The Haar Wavelet

1. FuncTIiONs, WAVELETS, AND SIGNALS

Analysis is about functions! So our first question will be: What is
a function? In text books functions are usually given by an explicit
formula like

flx)=2x+3
or
g(t) = €' + cos(3t) .

But in real life this is usually not possible! Most functions are
given as a solution to a differential equation like

Y +py=gq

or as finitely many numbers collected as a result of an measurement
or another form of an experiment. In our digital age this is even more
important because any form of digital information is discrete and finite.
Therefore we do not have all the information on the function that we
are working with only finitely many sample values. What does this
mean? Every computer or any other form of digital storage has only
limited amount of space. Even if that amount is counted in Gigabits,
only finitely many bites can be stored that way. Even worse, even if we
have a formula for a function, and are then able to write a computer
algorithms to evaluate it, that calculation will only result in finitely
many numerical values, because a computer can only deal with number
of finite length and there is always some limitation of the size. In this
class we mostly think of functions as signals. There are two main classes
of signals:

(1) Analog signals
(2) Digital signals.

If you think about it for a moment you will probably know the differ-
ence. You probably know analog signals from playing a tape, listening
to a tape, using an analog phone, or from a TV. Those signals usually

changes continuously by time - think of a tape, music on a LP, TV
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signals. Those signals are build up using simple sin and cos waves:

0.5

0 5

By changing the amplitude and the frequency, and by adding several
waves more complicated signals results. As an example the superposi-
tion of the simple waves 2 cos(3t), —3sin(4t), and cos(4t — 2) results in
the function

2 cos(3t) — 3sin(4t) 4 cos(4t — 2)
which corresponds to the graph

21

Digital signals are different, they are discrete, and finite. We divide a
computer monitor into finitely many pixels, and each pixel has a given
color which is encoded using a number say between 0 and 255. Think
of this as 256 different intensity levels, or scales, of gray, ranging from
0 (black) and 255 (white). A digital image will be created by dividing
part of the x,y-plane into grid of squares called pixels and coloring
each pixel with some shade of gray or color. This information can
be put together to form a function of two variable. The value of the
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function at each point in the plane corresponds then to the value of the
gray scale at that point. Notice that this function will in general not
be continuous but build up from elementary jump functions. Analog
to digital is in some cases to approximate a continuous function
like the one in picture 1 by step functions. Here the important word is
approximate. It is an important part of our analysis to understand
in what sense the step functions approximate the true signal and what
the error or true difference is. One of the practical problems is then
to:

(1) Convert continuous analog signa/music into a discrete finite
digital signal;

(2) Convert the signal back to analog signal to play it;

(3) Compress the information to store it or to speed up the trans-
formation of the signal on the internet, over a satellite in case
we are talking about TV or digital phone;

One way to do this is to use wavelets a relatively new branch of
mathematics. A good example is the FBI fingerprint files and image
compression standard the so-called wavelet transform/scalar quan-
tization (WS(Q) image coding, which was developed by project leader
Tom Hopper of the FBI’s criminal Justice Information Service Division
and Jonathan Bradley and Chris Brislawn from the Computer Research
and Application Group at Los Alamos National Laboratory. See Chris
Brislwn’s homepage:

http://www.c3.lanl.gov/“brislawn/FBI/FBLhtml
Here are some of the main facts:

e The FBI is digitizing fingerprints at 500 dots per inch

e With 8 bits of grayscale resolution

e A single fingerprint card turns into about 10 MB of data! For
each person we need 10 cards

one such card with a 56 KB-modem?

Question: How long does it take to transform

e And this with about 25 millions persons or about 250 millions
cards: This is 2500000000 MB of images!

