447 HOMEWORK SET 2

IAN FRANCIS

1

For any $a, b \in \mathbb{R}$, such that a < b, show that $a < \frac{a+b}{2} < b$.

Solution From a < b, add b to both sides of the inequality to get a + b < 2b, then multiply both sides by $\frac{1}{2}(> 0)$ to get $\frac{a+b}{2} < b$. Similarly, add a to both sides of a < b to get a + a = 2a < a + b, then multiply both sides by $\frac{1}{2}$ to get $a < \frac{a+b}{2}$. These two statements imply $a < \frac{a+b}{2} < b$.

 $\mathbf{2}$

Let $a, b \in \mathbb{R}$ and suppose that for every $\varepsilon > 0$, we have $a \leq b + \varepsilon$. Show that $a \leq b$.

Solution Assume that a > b, i.e. a - b > 0 and choose $\varepsilon = \frac{a-b}{2}$. Then, by the hypothesis, $a \le b + \frac{a-b}{2} \Leftrightarrow \frac{a}{2} \le \frac{b}{2} \Leftrightarrow a \le b$, a contradiction. Hence, $a \le b$.

Prove that for any $a, b \in \mathbb{R}$:

$$(\frac{a+b}{2})^2 \le \frac{a^2+b^2}{2}$$

3

Show that equality holds if and only if a = b.

Solution Let $a, b \in \mathbb{R}$. Then, by expanding the square, multiplying both sides by 4(> 0), subtracting everything on the left side of the inequality from both sides, respectively, we get:

$$(\frac{a+b}{2})^2 \le \frac{a^2+b^2}{2}$$
$$\Leftrightarrow \frac{a^2+2ab+b^2}{4} \le \frac{a^2+b^2}{2}$$
$$\Leftrightarrow a^2+2ab+b^2 \le 2a^2+2b^2$$
$$\Leftrightarrow 0 \le a^2-2ab+b^2 = (a-b)^2$$

Since any square of a real number is ≥ 0 , and $a-b \in \mathbb{R}$, we are done. From the last line, we see that equality in the original statement holds if and only if $0 = (a-b)^2 \Leftrightarrow 0 = a-b \Leftrightarrow a = b$.

Date: September 10, 2014.

(a) Suppose that 0 < c < 1. Show that $0 < c^2 < c < 1$. Show also that for all $n \in \mathbb{N}$, $c^n \leq c$.

Solution We have c-1 < 0, so we may multiply both sides by c > 0 to get $c(c-1) = c^2 - c < 0 \Leftrightarrow c^2 < c$. Since c < 1, we may conclude $0 < c^2 < c < 1$. Now, for the base case, we have $c^1 = c \leq c$. Now assume $c^n \leq c$ for some $n \in \mathbb{N}$. Then we have $c^n - c \leq 0$, and using the induction hypothesis and the first result of this problem, $c(c^n - c) = c^{n+1} - c^2 \leq 0 \Leftrightarrow c^{n+1} \leq c^2 \leq c$. Thus the statement holding for $n \Rightarrow$ it holds for n + 1, so by induction, it holds for all $n \in \mathbb{N}$. \Diamond

(b) Suppose that c > 1. Show that $c^2 > c > 1$. Show also that for all $n \in \mathbb{N}$, $c^n \ge c$.

Solution $c > 1 \Leftrightarrow c - 1 > 0$. Multiplying both sides by c, which is positive, gives $c(c - 1) = c^2 - c > 0 \Leftrightarrow c^2 > c > 1$.

Now, for the base case, we have $c^1 = c \ge c$. Now assume $c^n \ge c$ for some $n \in \mathbb{N}$. Then we have $c^n - c \ge 0 \Leftrightarrow c(c^n - c) \ge 0 \Leftrightarrow c^{n+1} - c^2 \ge 0 \Leftrightarrow c^{n+1} \ge c^2 \ge c$, using the induction hypothesis and the first result of this problem. Thus the statement holding for $n \Rightarrow$ it holds for n + 1, so by induction, it holds for all $n \in \mathbb{N}$. \Diamond

5

(a) Show that if $a \in \mathbb{R}$, then $|a| = \sqrt{a^2}$.

Solution If a = 0, $|0| = 0 = \sqrt{0^2}$. If not, since we have $|a| \ge 0$, and $a^2 \ge 0$ (since we used it to prove the AM-GM Inequality), $|a| = \sqrt{a^2} \Leftrightarrow |a|^2 = \sqrt{a^2}^2 = a^2$, which is true since $|a|^2 = a^2, \forall a \in \mathbb{R}$.

