
Lecture 12

Discrete and Fast Fourier
Transforms

12.1 Introduction

The goal of the chapter is to study the Discrete Fourier Transform (DFT)
and the Fast Fourier Transform (FFT). In the course of the chapter we will
see several similarities between Fourier series and wavelets, namely

• Orthonormal bases make it simple to calculate coefficients,

• Algebraic relations allow for fast transform, and

• Complete bases allow for arbitrarily precise approximations.

There is, however, a very important difference between Fourier series and
wavelets, namely

Wavelets have compact support, Fourier series do not.

12.2 The Discrete Fourier Transform (DFT)

12.2.1 Definition and Inversion

Let ~e0, . . . ,~eN−1 denote the usual standard basis for Cn. A vector ~f =
(f0, . . . , fN−1) ∈ CN may then be written as ~f = f0~e0 + · · ·+ fN−1~en−1.

77



78 LECTURE 12. DISCRETE AND FAST FOURIER TRANSFORMS

Important example:Assume the array ~f is a sample from a function
f : R → C, that is, we use the sample points x0 := 0, . . . , x` := ` ·
(2π/N), . . . , xN1 := (N−1)·(2π/N) with values~f = (f(x0), . . . , f(x`), . . . , f(xN−1)).

The Discrete Fourier Transform expresses such an array ~f with linear
combinations of arrays of the type

~wk :=
(
eikx`

)N−1

`=0
=

(
1, eik2π/N , . . . , eik`·2π/N , . . . , eik(N−1)·2π/N

)
= (~wk)` =

(
ei·2π/N

)k` =: ωk`
N .

Definition For each positive integer N , we define an inner product on CN

by

〈~z, ~w〉N =
1

N

N−1∑
m=0

zm · wm.

Lemma For each positive integer N , the set

{~wk | k ∈ {0, . . . , N − 1}}

is orthonormal with respect to the inner product 〈·, ·〉N .

In fact {~w0, . . . , ~wN−1} is an orthonormal basis for CN .

Sketch of Proof For all k, ` ∈ Z so that ` = k + JN for some J , we have

〈~wk, ~w`〉N =
1
N

N−1∑
m=0

(~wk)m(~w`)m =
1
N

N−1∑
m=0

eikm·2π/Ne−i`m·2π/N

=
1
N

N−1∑
m=0

eikm·2π/Ne−i(k+JN)m·2π/N =
1
N

N−1∑
m=0

1 = 1.

For the remaining k, ` ∈ Z we use the geometric series to see that

〈~wk, ~w`〉N =
1
N

N−1∑
m=0

(~wk)m(~w`)m =
1
N

N−1∑
m=0

ei[k−`]m·2π/N

=
1
N

N−1∑
m=0

(
ei[k−`]·2π/N

)m =
1
N

1− (ei[k−`]m·2π/N )N

1− ei[k−`]·2π/N

=
1
N

1− (e2πi)[k−`]

1− ei[k−`]·2π/N
=

1
N

1− 1
1− ei[k−`]·2π/N

= 0.



12.3. DISCRETE FOURIER TRANSFORM 79

12.2.2 The Fourier matrix

Definition For each positive integer N , define the Fourier matrix N
F Ω by

N
F Ωk,` = (~w`)k = eik`2π/N = ωk`

N .

Example: If N = 1, then ωN = ω1 = 1, and N
F Ω = 1. If N = 2, then

ωN = ω2 = −1, and

2
F Ω =

(
(ω0

2)
0 (ω1

2)
0

(ω0
2)

1 (ω1
2)

1

)
=

(
1 1
1 −1

)
(the Haar matrix)

If N = 4, then ωN = ω4 = ei2π/4 = i, and

4
F Ω =


1 (i1)0 (i2)0 (i3)0

1 (i1)1 (i2)1 (i3)1

1 (i1)2 (i2)2 (i3)2

1 (i1)3 (i2)3 (i3)3

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

12.3 Discrete Fourier Transform

Definition For each positive integer N and each array ~f ∈ CN , the Discrete
Fourier Transform of ~f is the array f̂ defined by

f̂k = 〈~f, ~wk〉N =
1

N

N−1∑
m=0

fm · e−ikm·2π/N .

It is very important to understand this definition. The left hand side is
simply the orthogonal projection of ~f onto the basis vector ~wk.