Question: How many Hard drive (say 16 MB)
do we need to store this information

Without some sort of compression of data, the size of this database
would make sorting, storing, and searching nearly impossible. But
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the compression has to be such that we still have a "true” image of the
fingerprints. Let us look at some information from

http://www.c3.lanl.gov/ brislawn/FBI/FBLhtml
Other tasks or problems where wavelets are used are:

e noise, a extra information in a signal that is introduced during
transmission of data. Wavelets and other integral transforms
can be used to filter out the noise.

e How do we make a CD out of a LP, i.e., how do we digitalize
analog information?

e How do we transform live interviews or TV-reportage as fast as
possibly?

We will not discuss all of those questions. What we will do is to dis-
cuss the basic mathematics behind the theory of wavelets and other
similar integral transforms, some of which we will discuss in this
class.

2. FUNCTIONS

Functions are one of the most important objects in mathematics and
all of its applications. We are confronted with functions every time
where one quantity - the dependent variable - depends on one or more
other quantities - the independent variables.

(1) The volume V of a box depends of the length, the with, and
the height of the box. Denoting the length by the letter [, the
with by w and the height by h, we have

V=Il-w-h.

Thus the volume V' is a function of three variables, V = V (I, w, h).
(2) The area A of a circle depends on the radius r:

A=27-r.

Thus the area is a function of one variable, A = A(r).
(3) According to Newtons law there is a simple relation between
force and acceleration given by

F =ma
or
F
a=—.
m

Thus we can view the force as a function of the acceleration or
the acceleration as a function of the force. For example if we
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hold a 1 gram ball 10 meters above the surface of the earth,
then a force

F = —9.8/1000

The velocity of the ball at time ¢ after we let it loose is given
by
v = at = —9.8tm/sec

and then the height above the earth is given by

t
h= 10+/ v(t) dt
0
=10 — 4.95¢%.

In particular both the velocity and the height depends on the
time. Notice that both the height function and the velocity is
not defined for all time. First of all our formula is only valid
for positive time and furthermore the height can not be smaller
than zero. To find the upper time limit for our height and
velocity function we have to solve the equation

10—-49t2=0

/10
t=14/-—~1.429.
4.9

We can therefore write
0 if t<0
u(t) =4 —98t if 0<t<y/q5
0 if 10 < ¢

or

and
10 if t<0

h(t) = { 10—4.98 if 0<t</75

: 10

Consider a family driving in a car from Baton Rouge to Hous-
ton. The distance traveled at time ¢ depends on the velocity of
the car. It is very unlikely that they are driving at a constant
velocity, so the velocity depends on the time. Thus the velocity
is a function of the time v = v(t), where we can measure ¢ in
minutes, hours, or even seconds. Let us measure the time in



minutes Then the distance from Baton Rouge after 7" minutes
is

is then and the velocity might depend on the time.

Definition 1. A function f defined on a non-empty set A with a
value in a set B is a rule that assigns to each element in A exactly
one element in the set B.

Thus
fo)=v1i-,-1<t<1,

is a function, but
gty =+£V1—2, —1<t<1

is not a function, because it assigns to each ¢ in the interval [—1, 1] two
values, the positive and the negative square root of the number 1—#2.
We will often use the world signal for functions. This is motivated by
many of the applications. Here the independent variable ¢ stands for
time and f(¢) is a time dependent signal.

In this course our set A will be a subset of the real line R or the plane
R? and B will be the real line. Later we will also consider subsets of
the complex plane C. The set A is called the domain of the function
f. If z € A then f(z) is called the value of the function at the point
z. The range of f is the set of all possible values, {f(z) | z € A}. We
say that the elements in A are the independent variables and the
values f(z) the dependent variables. The graph of the function
f+ A — Ris the set of points in the plain

G(f) = {(&,y) €R |z € Ay = f()}

Notice that usually we will not be able to picture all of the graph
because A might be an infinite interval.

Example 1. Let A be the set of all real numbers except 2. Thus
A={teR|t#2} =R\ {2}.
Let
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Then f(t) is defined for all real numbers except 2 and the range of f is
the set R\ {1} (why?). The graph of the function f looks like:

24

L
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t)=—— t#2
f)=5  t#

with vertical a asymptote at t = 2 and a horizontal asymptote y = 1.

