, 1, 1)?
- 3. Let $W \subset \mathbb{R}^3$ be the plane generated by the vectors (1, 1, 1) and (1, -1, 1).
 - (a) Find the orthogonal projection $P : \mathbb{R}^3 \to W$.
 - (b) What is: i) P(1, 1, 2), ii) P(2, 0, 1)?
- 4. Let W be the space of continuous functions on [0, 1] generated by the constant function 1 and x. Thus W = {a₀ + a₁x : a₀, a₁ ∈ ℝ}. Find the orthogonal projection of the following functions onto W:
 i) P(x²), ii) P(e^x), iii) P(1 + x²).
- 5. Let W be the space of piecewise continuous functions on [0, 1] generated by $\chi_{[0,1/2)}$ and $\chi_{[1/2,1)}$. Find orthogonal projections of the following functions onto W:
 - i) P(x), ii) $P(x^2)$, iii) $P(\chi_{[0,3/4]})$.