Since the DFT consists of the coefficients of ~f expressed with respect to
the new basis (~wk)

N−1
k=0 , the DFT simply “rotates” the coordinates in CN .

12.3.1 Two Results

Proposition The DFT corresponds to a multiplication by the transposed
conjugate matrix 1

N
N
F ΩT .



80 LECTURE 12. DISCRETE AND FAST FOURIER TRANSFORMS

Proof: Simply note that

f̂N,k = 〈~f , ~wk〉N =
1
N

N−1∑
m=0

f`e
−ik`·2π/N

=
1
N

N−1∑
m=0

N
F ΩT · f` =

1
N

·
(
N
F ΩT ·~f

)
k
.

Proposition 13 For each positive integer N and each array ~f ∈ CN , we
have the following inversion formulas:

~f =
N−1∑
m=0

f̂k ~wk , f̂k = 〈~f , ~wk〉N =
1
N

N−1∑
m=0

fm · e−ikm·2π/N .

One proof The easiest way to prove Proposition 13 is to note that (~wk)
N−1
k=0

forms an orthonormal basis for CN . Therefore, the formula

~f =
N−1∑
k=0

f̂k ~wk =
N−1∑
k=0

〈~f , ~wk〉N ~wk

represents the orthogonal projection of ~f on CN . But the projection of ~f on
CN is ~f , since ~f already lies in the range of the projection (the range being
CN).

Example With N = 4, the fourth root of unity is ωN = ω4 = i. The N
arrays ~wk thus become

~w0 =
(
[i]0·0, [i]0·1, [i]0·2, [i]0·3

)
= (1, 1, 1, 1),

~w1 =
(
[i]1·0, [i]1·1, [i]1·2, [i]1·3

)
= (1, i,−1,−i),

~w2 =
(
[i]2·0, [i]2·1, [i]2·2, [i]2·3

)
= (1,−1, 1,−1),

~w3 =
(
[i]3·0, [i]3·1, [i]3·2, [i]3·3

)
= (1,−i,−1, i).

Assume ~f = (f0, f1, f2, f3) = (9, 7, 5, 7). Then (remember the complex con-
jugation!):

f̂0 = 〈~f , ~w0〉N = 〈(9, 7, 5, 7), (1, 1, 1, 1)〉4 = 7,

f̂1 = 〈~f , ~w1〉N = 〈(9, 7, 5, 7), (1, i,−1,−i)〉4 = 1,

f̂2 = 〈~f , ~w2〉N = 〈(9, 7, 5, 7), (1,−1, 1,−1)〉4 = 0,

f̂3 = 〈~f , ~w3〉N = 〈(9, 7, 5, 7), (1,−i,−1, i)〉4 = 1.



12.4. UNITARY OPERATORS 81

Therefore

~f = (9, 7, 5, 7)

= 7 · (1, 1, 1, 1) + 1 · (1, i,−1,−i)

+ 0 · (1,−1, 1,−1) + 1 · (1,−i,−1, i)

is the Inverse Discrete Fourier Transform of the array ~f = (9, 7, 5, 7).

12.4 Unitary Operators

We have just seen that the Discrete Fourier Transform is a linear operator

DFT : CN → CN , ~f 7→ f̂ =
1

N
N
F ΩT~f .

Its inverse is given by

DFT−1 : CN → CN , f̂ 7→ ~f = N
F Ω~f .

Using the multiplicative constant 1/
√

N instead of 1/N , the Discrete

Fourier Transform thus is multiplication by the matrix N
F U := 1√

N
N
F ΩT .

In the exercises you are asked to show that (N
F U)−1 = (N

F U)
T
. Such an

operator has a special name:

Definition 17 For each linear space V with an inner product 〈·, ·〉, a
linear operator L : V → V is unitary if

〈Lv, Lw〉 = 〈v, w〉

for all v, w ∈ V .

12.5 The Fast Fourier Transform

12.5.1 Introduction

We have seen how to convert a sample ~f = (f0, . . . , fN−1) to a frequency

sample
~̂
f = (f̂0, . . . , f̂N−1) and back again. But there is an aspect we haven’t

touched upon yet, namely



82 LECTURE 12. DISCRETE AND FAST FOURIER TRANSFORMS

How long does it take to perform these calculations?

Let us try to estimate the number of calculations that are required. So let
us start with N complex numbers (f0, . . . , fN−1).