Example 2. Let f(t) = 1In(t). Then we have to take
A={teR|t>0}=(0,00)

because f is not defined for 0 or negative numbers. The range of f is
the set of all real numbers R. The graph is given by

F(#)=In(), t>0

There are several ways to define a functions. What we need to know
is a rule how to evaluate the dependent variable y = f(z) for a given
numerical value of the independent variable x. This can happen in may
different ways. This can be done in many different ways. The most
useful form is if the function is given by an explicit equation like:



22432z -2,z €R,
=

(u)
(t) = et cos(t) + In(t — 2), t > 2,

8
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In this case we can evaluate or sample the function at any point in
the domain of definition. We can also graph the function, put it into a
graphical calculator or any other graphical or computational device, we
can integrate the function numerically or if possible using an explicit
formula, and finally we can differentiate the function. Many times the
equation consists of more than one part. As an example let us take the
function

ro={ &}

1+t

The graph of f then looks like
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To draw the graph we notice that the function is build up from two
functions. The first function is

t—1

valid for all negative t. The other function is

1—¢
ts ——
1+1¢



valid for all t > 0. The result is:
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We notice that in this case the limit from the left
lim f(t) =1
t—o0~
is the same as the limit from the right
) . 1—t 1-0
tl—lgﬂrf(t) :tl—lgil——i-t - 1+0
Hence the function f is continuous.

1 <
Example 3. Evaluate the above function f(t) = { 1—t t=0

= t>0
pointst=—1,t=0, andt = 1.
Solution: Starting with t = —1 we observe first that —1 < 1. Thus

we have to use the part of the definition valid for negative numbers.
Thus

at the

f(=1)=1.
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The value 1 s assigned to all numbers less or equal to 0. Hence
f0)=1.

Fort =1 we notice that 1 > 0, hence the second part of the definition
is in force. Thus

The final answer is:

o~
~

(t)

1
0 1
0

Definitions of this kind requires the following steps:
(1) Make clear which of the intervals in the definition of f that we
are using;
(2) Make sure we know what the definition of f is on each interval;
(3) Draw the graph of each part according to the definition.

Example 4. Define the function f: R — R by
1—t2 if t<1
ﬂﬂ_{tm@ if t>1
Evaluate the function at the points t = —2,—1,0,1,2. Draw the graph
of f and decide where f is continuous.

Solution: We first notice that the definition consists of two parts. The
first of them

ts1—¢
s valid for allt < 1. The other part
t— tln(t)

1s valid for all t > 1. In particular this definition has to be used for
the endpoint t = 1. The result is that we have to use the first part of
the definition for the points t = —2,—1,0 and the second part for the
points t = 1,2. Thus

t | we use | calculation | f(t)
S [1-2|1-(—27| -3
I[1-# | 1-(-D)Z| 0

0 |1—-¢] 1-0° 1

1 | tin(t) | 1-In(1) 0

2 [ tin(t) | 2-In(2) |~ 1.386
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The graph of the function is build up from two parts:

. 5 k o
-

4 o ] i i

= Lir]

=L

Next we notice that t — 1—t2 is a polynomial and hence continuous. As
t and t — In(t) are continuous it follows that f(t) is continuous except
possibly at the point t = 1 where the two definitions come together. But

lim f(t) = lim (1 -#)=1-1>=0
t—1— t—1—

and
lim f(t) = lim tln(t) =1-0=0.
Hm £(t) = Jim ¢1n(0)

Hence f is continuous at t = 1. It follows that t is continuous on the
real line.