(b) If (i) a < x < b and a < y < b, show that |x - y| < b - a.

Solution $a < y < b \Leftrightarrow -b < -y < -a$ (we multiplied by -1, which is negative). Adding this inequality together with (i) gives a - b = -(b - a) < x - y < b - a, and by property of absolute value gives |x - y| < b - a, since b - a > 0 by hypothesis. \diamond

6

Find all $x \in \mathbb{R}$ such that |x| + |x+1| < 2.

Solution By cases:

If x < -1, then $|x| + |x + 1| = -x - (x + 1) = -2x - 1 < 2 \Leftrightarrow -2x < 3 \Leftrightarrow x > -\frac{3}{2}$, (We "flipped" the inequality since we multiplied both sides by $-\frac{1}{2} < 0$). If $-1 \le x < 0$, then $|x| + |x + 1| = -x + x + 1 = 1 < 2 \Leftrightarrow 0 < 1$, a tautology. If $x \ge 0$, then $|x| + |x + 1| = x + x + 1 = 2x + 1 < 2 \Leftrightarrow 2x < 1 \Leftrightarrow x < \frac{1}{2}$. Therefore our solution set is $\{x \in \mathbb{R} : -\frac{3}{2} < x < \frac{1}{2}\}$

7

16) Let $\varepsilon > 0, \delta > 0$, and $a \in \mathbb{R}$. Show that $I := V_{\varepsilon}(a) \cap V_{\delta}(a)$ and $U := V_{\varepsilon}(a) \cup V_{\delta}(a)$ are γ -neighborhoods of a for appropriate values of γ .

Proof If $\varepsilon = \delta$, in both I, U simply take $\gamma = \delta$, then the result is trivial. WLOG, assume $\varepsilon > \delta$. Then, $x \in I \Leftrightarrow |x-a| < \delta < \varepsilon$, so let $\gamma = \delta$. Also, $x \in U \Leftrightarrow |x-a| < \delta$ or $|x-a| < \varepsilon \Leftrightarrow |a-x| < \varepsilon$, since $\varepsilon > \delta$, so take $\gamma = \varepsilon$. Thus, we have appropriate values for γ -nbhd's. \diamond

17) Show that if $a, b \in \mathbb{R}$ and $a \neq b$, then there exists ε -nbhd's $U_{\varepsilon}(a), V_{\varepsilon}(b)$ such that $U \cap V = \phi$.

Proof WLOG, assume that a > b, set $\varepsilon = \frac{a-b}{2}$, and assume $\exists x \in U \cap V$. Then

$$\begin{aligned} |x-a| &< \frac{a-b}{2} \quad ; \quad |x-b| = |b-x| < \frac{a-b}{2} \\ \Leftrightarrow \frac{b-a}{2} &< x-a < \frac{a-b}{2} \\ \Leftrightarrow b-a < b-a < a-b, \end{aligned}$$

which is clearly a contradiction. (We deduced the third line in calculation by adding the two inequalities from the second line.) Therefore, The intersection of these two ε -nbhd's is ϕ . \diamond

18a) Show that if $a, b \in \mathbb{R}$, then $max\{a, b\} = \frac{1}{2}(a + b + |a - b|)$ and $min\{a, b\} = \frac{1}{2}(a + b - |a - b|)$.

Proof WLOG, assume $a \ge b$, then $\frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+a-b) = \frac{1}{2}(2a) = a$. Likewise, $\frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b-(a-b)) = \frac{1}{2}(a+b-a+b) = \frac{1}{2}(2b) = b$.

18b) $min\{a, b, c\} = min\{min\{a, b\}, c\}$

 $\begin{array}{l} Proof \text{ Assume } a \geq b \geq c. \text{ Then } \min\{\min\{a,b\},c\} = \min\{\frac{1}{2}(a+b-|a-b|),c\} = \min\{b,c\} = \frac{1}{2}(b+c-|b-c|) = \frac{1}{2}(b+c-b+c) = c = \min\{a,b,c\} \\ \diamond \end{array}$

19) Show that if $a, b, c \in \mathbb{R}$, then the "middle number" is $mid\{a, b, c\} = min\{max\{a, b\}, max\{b, c\}, max\{a, c\}\}$

Proof Once again, assume $a \ge b \ge c$. Then $min\{max\{a,b\}, max\{b,c\}, max\{a,c\}\} = min\{a,b,a\} = min\{a,b\} = b = mid\{a,b,c\}$, by applying our previous results. \Diamond