• Each number fj = Refj + iImfj is being multiplied by e−2πijn/N =

cos 2πijn
N

− i sin 2πijn
N

; this gives 4N operations.

• This has to be done for each of the numbers fj, totalling 4N2 real
multiplications, or N2 complex multiplications.

• The numbers should then be added, but that would merely amount to

2N operations. Our number of operations is thus 4N2 .

So how big is this number?

An Example Assume we need one minute to compute the Fourier trans-
form for a sequence with 4 samples. It would therefore take us approximately

60

4× 42
=

60

64
≈ 0.94sec per operation.

• With N = 8 we would need
4× 82 × 15

16× 60
= 4 min,

• With N = 16 we would need
4× 162 × 15

16× 60
= 16 min,

• With N = 32 we would need
4× 322 × 15

16× 60
= 64 min, and

• With N = 28 = 256 we would need
4× 2562 × 15

16× 60
= 4096 min, (almost

three days).

• A standard TV need roughly 10000000 pixel values every second to preserve
relevant information. This would take us around 118900256 years (!!!) to
analyze all this information.



12.5. THE FAST FOURIER TRANSFORM 83

12.5.2 The Forward FFT

The point about the Fast Fourier Transform (FFT) is that it gives the same co-
efficients as the Discrete Fourier Transform (DFT) but requires less calculations.
For each integer N of the form N = 2k for some k and for each array

~f = (f0, . . . , fN−1) = (f(0), . . . , f(N − 1)) ∈ CN ,

we define two arrays

even
~f = (f(0), f(2), . . . , f(2j), . . . , f(N − 2)) and

odd
~f = (f(1), f(3), . . . , f(2j + 1), . . . , f(N − 1)).

We want to know how the DFT of even
~f and the DFT of odd

~f are related to
the DFT of ~f . The answer is given in the next result:

Central result

Lemma 19 For each k ∈ {0, 1, . . . , N
2
−1} and all arrays~f = (f(0), . . . , f(N−

1)) ∈ CN

f̂k =
1

2
·
(

evenf̂k + [e−i·2π/N ]k · [oddf̂k]
)

,

f̂
k+

N
2

=
1

2
·
(

evenf̂k − [e−i·2π/N ]k · [oddf̂k]
)

.

We will not give a proof but merely see what the Lemma says in the case
N = 2. Then N/2 = 1 and ~f = (f0, f1). Thus even

~f = (f0) and odd
~f = (f1).

Using that e−i·2π/2 = −1, the Lemma simply says that

f̂0 =
f0 + f1

2
and f̂1 =

f0 − f1

2
.

Time required?

We will only count complex operations.

• We start with an array ~f = (f0, . . . , fN−1) where N = 2k.

• The DFT needed approximately N2 complex multiplications.



84 LECTURE 12. DISCRETE AND FAST FOURIER TRANSFORMS

• Using the FFT (where we decompose ~f into two smaller arrays, divide
each of these into two smaller arrays, and so on), we end up with k
arrays each of length 2.

We thus need around kN complex multiplications instead of N2.

Is this significant?

In particular, taking N = 210 ≈ 1.024× 103 and calculate the time, the DFT
takes

4× 220 × 15

16× 60× 60× 24× 365
≈ 1247 years

but the FFT only takes

4× 10× 210 × 15

16× 60× 60
≈ 10.67 min.

Obviously this is a very distinct reduction in the time required to perform
the calculations :-)

12.5.3 The Inverse FFT (IFFT)

For each integer N , the FFT admits an inverse map that we call the Inverse
Fast Fourier Transform (IFFT). Starting with an array f̂ ∈ CN we thus

contruct the array of data ~f ∈ CN such that f̂ is the DFT of ~f .

Using that ~f = f̂0~w0 + · · ·+ f̂k ~wk + · · ·+ f̂N−1~wN−1 we thus get for the
coordinates with index ` that

f` =
N−1∑
k=0

f̂k(~wk)` =
N−1∑
k=0

f̂keik`·2π/N .

We may interpret this formula as yet another FFT:

f` =
N−1∑
k=0

f̂keik`·2π/N =
N−1∑
k=0

f̂keik`·2π/N

= N · 1
N

N−1∑
k=0

f̌ke−ik`k·2π/N = N ·
ˆ̂
f`

So in order to calculate the data ~f from f̂ , it suffices to form the complex
conjugate of f̂ , take its FFT multiplied by N , and then take the complex
conjugate one more time.