Example 5. Define the function f: R — R by
cos(2nt) if t<0
£(t) = 2t if 0<t<1

t2-2 .
e U 1<t
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FEvaluate the function at the points t = —2,—1,0,1,2. Draw the graph
of f and decide if f is continuous or not.
Solution: In this case we three different parts in the definition of f.

t | weuse | calculation | f(t)
—2 | cos(27t) | cos(—2m(—2)) | 1
—1 | cos(27t) | cos(—2m(—1)) | 1

0 2t 2-0 0

1 t2—2 12-2 1

EDTERD 1121412 1

9 122 222 2

1420112 1122407 9

The graph consists of three parts each valid for the corresponding piece
of the definition:

1.
031
t +— cos(27t), t <0,
4 . 1 E Fi
4151
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2.
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ts 2t 0<t<l,
5
0.5
|
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and finally
0.5
04
\ 13
t*—2
bt ———— 1<, '3
1+2t+ 2 .
4 d ] '
-0 ¢
-0
The result is the graph
j.
1.5
1
5
4 2 0 2 F
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To find out where f is continuous we first remark that:

(1) The function cos(2mt) is continuous;

(2) The function 2t is a polynomial and hence continuous;
(3) The function 1+2tft2 s a quotient of two polynomials and hence
continuous where ever 1+ 2t +1* = (1+t) #0. As (1+t)>=0
only for t = —1 it follows that —=—=5 1is continuous for all

> 1.

It therefore follows that f is continuous at every point except possibly
the points t = 0 and t = 1 where the different definitions meets each
other. At those points we will always have to work out the limit from
the left and the limit from the right.

1+2t—|—t
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t=0: We have
lim f(¢) = lim cos(27t) = cos(0) =1
t—o~ t—o—
and
li t)=1lim2t=2-0=0.
Jim f(t) = lim
As

lim f(t) =1#0= lim /(1)

it follows that f is not continuous at t = 0.
t=1: In this case we get

lim f(t) = lim 2t =2-1=2

t—1- t—1-
and
2 _9 12 -2 1
lim f(¢) = L - = = _ 925
Jm f(8) =l o = e i e - 4

Thus f is not continuous at t = 1 because the limit from the left is
different from the limit from the right.

Exercise

(1) Let f(t) = {t%5. Determine the set of points where f is defined.

(2) Where is the function f(t) = 12S_(t2)t2 defined?
(3) Define the function f(¢) by

2t—1 if t<1
ﬂ”—{1+m@ it 1<t
Evaluate f at the points t = —1,0,1,2. Draw the graph of f
and determine where f is continuous.

(4) Draw the graph of the function

0 if t<0
f(t):{e—l/t2 if +>0

Evaluate f at the points t = —1,0,1,2. Draw the graph of f
and determine where f is continuous.
(5) Draw the graph of the function

-1 if <1
f(t) = t if —1<t<l1

= if 1<t
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Evaluate f at the points t = —2, —1,0,1,2. Draw the graph of
f and determine where f is continuous.

3. TRANSLATION OF FUNCTIONS

In this section we discuss two operations of function that will be one
of our main tool later on. Those are translation and dilation of
function.

Let f : R — R be a function. For a real number r define a new function
by  — f(x—r). We call the function f(x—r) the translated function.
To evaluate f(x —r) we first have to replace x by x —r and then plug
the result into f. Thus if f(z) = 2% and r = 1 then

x |xz—1| f(x—1)
1] -2 [(-2)7=2

0 -1 [(-1)2=1
1] 0 02=0
2 | 1 12=1

The effect on the graph of f is that the graph is shifted to left by r if
is positive and to the right by |r| if r is negative. The following picture
shows the graph of ¢ — (t+1)? (blue), t — t? (green), and t — (£ —1)?
(red):

7

3 1 e I 3

Example 6. Let f(t) = t? + 2t + 2. Draw the graph of the function
t— f(t—2) fort in the interval [—2, 2]
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Solution: The graph of the function f is given by

W

The graph of t — f(t — 2) is gotten by moving this graph two units to
the right. Hence the graph of f(t — 2) is given by

10
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Example 7. If the graph of f(t) is given by

05

-5

-1.9

draw the graph of f(t+1) and f(t —1).

