
447 HOMEWORK SET 2

IAN FRANCIS

1

For any a, b ∈ R, such that a < b, show that a < a+b
2 < b.

Solution From a < b, add b to both sides of the inequality to get a + b < 2b, then multi-
ply both sides by 1

2(> 0) to get a+b
2 < b. Similarly, add a to both sides of a < b to get

a + a = 2a < a + b, then multiply both sides by 1
2 to get a < a+b

2 . These two statements

imply a < a+b
2 < b. ♦

2

Let a, b ∈ R and suppose that for every ε > 0, we have a ≤ b+ ε. Show that a ≤ b.

Solution Assume that a > b, i.e. a − b > 0 and choose ε = a−b
2 . Then, by the hypothesis,

a ≤ b+ a−b
2 ⇔

a
2 ≤

b
2 ⇔ a ≤ b, a contradiction. Hence, a ≤ b. ♦

3

Prove that for any a, b ∈ R:

(
a+ b

2
)2 ≤ a2 + b2

2

Show that equality holds if and only if a = b.

Solution Let a, b ∈ R. Then, by expanding the square, multiplying both sides by 4(> 0),
subtracting everything on the left side of the inequality from both sides, respectively, we get:

(
a+ b

2
)2 ≤ a2 + b2

2

⇔ a2 + 2ab+ b2

4
≤ a2 + b2

2

⇔ a2 + 2ab+ b2 ≤ 2a2 + 2b2

⇔ 0 ≤ a2 − 2ab+ b2 = (a− b)2

Since any square of a real number is ≥ 0, and a−b ∈ R, we are done. From the last line, we see
that equality in the original statement holds if and only if 0 = (a−b)2 ⇔ 0 = a−b⇔ a = b. ♦
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4

(a) Suppose that 0 < c < 1. Show that 0 < c2 < c < 1. Show also that for all n ∈ N, cn ≤ c.

Solution We have c−1 < 0, so we may multiply both sides by c > 0 to get c(c−1) = c2− c <
0⇔ c2 < c. Since c < 1, we may conclude 0 < c2 < c < 1.
Now, for the base case, we have c1 = c ≤ c. Now assume cn ≤ c for some n ∈ N. Then
we have cn − c ≤ 0, and using the induction hypothesis and the first result of this problem,
c(cn − c) = cn+1 − c2 ≤ 0⇔ cn+1 ≤ c2 ≤ c. Thus the statement holding for n⇒ it holds for
n+ 1, so by induction, it holds for all n ∈ N. ♦

(b) Suppose that c > 1. Show that c2 > c > 1. Show also that for all n ∈ N, cn ≥ c.

Solution c > 1 ⇔ c − 1 > 0. Multiplying both sides by c, which is positive, gives c(c − 1) =
c2 − c > 0⇔ c2 > c > 1.
Now, for the base case, we have c1 = c ≥ c. Now assume cn ≥ c for some n ∈ N. Then we
have cn − c ≥ 0 ⇔ c(cn − c) ≥ 0 ⇔ cn+1 − c2 ≥ 0 ⇔ cn+1 ≥ c2 ≥ c, using the induction
hypothesis and the first result of this problem. Thus the statement holding for n⇒ it holds
for n+ 1, so by induction, it holds for all n ∈ N. ♦

5

(a) Show that if a ∈ R, then |a| =
√
a2.

Solution If a = 0, |0| = 0 =
√

02. If not, since we have |a| ≥ 0, and a2 ≥ 0 (since we used

it to prove the AM-GM Inequality), |a| =
√
a2 ⇔ |a|2 =

√
a2

2
= a2, which is true since

|a|2 = a2, ∀a ∈ R. ♦

(b) If (i) a < x < b and a < y < b, show that |x− y| < b− a.

Solution a < y < b ⇔ −b < −y < −a (we multiplied by −1, which is negative). Adding
this inequality together with (i) gives a− b = −(b − a) < x− y < b− a, and by property of
absolute value gives |x− y| < b− a, since b− a > 0 by hypothesis. ♦

6

Find all x ∈ R such that |x|+ |x+ 1| < 2.

Solution By cases:
If x < −1, then |x| + |x + 1| = −x − (x + 1) = −2x − 1 < 2 ⇔ −2x < 3 ⇔ x > −3

2 , (We

”flipped” the inequality since we multiplied both sides by −1
2 < 0).

If −1 ≤ x < 0, then |x|+ |x+ 1| = −x+ x+ 1 = 1 < 2⇔ 0 < 1, a tautology.
If x ≥ 0, then |x|+ |x+ 1| = x+ x+ 1 = 2x+ 1 < 2⇔ 2x < 1⇔ x < 1

2 .

Therefore our solution set is {x ∈ R : −3
2 < x < 1

2} ♦

7

16) Let ε > 0, δ > 0, and a ∈ R. Show that I := Vε(a) ∩ Vδ(a) and U := Vε(a) ∪ Vδ(a) are
γ−neighborhoods of a for appropriate values of γ.
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Proof If ε = δ, in both I, U simply take γ = δ, then the result is trivial.
WLOG, assume ε > δ. Then, x ∈ I ⇔ |x−a| < δ < ε, so let γ = δ. Also, x ∈ U ⇔ |x−a| < δ
or |x− a| < ε⇔ |a− x| < ε, since ε > δ, so take γ = ε. Thus, we have appropriate values for
γ−nbhd’s. ♦

17) Show that if a, b ∈ R and a 6= b, then there exists ε−nbhd’s Uε(a), Vε(b) such that U ∩ V = φ.

Proof WLOG, assume that a > b, set ε = a−b
2 , and assume ∃x ∈ U ∩ V . Then

|x− a| < a− b
2

; |x− b| = |b− x| < a− b
2

⇔ b− a
2

< x− a < a− b
2

;
b− a

2
< b− x < a− b

2
⇔ b− a < b− a < a− b,

which is clearly a contradiction. (We deduced the third line in calculation by adding the two
inequalities from the second line.)Therefore, The intersection of these two ε−nbhd’s is φ. ♦

18a) Show that if a, b ∈ R, then max{a, b} = 1
2(a+ b+ |a− b|) and min{a, b} = 1

2(a+ b− |a− b|).

Proof WLOG, assume a ≥ b, then 1
2(a+ b+ |a− b|) = 1

2(a+ b+a− b) = 1
2(2a) = a. Likewise,

1
2(a+ b− |a− b|) = 1

2(a+ b− (a− b)) = 1
2(a+ b− a+ b) = 1

2(2b) = b.

18b) min{a, b, c} = min{min{a, b}, c}

Proof Assume a ≥ b ≥ c. Then min{min{a, b}, c} = min{12(a+ b−|a− b|), c} = min{b, c} =
1
2(b+ c− |b− c|) = 1

2(b+ c− b+ c) = c = min{a, b, c} ♦

19) Show that if a, b, c ∈ R, then the ”middle number” ismid{a, b, c} = min{max{a, b},max{b, c},max{a, c}}

Proof Once again, assume a ≥ b ≥ c. Then min{max{a, b},max{b, c},max{a, c}} =
min{a, b, a} = min{a, b} = b = mid{a, b, c} , by applying our previous results. ♦