12.5. THE FAST FOURIER TRANSFORM 85

12.5.4 Interpolation by the IFFT

Thus far we have used the sample points x` = ` · 2π
N

, but the IFFT provides
a way to interpolate the function f in other points. To see how it works, we
recall that (by definition of the DFT),

f(x`) =
N−1∑
k=0

f̂ke
ikx` .

One way to interpolate f at x is therefore to approximate f(x) by

f(x) ≈
N−1∑
k=0

f̂ke
ikx.

However, if we consider several values of x spaced by multiples of 2π
N

, the
Fast Fourier Transform is a more convenient tool. So let u = x− x` for any
`. Thus

f(x) ≈
N1∑
k=0

f̂ke
ikx =

N−1∑
k=0

f̂ke
ik[u+x`]

=
N−1∑
k=0

(
f̂ke

iku
)

eikx` =
N−1∑
k=0

(
f̂ke

iku
)

eik`·2π/N ,

where the sums thus obtained are just the IFFT applied to the coefficients
(f̂ke

iku)N−1
k=0 . Therefore, to interpolate f at the points x = u + ` · 2π

N
, ` ∈

{0, . . . , N − 1}, it suffices to multiply each coefficient f̂k by eiku = (eiu)k and
then calculate the IFFT of the array (f̂ke

iku)N−1
k=0 .

12.5.5 Bit Reversal

One way to better facilitate a recursive calculation of the Fast Fourier Trans-
form is to rearrange the initial date in such a way that the Fast Fourier
Transform operates on adjacent pairs of arrays in each step of the recursion.
More precisely:

Definition 23 Bit reversal transforms a finite sequence (pk−1, pk−2, . . . , p1, p0)
of k (binary) integers pj ∈ {0, 1} into the bit-reversed sequence (p0, p1, . . . , pk−2, pk−1).



86 LECTURE 12. DISCRETE AND FAST FOURIER TRANSFORMS

So bit reversal transforms a binary integer

p = pk−12
k−1 + pk−22

k−2 + · · ·+ p12 + p0

into the binary integer

q = B(p) := pk−1 + pk−22 + · · ·+ p12
k−2 + p02

k−1.

Proposition 24 For each index N = 2n, the FFT amounts to the following
chain of operations:

(0) For each binary index p ∈ {0, . . . , N − 1}, calculate the bit-reversed
index q = B(p) and arrange the data ~z = (z0, . . . , zN−1) in the order
~zB := (zB(0), . . . , zB(n−1));

(1) For each k ∈ {0, . . . , n− 1}, perform one step of the FFT on each of the
2(n−k)−1 pairs of adjacent sequences of 2k elements.

We can therefore perform the Fast Fourier Transform in the following way:

• For each p ∈ {0, . . . , N − 1}, calculate q = B(p) and arrange the data
~z = (z0, . . . , zN−1) as

~zB = (zB(0), . . . , zB(N−1))

• Compute the N/2 Fast Fourier Transform steps from one to two points
of each of the N/2 pairs:

([ẑB(0), ẑB(1)], . . . , [ẑB(N−2), ẑB(N−1)]).

• Compute the N/4 Fast Fourier Transform steps from two to four points
of each of the N/4 sequences of four numbers:

([ẑB(0), ẑB(1), ẑB(2), ẑB(3)], . . . ,

[ẑB(N−3), ẑB(N−2), ẑB(N−1), ẑB(N−1)]).

• Compute the Fast Fourier Transform step from N/2 to N points of the
sequence of N numbers:

([ẑB(0), . . . , ẑB(N/2)−1)], [ẑB(N/2), . . . , ẑB(N−1)]).



12.5. THE FAST FOURIER TRANSFORM 87

12.5.6 Applications of the FFT

Noise Reduction Through FFT

The idea is that if we are given a periodic signal with a larger amplitude
added to noise, the Fast Fourier Transform can be used to decompose the the
superposition of noise and the signal itself into a linear combination if terms
with different frequencies. This will identify and preserve the contribution
of the signal due to the larger coefficients and rejects the smaller coefficients
from the noise. The original signal thus reemerges.

See p.165-167 in the book.

12.5.7 Multidimensional DFT and FFT