Solution: To draw the graph of f(t+1) we have to translate the graph
of f(t) to the left by one. Thus

=]

115
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To draw the graph of f(t—1) we have to take the original graph of f(t)
and translate it by one unite to the right

a5

04

Example 8. Let f(z) = ;”2121. FEvaluate f(x — 1) at the points x =

—1,0,1 and draw the graph of f(x — 1) for x in the interval [—1,1].
Solution:

(1) If t = =1, then t — 1 = —2 and hence

—2+2
-1-1)= ——=0.
S =1 = S =0
(2) Ift=0, thent —1=—1 and
-1+2 1

JO=D =73

(3) Ift=1, thent—1=0 and

0+2
1-1)= 5~ =2
f0=1=5 5
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For the graph of f(t — 1) we get

15

0.5

Example 9. Consider the following two graphs where the red line de-
notes the graph of f(t) and the green denotes the graph of a function
g(t):

0&y
iy
047

02

il L

Find a number r such that g(t) = f(t —r).

Solution: We notice that the for f the t-intercept is at t = —1 and
for g the t-intercept is at t = 0. To move the t-intercept of f into that
of g we have to translate the graph of f by 1 to the right. Hence r =1
and g(t) = f(t —1).

Exercise
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(1) Let f(t) = ti_24' Evaluate f(t—2) at the points t = —1,0, 1, and
2. Then draw the graph of f(¢t—2) over the interval —1 <¢ < 2.
(2) Consider the two following graphs where the green is the graph
of f and the read line denotes the graph of g. Find r > 0 such

that g(t) = f(t — 1).

(3) Draw the graph of the functions cos(t), sin(t), cos(t — 7), and
cos(t — 2m).

4. DILATION OF FUNCTIONS

The translation moved the graph of a function to the left or to the
right. We will now discuss how to stretch the graph or compress it.
Let A > 0 and let f be a given function. We consider then a new
function given by

t— f(A?).

Example 10. Let f(t) =t*+ 1 and X\ = .5. Let us tabulate f(t) and
f(At) for few values of t :

t | At | f() | fA)
2] 1[5 | 2
—1[—05] 2 | 1.25

0] 0 [ 11

105 2 |1.25

2 1 [ 5 | 2

A4 2 [17] 5
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Let us then compare the graphs of the two functions:

Here the green line denotes the graph of f(t) and the red the graph of
f(At).

Example 11. Let us now use the same function but replace 0.5 by 2.
Then the corresponding table is:

z | Az | f(x) | f(Az)
—2 4| 5 | 17
—1[—2] 2 [ 5
00 1 [ 1
1[2] 2 5
2 [ 4 5 | 17
4817 | 65

and the graphs are

1
141
1]
ik

B = w0l
h : 3 h
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In general the graph of f(At) is stretch out if 0 < A < 1 and compressed
if1 <A

Example 12. One important example is if f(t) is a simple wave like
f(z) = cox(Az). Then A/2m is called the frequency of the wave.
Dilating the functions means changing the frequency by a factor of A.
Thus if X is small we decrease the frequency, if \ is big, then we
increase the frequency

green cos(t), red cos(2t), blue cos(4t).

cos(t) and cos(t/2)

-

05

In many application we need to use both the translation and the dila-
tion. Thus we both compress/stretch the graph and translate it to the
left or to the right.
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Example 13. Let f(t) = t* + ¢ — 1. Draw the graph of the function
f(2t — 1) over the interval [—2,2].

Solution: There are more than one way to solve the problem. Let us
start by drawing the graph of the original function f.

Next we notice that the factor of 2 increases the "speed” by two, hence
the graph is compressed by factor of 2. Then factor —1 implies that we
need to translate the graph to the right. The question is: How far?
To see that, let us write f(2t — 1) = f(2(t — 1/2)). Hence we need to
translate it 0.5-units to the left. The result is:

15
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